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PREFACE.

In the interval since the publication of the First Edition of this book
the subjects of physical study have changed enormously, and if it were

not for the needs of Wireless Telegraphy, I question whether the theory

and practice of absolute measurements would at the present time com-
mand serious attention. It has even been said that radioactivity and
the phenomena of X rays are the only things worthy of the attention

of physicists, and that the labours of applied mathematicians are rela-

tively of little or no importance. Had it not been for the subject of

the behaviour of aeroplanes, dynamics in its higher aspects, I believe,

would long since have practically vanished from our curricula. Of
the utter absurdity and danger of this attitude of mind the manifold

problems of the late war provide a sufficient demonstration. As it is,

we have now an army of students and others talking glibly of Einstein

and of quantum theory, whose attention to the fundamentals of

dynamics and physics has been wofully slight.

In deciding what part of my former work should be omitted and
what part should be expanded, I have had a difficult task. It was
not possible, without carrying the book to a most unwieldy length, to

include the experimental treatment of electrical waves and the re-

searches into atomic structure and theory. These are best studied in

the special treatises which workers in that important line of research

have published. I have therefore in this part of the subject confined

my attention to constants of coils which play an important part in

wireless telegraphy, renouncing, however, any attempt to make the

book a treatise on the appliances of radio work. The discussion of

coil constants is a difficult and somewhat thankless task, and has con-

sumed much time and thought. I have, however, to acknowledge the

assistance I have received from the writings of my friend Dr. Alex-

ander Russell, -and from those of Mr. Butterworth. These gentle-

men generously placed their papers at my disposal, and very kindly

looked over the proofs of the parts of the. book in which their results

and formulae appear.

The collected edition of the B.A. Rejwrts on Electrical Standards,

published in 1913 by Mr. F. E. Smith, has been of great service, and
I am much indebted to Mr. Smith's account of the National Physical

Laboratory current weigher, and of the determination of the ohm by
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an ingenious modification of the method of Lorenz which he carried

out in 1912. I have given much more space to the determination of

the horizontal component of the earth's magnetic force than I would
have done if laboratories generally were provided with absolute current

weighers.

To the late Mr. E. B. Rosa and his colleagues of the physical stafE

of the Bureau of Standards at Washington I am under many obligations.

They tested and used my suggestions as to standards and formulae of

inductance, and constructed an accurate electrodynamometer of the

special dimensions recommended in my Phil. Mag. paper of 1892, and

in the First Edition of this book. They have carried in their writings

the investigation of the accuracy of formulae, and the allowance for

errors of different kinds, to a high pitch of perfection. Their numerical

comparison of formulae and their exact computation of the constants

of apparatus have not been such as to attract popular attention and

applause, but it has been none the less of enormous value to scientific

progress. This merit it has in common with the whole work of the

British Association Committee on Electrical Standards and of all those

scientific men who have laboured at the subject of absolute electrical

measurement. This task of founding a system of absolute measure-

ments was forced upon science by applications to submarine telegraphy,

and it is not too much to say that without such a system not one of

the immense and varied range of practical applications could ever have

been made.
I am indebted to my friend and former pupil, Professor E. Taylor

Jones, who has made an elaborate theoretical and experimental study

of the induction coil, and is an acknowledged authority on that

subject, for the account of the action of such apparatus, which

appears in Appendix I.

The Table of Contents and the Index have been constructed by my
eldest daughter, to whose unfailing patience and ready help as

amanuensis I have had contin|ially to turn.

I wish finally to acknowledge the care of the readers and compositors

of the University Press, which, by comparison of references, and other-

wise, has saved the text from many inconsistencies, and increased its

accuracy.

A. GRAY.
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ABSOLUTE MEASUREMENTS IN

ELECTRICITY AND MAGNETISM

CHAPTER T.

UNITS AND DIMENSIONS OF PHYSICAL QUANTITIES.

1. Measure of a physical quantity. A physical quantity is expressed

numerically rn terms of some convenient magnitude of the same kind

which has been taken as unit and compared with it by some process of

measurement. The complete expression of the quantity may be

described as consisting essentially of two factors, one a number, or,

as we shall call it, a 7mmeric, and another the unit with which the

quantity is compared in the process of measurement. The numeric

is then the measure of the ratio of the quantity determined to the

quantity taken as unit for the comparison.

Thus when a certain distance is said to be 25 yards, what is meant
is that the distance has by some proper process been compared with

the length, under sj)ecified conditions, of a certain standard rod, which

iength is defined as a yard, and the ratio of the former to the latter

has been found to be 25. We may therefore write

Distance = 25 x yard

.

Similarly in any other case of numerical reckoning of quantities (apart

from direction) we may write

Quantity =N x unit.

When the unit has been specified, it is thereafter {e.g. in algebraical

calculations) as a rule understood, and the numeric alone is taken

as representing the quantity.

The unit chosen may not be, as it is in the above example of a distance,

a fundamental unit. According to the nature of the quantity expressed,

it may be either a unit derived from a single fundamental unit, or a

unit derived from a combination of fundamental units.

For example, a certain volume of earth or clay removed in digging

may be expressed as so many, say N, cubic yards. In this case the

unit of volume taken is the volume of a cube, the length of an edge
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of which is the yard. Or a certain volume of air may be expressed

as so many, say N, cubic inches. In this case the unit of volume is

the volume of a cube, the length of an edge of which is one inch.

2. Unit of length. Thus the unit of length chosen to define the unit

of volume may be any multiple, or sub -multiple, denoted by the

numeric I, say, of the fundamental unit of length which gives the

fundamental unit cube, or, as we shall say, the unit cube. Hence we
may indicate the magnitude of the unit chosen by the expression

P X unit cube. Thus we have

Volume =N xl^x unit cube.

The numeric iV^, expressing the volume in terms of the unit cube, is

therefore given by the equation

and we have ]V = iV^
^3
= N^n.

Thus the change from the numeric N-^_, for the unit cube, to N, for the

other unit chosen, is effected by dividing the former by the numeric P,

or by multiplying it by the numeric n=l/P. Calling N^ the old, and

N the new numeric, we see that the change from the old numeric to

the new is effected by multiplying iV^ by the ratio of the old unit of

volume to the new, or, as it is sometimes put, by " the number of times

the old unit contains the new." It will be seen that this is the third

power of the ratio of the old unit of length to the new. If we denote

this ratio by [L] and the third power of the ratio by [£^], we have

3. Dimensional formulae. Change-ratios. The symbol [L^] is called

a dimensional fonnula. It gives, by its value, the conversion-factor w,

or change-ratio as we shall frequently call it, and, by its form, the manner
in which the unit of volume depends on the unit of length.

We may apply to the example used above a method of specifying

quantities which illustrates very clearly what has been stated, and gives

the change-ratio at once as follows. A cubic inch is represented by
the notation in^, a cubic yard by yd^, and we have the equation

iV.in3=iVi.yd3,

which means that ISl cubic inches and N-^ cubic yards represent the

same volume. We get then

The change-ratio is therefore 36^, that is the ? of 2 is 1/36, and
[Z3] or n is 36^.

The change from N-^ to N cannot be made unless the change-ratio n
is known. Each unit may have been arbitrarily chosen without
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rcfurcnce to any other UFiit, unci il detennined by Honie process of

measurement ; or the units may have been derived from certain chosen

fundamental units, and th<' change-ratio deduced from the relation

of one set of fundamental units to the other. In the measurements
described in tliis book the units employed are entirely of the second

kind here referred to.

4. Derived units and fundamental units. Our task in this chapter

is to determine the manner in which the various derived units involve

the fundamental units, that is we have to determine for each quantity

the change-ratio n in terms of the fundamental units. The formula

which thus expresses n for a unit of measurement of any quantity,

we call the dimensional fornmla of the quantity. To prevent the

necessity for the constant repetition of these terms we shall denote the

dimensional formula of any quantity, of which the numerical expression

in terms of some chosen unit is denoted by any particular symbol,

by the same symbol enclosed in square brackets, as we have indicated

above. Thus the dimensional formula of volume may be written [F],

and when the manner in which the fundamental unit, that of length, is

involved in the unit of volume, is to be exhibited write the formula

in the form [L^].

Examples of dimensional formulae will be found in dealing with

the various units to which we now proceed. We shall consider first

the definitions and relations of the fundamental units in common use,

and the derivation from them of the units of other physical quantities.

In doing so we shall find the dimensional formula in each case and its

numerical values for certain changes of units.

I. FUNDAMENTAL UNITS.

5. Unit of length. The standard unit of length in Great Britain is

defined by Act of Parliament in the following terms :
" The straight

line or distance between the centres of the transverse lines in the two

gold plugs in the bronze bar deposited in the OfHce of the Exchequer

shall be the genuine standard of length at 62° F., and if lost it shall

be replaced by its copies."

Authorized copies are preserved at the Royal Mint, the Royal Society

of London, the Royal Observatory at Greenwich, and the New Palace

of Westminster. The comparison of the standard with its copies has

been effected with the utmost scientific accuracy, and formed a most

elaborate and important scientific investigation.

The length of a simple pendulum which beats seconds has been

determined for several places by means of very careful observations,

and repeated pendulum experiments at these places would, in the event

of the destruction of the standard and all its copies, give a means of

accurately renewing them.

In France and in most Continental countries, including their colonies
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and offshoots in all parts of the world, the standard of length is the

Metre. This is defined as the distance between the extremities of a

certain platinum bar when the whole is at the temperature 0° of the

Centigrade scale. This rod was made of platinum by the Chevalier

Borda, and is preserved in the national archives of France. As in the

case of the yard, authorized copies, whose lengths have been carefully

compared with the standard, are preserved in various places.

The metre was constructed in accordance with a decree of the French

Republic passed in 1795 (Loi du 18 germinal, an iii), which enacted,

on the recommendation of a Committee of the French Academy of

Sciences, consisting of Laplace, Delambre, Borda, and others, that the

unit of length should be one ten-millionth part of the distance, measured

along the meridian passing through Paris, from the Equator to the

North Pole. The arc of that meridian extending from a point near

Barcelona to a point near Dunkirk was measured by Delambre and

Mechain, that is, was expressed in terms of the length of an arbitrary

measuring rod by which the base-line of their triangulation was laid

down. The relation of the length of the arc to that of the quadrant

of the meridian between the equator and the pole was known from

astronomical observations, and so the length of the quadrant was

obtained in terms of the measuring rod. It was then a comparatively

simple matter to construct a rod of platinum to represent the specified

fraction of the length of the quadrant, and this was done with all

possible care.

The metre, it is to be observed, is not now defined in relation to

the earth's dimensions, and later and more exact results of geodesy have

therefore not affected the length of the metre, but are themselves

expressed in terms of the length which Borda's rod has at 0° C.

6. Prototype metre. An International Bureau of Weights and

Measures has been established under the auspices of various govern-

ments, and has constructed copies of the metre and other standards.

The metre of the Bureau is what is known as a line standard, that is

the distance represented is taken between two cross-lines, as in the

case of the British standard yard. It is called the International

Prototype Metre. Copies of it have been issued to the governments

who have contributed to the support of the Bureau : these are called

" National Prototypes."

In the metric system the decimal mode of reckoning has been adopted

for multiples and sub-multiples of all the units. Thus the metre is

divided into ten equal parts each called a decimetre, the decimetre

into ten equal parts each called a centimetre, and the centimetre into

ten equal parts each called a millimetre.* Again, a length of ten metres

is called a decametre, of one hundred metres a hectometre, and of

one thousand metres a kilometre.

* All these words, including metre itself, are now written in English without
accents, and are pronounced as English words,
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7. Units for scientific work. In accordance with the prevailing

practice of scientific experimenters, who have adopted the suggestions

of the British Committee on Standards, the centimetre has been very

generally chosen as the unit of length for the expression of scientific

results, and on it as unit of length the electric and magnetic units,

approved by the International Congress of Electricians held at Paris

in 1882, and now brought into universal use, have been founded. The
reason for this choice will aj)pear when we consider the unit of mass.

If we denote the numerical value of a length by L, the dimensional

formula is [L]. The change-ratio is given by this when for [L] is sub-

stituted the ratio of the old unit of length to the new. For example,

if we wish to find the numeric for a length in terms of the metre as unit

from the numeric for the same length in terms of the yard as unit,

we have [X] = '91439, the ratio of the yard to the metre. Or we may
put the matter thus. Let m stand for metre, yd for yard, iV„, , N„ for

the corresponding numerics. We then have

iV„, .m = iVy.yd,

or N =N —

.

Similarly the value of [L] for a change from the foot as unit of length

to the centimetre as unit is ft/cm = 30"47945.

8. Unit of mass. The legal standard of mass in Great Britain is the

Imperial standard pound avoirdupois, a piece of platinum marked
" P.S. 1844, 1 lb.," preserved in the Exchequer Office. In the Act of

Parliament (the Act already referred to) which gives authority to the

standard, it is called the " legal and genuine standard of weight "
;

and the act provides that if the standard is lost or destroyed it may be

replaced by means of authorized copies, which are kept with the stan-

dards of length in certain national repositories. [See 5 above.]

The word "weight" which appears in the Act is constantly used

in two senses : (1) as here, to signify a measure of the quantity of

matter in a body
; (2) to signify a measure of the downward force of

gravity on the body. These two senses are distinct ; but the context

is, in general, sufficient to indicate in which sense the word is used.

When a body is weighed its mass, or, as we often say, its weight, is

determined by comparison of the force of gravity on it with the force

of gravity on a standard piece, or an aggregate of standard pieces, of

matter. At a given place the forces of gravity on different bodies are

(as was proved by Newton's result that pendulums of the same length,

but with bobs of different weights, vibrate in the same period) propor-

tional to their masses ; and thus a comparison of the weights (or

gravities) of different bodies at the same place gives a direct comparison

of their masses.

The pound has been much used in this country for the expression of

dynamical results ; but, in engineering and the arts, larger units, for
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example the ton, or mass of 2240 lb, and the hundred-weight, or mass
of 112 lb, are frequently employed.

The French standard of mass is a piece of platinum called the

Kilogramme des Archives, made also by Borda in accordance with

the decree of the Republic mentioned above. It was connected with

the standard of length by being made a mass as nearly as possible equal

to that contained in a cubic decimetre of distilled water at the tempera-

ture of maximum density, or, very nearly 4° C. The comparison was
of course made by weighing, and so far as this process was concerned

it was certainly possible to obtain great accuracy ; but the density

of water is somewhat difficult to determine with exactness, and is still

in a small degree uncertain. The relation of the standards is, however,

so nearly that stated above, that, for practical purposes, the error may
be neglected.

It is important, however, to remember that the standard is defined

as the kilogramme made by Borda, and not as the mass of a cubic

decimetre of distilled water at 4° C, which it approximately equals.

9. Relation between British and French standards of mass. A com-
parison between the French and British standards of mass made by
the late Professor W. H. Miller gave the mass of the kilogramme as

15432*34874 grains. The pound avoirdupois contains exactly 7000

grains. Hence, according to Professor Miller's determination, a pound
is equal to 0-45359265 kilogramme, and a kilogramme is 2-20462 pounds.

The Kilogramme des Archives has also been copied by the Inter-

national Bureau of Weights and Measures, and one of the copies has

been called the International Prototype Kilogramme. The other copies

have been distributed in the same manner as the metre standards, and
are called also National Prototypes.

The gramme, defined as 1/1000 of the kilogramme and approximately

equal to the mass of one cubic centimetre of water at 4° C, was recom-

mended by the British Association Committee in 1863 as the unit mass
on which to base a system of absolute electric and magnetic units,

and this choice has been ratified by the adoption of the gramme as the

unit of mass for the expression of scientific results generally. The
convenience of this unit lies in the fact that it is (when the centimetre

is taken as unit of length) approximately the mass of unit volume of

the substance—water at its temperature of maximum density-—usually

taken as standard of comparison in the estimation of specific gravities

of bodies, which therefore become in this case the same numbers as

those which express the densities of the bodies. The kilogramme and
decimetre have the same advantage.

The multiples and sub-multiples of the gramme proceed decimally,

and are distinguished by the same prefixes as are used for units of

length derived from the metre.

If we denote the numerical value of a mass by M (or m), and hence
write [M] as its dimensional formula, the value of [M], regarded as a
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change-ratio, or conversion factor, for a reduction from the pound as

unit to the grainnie as unit is 453-593 ; for reduction from the grain as

unit to the grainiiie as unit it is 1/15*432.

10. Unit of time. The proper dynamical definition of equal intervals

of time cannot be given here ; but that definition leads to the con-

clusion that to a very high degree of approximation the intervals of

time in which the earth turns through equal angles about its axis of

rotation are equal. These intervals correspond closely to equal intervals

of time as these would be shown by a clock regulated to keep perfect

dynamical time. Let it be supposed that such a clock is arranged to

register a twenty-four hours' interval as the period of the earth's rotation

about its axis (that is, the interval between two successive passages

of a fixed star in the same direction across the meridian of any place,

showing Oh, Om, Os at each instant when the First Point of Aries

crosses the meridian in the same direction) ; then the clock is said to

show sidereal time.

Though sidereal time is used in astronomical observatories, it is more

convenient in ordinary civil affairs to use solar time ; but as the actual

solar day—the interval between two successive transits of the sun

across the meridian of any place—varies in length during the year,

the standard interval is a proper average of such intervals, and is called

a mean solar day. On account of the orbital motion of the earth the

mean solar day is about 3 m 55-9 s longer than the sidereal day.

The mean solar second, defined as 1/86400 part of the mean solar day

—that is the interval in which the earth turns through 1/86400 part

of the angle which it turns through in a mean solar day—is taken as

the unit of time for the expression of all scientific results.

The unit of time based on the rotation of the earth is, there is some

reason to believe (though the grounds for the belief have been questioned,

and the matter is not yet finally settled), subject to a sbw progressive

lengthening, due to tidal retardation of the earth's rotation. It has been

estimated that if the clock, referred to above as rated to keep perfect

dynamical time, were arranged so as just to keep pace with the earth's

rotation, and therefore show sidereal time, at the beginning of a century,

it would at the end of the century be found to have outstripped the

terrestrial time-keeper by about 22 seconds, or in other words—since

the amount of gain if sensible must be proportional to the square of

the time interval—it would at the end of a year from the beginning of

the century be found to be ahead of the earth's rotation by about

22/l(X)00 of a second.

11. The fundamental units are arbitrarily chosen. It will be seen

that, whatever motives may have led to the choice of the various

fundamental units now in use, the definitions of these units are entirely

arbitrary, and that there is nothing in their nature which entitles them

to be termed " absolute "
; and as a matter of definition, without

reference in all cases to realization, many other standards might be
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suggested. Thus in Thomson and Tait's Natural Philosophy (Vol. I.

Part I. p. 227, sec. ed.) it is stated that the period of vibration of a

metallic spring, kept in a hermetically sealed exhausted chamber' at a

constant temperature, or the period of a particular mode of vibration

of a quartz crystal (or other crystal of definite composition) would be
theoretically preferable to the mean solar second, as fulfilling with a

much nearer approach to perfection the condition of constancy. About
this of course there may now be a difference of opinion.

It was suggested by Clerk Maxwell {vide the same reference) that

the period of vibration of a gaseous atom of a widely diffused substance,

easily procurable in a pure state, would be a more satisfactory unit of

time. Modern results, however, proving the disintegration of atomic
structure throw doubt on the legitimacy of this proposal.

We denote the numerical value of a time interval by T or t, and the

dimensional formula for time by [T].

II. DERIVED UNITS.

12. Dimensional formulae for derived miits. In general the numerical

expression N-^ of a measured physical quantity depends on the numerical

values of certain lengths, masses, and times, so that we write for the

present N^ = GL^'''Mx'-' T^^' L^''m2'''Tp.-. , (1)

where L^, M^, T^ are the numerics for a certain measured length,

mass, and time, L<^, M^, T^ those for another set of these quantities,

and so on, and (7 is a numerical coefficient which does not depend on
the units, like the factor J in the expression Jmv^.

Equation (1) is, as we shall see, sufficient for the calculation of the

dimensional formula of the quantity, and obviously gives as its ex-

pression
[2.^l+A,+ ...^>.i+ /^,+ ...2^ri+ To+...-j .

or, if we write X = Xi-l-X2 + --- » M = Mi + M2 + ---
j t = Ti + T2 + ...,

so that the consideration of the case of

N = CU^Mx^Ti' (2)

is sufficient.

The numeric of the quantity may however be given by a series of

such terms : thus we may have

N = GiLi'''Mi''^Ti'' + G2L2^'M2^'r-' + --' , (3)

with the same units of length, mass, and time used in all the terms.
Now it is clear that in these terms we must have

as otherwise it would be possible by choosing a large or a small unit

(of length, say) to make one term (or set of terms) or another predominate



I UNITS AND DIMENSIONS OF PHYSICAL QUANTITIES 9

in the value of N. Equation (3) must in fact be homogeneous as

regards each of the quantities L^, M'^y T^ which appear in its terms,

that is, each term must be a contribution to the quantity measured, and
all must be on the same footing as regards dimensions. Thus again

we are brought back to

and the dimensional formula is

It has been assumed as obvious that the dimensional formula of the

product of the factors L/> Mi'', Ti^ is the product of the dimensional

formulae [L^], [M'^], [r].
13. Formulae must be homogeneous in dimensions. The fact that

in (3) every term must have the same dimensions in each unit affords

a valuable check on the accuracy of algebraic work in physical mathe-
matics. It is to be noted also, in this connection, that if we have an
exponential multiplier, e ^ say, X must be of zero dimensions in each

unit, that is, in each term of X we must have \ = 0, /x = 0, t = 0. If

this were not so the relative values of the terms in the expansion of

e-^ would be changed by a change of units, whether of length, mass, or

time (if all three units enter into the estimation of X), and therefore,

since the first term of the expansion is 1, the exponents X, yu, r must
each be zero.

We are now j^repared to find the dimensional formulae of the various

derived units. The process will consist in finding for each quantity

the formula corresponding to the right-hand side of (3), and thence

deriving the proper formula of dimensions. We shall consider first

the units of Area, Volume, and Density ; then the various dynamical
units which are involved in those of electric and magnetic quantities.

14. Unit of area. The general formula for the area of any surface

can be put in the form CL^, where iy is a numeric expressing a length,

and C is a numeric which does not change with the units. Hence the

formula of dimensions for area is [L^]. Regarded as a change-ratio,

the dimensional formula gives for a change from a foot to a centimetre

as the unit of length the multiplier [ft^/cm^] = 30"48^.

Volume. Similarly the formula for the numeric of a volume is CL^y

and the formula of dimensions is [L^]. For the change of units specified

under Area, the change-ratio is 30*4:8^.

15. Unit of density. The density of a body is measured numerically

by the ratio of the numeric for the mass to the numeric for the volume.

We denote the numeric for density by D.

If the body be of varying density from point to point, the density at

any ])oint is the limit towards which the ratio of the numeric, for the

mass in an element of volume to the numeric for that volume, approaches

as the element is taken smaller and smaller. It is to be understood that

the diminution of volume cannot be pushed to the limit of the dimensions
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of the grained structure of matter ; but it is certain that we approach

a definite limit sufficiently closely for all practical purposes while

still keeping the volume element large enough in every dimension to

avoid the effect of molecular structure.

If then SV be the measurement of an element of volume, including

a point at which the density is D, and SM be the measure of the mass

of the element, we have

2) = Limitf^^^ ^^fSM\
SV/ dV

In either case we have CL^ for the numerical expression of the

volume taken, and for that of the mass contained in it some value M.
^^^^^

[D] = [ML-^].

The specific gravity of a body is the ratio of the density of the body
to the density of the standard substance, and is therefore a numeric

independent of the system of units adopted, that is, its dimensional

formula is 1 . If 6^ denote the specific gravity of a body whose density

is D, and Dg be the density of the standard substance.

In the metric system of units, if either the kilogramme is taken as

unit of mass and the decimetre as unit of length, or the gramme is taken

as unit of mass and the centimetre as unit of length, Dg is unity, and we
have ^^g.

This is one great convenience of the metric system ; but it is to be

remembered that density and specific gravity are essentially different

ideas, and only in such cases as those cited coincide in numerical value.

Density changes with the units adopted, specific gravity does not.

III. DYNAMICAL UNITS.

16. Dimensions of velocity and speed. The velocity of a body
moving without rotation, or of a particle, is measured by the numeric

of the length described per unit of time. The specification of velocity

involves direction as well as magnitude; but in dealing with dimensions

we are only concerned with the latter element, that is with the speed.

If the speed is uniform its numerical expression v is the ratio of

the numeric L for the distance traversed in a time interval to the

numeric T for that interval, that is

L

If the velocity is variable the speed may or may not undergo change.

If the speed is variable, its measure at any instant is obtained as follows.
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Let ST be the numeric for an interval of time which includes the instant

between its extremitios, and SL that for the distance described in that

time ; and let ^T be taken smaller and smaller without limit. Then
the limit towards which the ratio SL/ST continually approaches

without limit of closeness as the interval STia diminished, is the numeric
V. That is

where L denotes, in Newton's fluxional notation, the time-rate of

variation of L.

We see that the numerical ex^jression of a speed is always the ratio

of a length-numeric to a time-numeric, and therefore we have

[i]=[Lr->].

As an example we take the change of v from mile-minute units to

centimetre-second units. We have

, cm mile

sec min

and therefore
mile sec

cm min

5280x30-4797 1

= "
i 60'

or t;' = 2682-2136y.

Putting the values in the dimensional formula, we get

[LT-^] = 5280 X 30-4797 } ,

oU

the same result.

17. Dimensions of acceleration. The acceleration of a particle is

the rate of change of velocity per unit of time.

Like velocity, acceleration involves in its signification the idea of

direction as well as that of magnitude : a recognition of this fact removes
the difficulty often felt by students in understanding acceleration in

curvilinear motion, where there is always a component of acceleration

in the direction towards the centre of curvature, that is at right angles

to the direction of motion at the instant.

Let SL be the numeric for the velocity, given in direction and magni-

tude, which, compounded with the velocity, of numeric L, which a

particle possesses at the beginning of an interval of time ST, would
give the velocity in direction and magnitude at the end of that interval;

then SL/ST is the average acceleration during that interval. The
limit towards which this ratio approaches as ^T is made smaller and
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smaller is the true value of the acceleration at the instant which marks
the beginning of the interval ; that is we have

Acceleration-numeric=-^ = L,

where L denotes in the fluxional notation the measure of the time-rate

of L
The two dots above the Lm L serve to recall the double reference to

time which is plainly involved in the notion of acceleration, and which
should be clearly expressed in statements of amounts of acceleration.

The statement that in this country the acceleration of a body falling

freely under gravity "is about 32-2 feet, or 981 centimetres" {B.A.

Report on Electrical Standards, 1863), is, as it stands, unmeaning, and
requires the words " per second per second " to be understood after
'' feet " and after '' centimetres."

The dimensional formula for acceleration is

[i] = [ir-2].

The change from mile-minute units to centimetre-second units, ex-

emplified above in the case of speed, affords an illustration of the use of

the dimensional formula to give the necessary change-ratio. We have

[LT-^] = 5280 X 304797^= 44-70356.

18. Dimensions of momentum. Momentum is also directed. Take
the case of a rigid body moving without rotation, that is, so that all

particles of the body (not the ultimate parts, the motions of which
are unknown) have the same velocity at the same instant : the

momentum of the body is expressed as the product of the numerics
for the mass of the body and its speed. It is therefore expressed

symbolically by ML. The dimensional formula is therefore

[ML] = [MLT-^].

19. Time-rate of change of momentum. If the momentum of the

body be not constant, then, since we suppose the mass constant, we
must have for the measure of the time-rate of variation the expression

3IL, that is the product of the numerics for the mass and the accelera-

tion. The dimensional formula is therefore

[ML] = [MLT-^l

20. Dimensions of force (F). The time-rate of change of momentum
is the measure of the force acting on a body and causing its acceleration.

Hence the dimensional formula just found is that of force.

Unit force is thus that force which, acting for unit time on unit mass,
produces unit change of velocity, or simply that which produces unit

acceleration in unit mass. When the unit of length is one foot, the unit

of time one second, and the unit of mass one pound, unit force is that
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force which, acting for one second on a pound of matter, generates a

velocity of one foot per second. This unit lias been called a poundal.

In the c.g.s. (centimetre-granime-second) system, unit force is that

force which, acting for one second on a gramme of matter, generates a

velocity of one centimetre per second. This unit has been called a

dyne. y(

For most purely scientific purposes, and especially in electricity and
magnetism, the dyne is the unit of force employed ; but for many
practical applications of dynamics a gravitation unit of force is often

used. This unit is the force of gravity on the chosen unit of mass,

and therefore (unless the force of gravity at a particular place and at a

particular level at that place is referred to) has different values at diffe-

rent places on the earth's surface, and at different vertical distances

from the mean surface level. The poundal and the dyne however have

no such dependence on the position of the body acted on with reference

to the earth, nor are they connected in any way with the properties

of instruments used for the measurement of force. They have therefore

been called absolute units of force.

Units of force thus defined absolutely are sometimes called Gaussian

units, from the fact that the mode of definition was suggested by Gauss

as the dynamical foundation of a system of absolute units for the

expression of electric and magnetic quantities.

21. Dimensions of work (W). Work is done by a force when the

place of application (a point, or congeries of points, marked by particles

of a body, to which the force is kept applied as the body moves) of the

force receives a component displacement in the direction in which

the force acts ; and the work done is measured by the product of the

numerics of the force and the component displacement referred to.

The work done in overcoming a resisting force through a certain

displacement of a body is equal by this definition to the product of

the resisting force and the distance through which it is overcome.

For many practical purposes the unit of work used in this country is

one foot-pound, that is the amount of work done in lifting a pound
vertically against gravity through a distance of one foot. This unit of

work has the same variability as the gravitation unit of force ; the

difference due to position is however not very great, and causes but

small inaccuracy or inconvenience.

In the c.g.s. system of units the unit of work is the work done in

overcoming a force of one dyne through a distance of one centimetre,

and is called one centimetre-dyne or one erg.

In practical electricity 10^ ergs is frequently used as unit of work,

and is called a joule.

If F denote the numerical measure of a force and L that of the space

interval through which it has acted, the numeric for work done is FL.

Hence we have

[W] = [FL] = [ML^T-^].
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22. Dimensions of energy {E). A force acting on a body is one

aspect of a stress which exists between the body and matter external

to it. Action and reaction are the names given to the two aspects

of the stress, and thus the stress is really a system of two equal and
opposite forces. These forces are exerted in opposite directions across

a cross-section of a tie or a strut in a structure ; but though this is the

case they, being applied to different things, do not cancel one another.

So called "action at a distance " can be similarly dealt with if we suppose

that the different bodies really exist in a medium by which the stress

is transmitted from one body to the other.

In this way of regarding the matter, when work is done by one aspect

of the stress, say at the surface of the displaced body, equal work is

done against the other aspect of the stress. We say that work is done
on the body, which either gains motion or is displaced, in both cases

relatively to the other bodies which act upon it, as in the case of a

body moving under the action o gravity, or of a body displaced along

a horizontal table against friction. In all cases the work done has an

equivalent arising from a redistribution of what we call the energy

of the system, that is, the capacity of the parts of the system for the

performance of work. [We here regard as " the system " the mutually

acting and reacting portions of matter between which the stress con-

sidered exists.]

If the motion of a part of the system with regard to the other parts

has been increased the body can be made to do work on other parts in

having the increase of motion annulled, or any existing relative motion

can be annulled in the same way. Again, by the intervention of the

action of a body external to the system, a part A of the system may be

placed in a new position with respect to the other parts (as when a body
is lifted against gravity) ; then, in virtue of the stresses between the

parts work may be done on A in restoring the system to its former

configuration, and A may, in consequence, be set in relative motion.

In the former case A is said to have gained kinetic energy, or energy

of motion ; in the latter case A is said to have gained potential energy,

or energy of configuration. It is possible that in both cases the

change is one of kinetic energy, in the first case of a visible molar

part of the system, in the latter of invisible parts which constitute

the connecting medium.
When work is done between different parts of the same system, a loss

of kinetic energy in the system is accompanied by an equal gain of

potential energy, and vice iwrsa, so that the total energy of the system

remains unchanged in amount. This is the principle of Conservation

of Energy. Work spent against friction forms no exception.

Energy is measured by the same units as work, and its dimensional

formula is the same as that of work, that is

[E] = [MT/T-^].
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23. Examples of kinematical and dynamical units. We give here an

illustrations some examples of the a[)plication of dimensional formulae
to th(! solution of j)roblem8 regarding units. The statements of these

problems are taken from Everett's Unitft and Physical ConsUitUs.

Ex. 1. If the unit of time be the second, the unit density 1621b
per cubic foot, and the unit of force the force of gravity on an ounce
at a place where the change of velocity j)roduced by gravity in one second

is 32 feet per second, what is the unit of length ?

Here the change-ratio by which we must multiply the density of a

body in the system of units proposed, to find its density in terms of the

pound as unit of mass, and the foot as unit of length, is 162. We have
therefore, omitting brackets in the dimensional formula,

ilfZ-3 = 162.

Also it is plain that the unit of force is two foot-pound-second units,

that is two poundals. Thus, since T=l, we get

MLT-^ =ML = 2.

Thus we get by division

L' = ^t, or Z=i.

The unit of length is l foot, or 4 inches.

Ex. 2. The number of seconds in the unit of time is equal to the
number of feet in the unit of length, the unit of force is the gravity

of 7501b (^ = 32 ft/sec^), and a cubic foot of the substance of unit

density contains 13,500 ounces. Find the unit of time.

We have ML'^J-^
16

and MZT-2 = 750x32.

Since L=T, we get by division

750x32^16 162

13500 ~32'

Thus T = 16/3 = 51. The unit of time is 5?^ seconds.

Ex. 3. When an inch is the unit of length and T seconds the unit

of time, the numeric for a certain acceleration is a : when 5 feet and
1 minute are units of length and time respectively, the numeric for

the same acceleration is lOo. Find T.

In the first case LT~^=T~^/12 is the change-ratio for reduction to

foot-second units, in the second case it is 5/3600. We have therefore

or r = v/6.
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IV. DERIVED ELECTRICAL UNITS.

There are two systems of electrical units, the electrostatic system,

founded on the definition of unit quantity of electricity, and the

electromagnetic system founded on the definition of unit magnetic

pole. As a rule magnetic units are not included in the electrostatic

system, which is convenient only for purely electrical purposes ; but

there- is no difficulty about expressing magnetic units in that system.

For distinction we shall use, in the case of those quantities which appear

in both systems, small letters for quantities taken in electrostatic

measure, and the corresponding capitals of these letters for the same

quantities taken in electromagnetic measure.

A. Electrostatic System.

24. Quantity of electricity [q]. The following definition is funda-

mental in this system. Unit' quantity of electricity is that quantity

which, concentrated at a point at unit distance from an equal and similar

quantity, also concentrated at a point, is repelled with unit force, when the

medium across which the electric action is transmitted is a certain standard

insulating medium.

An ideal perfect vacuum may be taken as standard, but as this

standard medium is far from being readily realizable, air at tempera-

ture 0° C. and at standard atmospheric pressure is taken. We call

this simply air.

According to Coulomb's law that (the numerical values of) electric

attractions and repulsions are directly as the products of the (numerics

for the) attracting and repelling point-charges, each of q units, at

points A, B and inversely as the square of the (numeric for the) distance

L between them, the numeric F for the force of attraction, or repulsion

as the case may be, is given by

where /c is a factor which depends on the medium and is called its

electric inductivity. [The value of k, it is to be understood, depends

on the units adopted. But its dimensional formula may have the form
C[VM^T''] ; and we can by properly choosing C make k unity for any
medium we please.] Hence we get

and therefore [q] = [M^L'^T-'^K^].

This leaves the dimensions of k undetermined, and gives a more
general electrostatic system of units than the ordinary one, and reducible

at once to the latter. In the absence of special reasons for preferring

one dimensional formula for k to another, we may assign its dimensions
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according to any convenient hyjmthesis. One such hypothesis is that

which forms th(» basis of the ordinary electrostatic system, namely
tliat K is, as regards the fundamental units, of zero dimensions, that is

lias a dimensional formula |1J. But in the ordinary electromagnetic

system of units, which has quite a different derivation from the electro-

static, and in which what we call the ynagnetic inductivity (/z)—

a

(juantity exactly analogous to/c—is of zero dimensions, the dimensional

formula of k is [L-^T^], and the numerical value of k depends on the

choice made of fundamental units.

If we suppose both k and /x undetermined as regards dimensions,*

and investigate in each system the dimensional formula of a particular

quantity, say quantity of electricity or electric charge, and suppose

that the undetermined dimensions of k and jj. render the dimensions

of electric charge (or whatever the quantity may be) really the same in

both systems, as for unity of theory they ought to be, we shall find that

That is, the dimensions of l//c/x are those of the square of a speed, which
as stated above are exactly the dimensions obtained for IJk when we
suppose yu to be of zero dimensions.

We now define the specific inductive capacity of any medium as the

ratio of the electric inductivity of the medium in question to that of

the standard medium. This is the value obtained as the ratio of the

ca})acity of a condenser with the medium in question as dielectric to

the capacity of a condenser the same in every respect except that the

dielectric is the standard medium.
25. Electric surface density [rr]. The density of an electric charge on

a surface is measured by the quantity of electricity per unit of area.

Hence
[(T]:=[qL-^] = [M^L-'^T-^K].

26. Electric force and intensity of electric field [/]. The electric

force (or the intensity of the electric field) at any point, is the force

which a unit of positive electricity would experience if placed at

that point. Hence, if the numeric for a point-charge at the point

P be q, and that for the electric force at that point be/, the numeric
F for the dynamical force on the charge is qf. Hence we have

[/J = [#^-1] = [M^L-^T-^K-^.

27. Electric potential [v]. The difference of electric potential between
two points is measured by the work which would be done if a unit of

positive electricity were placed at the point of higher potential and
made to pass by electric force to the point of lower potential. Hence,
in the transference of q units of electricity through a difference of

* This mode of proceeding was advocated, and its advantages pointed out, by
the late Sir Arthur Riicker, in a paper on '- The Suppressed Dimensions of Physical
Quantities," Phil. Mag. Feb. 1889.
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potential expressed numerically by v, an amount of work is done for

which the numeric W is equal to qv. (It will be observed that it is

supposed that the difference of potential is supposed unaffected by the

transference.) We have therefore v=Wq~^, and

[v] = [Wq-^] = [M^L'^ T-i/c-*].

28. Capacity of a conductor [c]. The capacity of an insulated con-

ductor is the quantity of electricity required to charge the conductor
to unit potential, all other conductors in the field being supposed at

zero potential. Hence, if the numerics for the capacity, charge, and
potential of a given conductor be c, q, v we have c = qv-^, and therefore

[C] = [?»-!] =[/,,.].

The unit of capacity has therefore the dimensions of the unit of length,

provided [at ] = 1 , and the capacity of a conductor might then be said to

be so many centimetres.

The electrostatic capacity of a conducting sphere insulated and alone

in its own field is in electrostatic units numerically equal to the radius

if the electric inductivity of the medium occupying the field is unity.

A conducting sphere of 1 cm radius in air (for which we take the electric

inductivity as 1) has therefore 1 c.g.s. unit of capacity.

29. Specific inductive capacity [K]. From what has been stated

above in connection with the definition of unit quantity of electricity,

it is clear that .j^. ^

30. Electric current [y]. An electric current in a conducting wire

is measured by the quantity of electricity which passes a given cross-

section per unit of time. If q units pass in T units of time, and the

numeric for the current be y, we have y = q/T, so that

[y] = [qT-^]=^[M^L^T-hc^].

31. Resistance [r]. By Ohm's law the resistance of a conductor is

expressed by the ratio of the numeric v for the difference of potential

between its extremities to the numeric y for the current flowing through
it. It is understood that the current does not vary with the time, and
that the conductor is not in motion across the lines of force of a iiiagnetic

field, so that there is no inductive action on the wire. We have then
r = «/y, and

[,] = [„y-i] ^[^-^r,-.].

32. Conductance [1/r]. The conductance of a wire of resistance r

is 1/r. Hence .^ , . ^ , . ^^_, , .
/

[l/r] = [v-^y] = [LT-^K\.

In the ordinary electrostatic system, in which k is taken as of zero

dimensions, we have r n rr i/m
[r] = [L-^T],

[l/r] = [LT-^].
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A conductance in this system of units may thus be expressed as a speed,

e.g. so many centimetres per second : a resistance, on the other hand, may
be expressed as a slowness, e.g. as so many seconds per centimetre.

We may illustrate this result as follows. Let the plates of a con-

densor be supposed plane and separated by a dielectric of uniform

thickness. Further, let the dimensions of the plates be so great that

we may take the capacity as inversely j)roportional to the distance

between the ])lates, that is to the thickness of the dielectric. Or to

avoid edge-effects altogether the plates may be taken as the outer

surface of an inner sphere and the inner surface of an outer sphere,

placed concentrically : in this case the inner plate may be charged by

means of a wire let in through a ])araf!in |)lug filling a hole cut in the

outer plate ; the outer plate is not insulated. If A be the area of the

charged ])late and d the distance between the plates, the capacity c

is CAK/d, where (7 is a constant.

Now let the ])late which is charged and the uninsulated plate be

connected by a long thin wire, so that discharge takes place slowly,

and suppose that the ])Iates are receding from one another at such

a rate that as the charge q diminishes the difference of potential

between them is kept constant in consequence of diminution of the

capacity. In the case of the spherical condenser the inner sphere may
be supposed to shrink while remaining concentric with the other.

We should have then, since vc = q, the charge,

Vy=-= -(>= - VC.
I

r ^

Thus l/r= -c, or the conductivity of the wire is measured by the

time-rate of diminution of the capacity of the condenser.

If we make the radius of the external surface of the spherical con-

denser infinite, we have the case of a spherical conductor charged and

in its own field. Then c = kR, if R be the radius, and l/r= -kR.
If K be unity the conductivity of the wire is equal to the rate at which

each point of the surface is approaching the centre.

A shrinking sphere can be realized by blowing a soap bubble with

a tube and then allowing the air to escape slowly. A soap bubble can

be charged, and the effect of the charge in increasing the radius observed.

Loss of charge by conduction would then result in diminution of radius

which would tend to prevent lowering of the potential of the bubble.

B. Electromagnetic System.

33. Magnetic pole. The electromagnetic system of units is based

on the unit magnetic pole. This is defined mutatis mutandis in precisely

the same way as the unit quantity of electricity, on which the electro-

static system is founded ; and therefore the purely magnetic quantities

here mentioned, which bear the same relations to the unit quantity
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of magnetism that the corresponding electric quantities bear to the

chosen unit quantity of electricity, have, with the substitution of the

magnetic analogue to k, in the electromagnetic system the same di-

mensional formulae as those just found for the latter quantities in the

electrostatic system.

This mode of defining magnetic quantities is distinctly artificial.

It depends on the conception of magnetic doublets as elements of a

magnet, where each doublet is regarded as a system of two equal and
opposite quantities of magnetic matter concentrated at close points

on a line which is called the axis of the doublet. The distance f between
these points is in the limit infinitely small, but the quantities of mag-
netism are taken so great that the product of either into ^ gives a finite

quantity, mf, which is called the moment of the doublet. A magnetic

element, suitable for purposes of calculation, can be constructed ; but
it must not be taken for granted that this is the real nature of the

elements of which an actual magnet is composed.

It is a remarkable fact, which has been made the basis of electro-

magnetism, that a magnetic element can be imitated exactly by an
electric current y flowing round a small plane circuit, of area A, say,

at the position of the doublet, and set with its plane at right angles

to the doublet-axis. The circuit has two aspects, according to the side

from which it is viewed, and these, which correspond to the positive

and negative magnetisms of the doublet, are inseparable in the idea

of the circuit. This element, taken as giving at a point P, for which
OP is equal to r and makes an angle with the positive direction of

the axis, a magnetic potential yA cos 0/r^ [see Chap. II.], enables the

magnetic field-intensity due to any distribution of magnetism to be
found for any point of the field. Here yA is the moment of the

element ; and so we get at P components of field-intensity, 2yA cos 0/t^

along OP, and yA sin 0/r^ transverse to OP. The resultant field-inten-

^'*^'^
{yA/r^){^-S8m^0)\

and makes the angle tan-i(J tan 0) with the outward direction of OP.
The differential equation of a "line of magnetic force" due to the

element is dr/2 cos = r dO/sin 0, which is at once integrable and gives

as the polar equation of the curve sin^ = Cr, where is a constant.

Such an elementary circuit seems to be the natural fundamental
thing in magnetism, and its adoption in definitions would avoid some
difficulties in the consideration of " magnetic force and magnetic
induction " in magnets of steel and other magnetizable substances.

[Although the two kinds of magnetism are inseparable even in an
elementary magnet it is possible to realize a single magnetic pole to a

high degree of approximation. One end of a long thin uniformly

magnetized bar, such that (if the bar is not straight) the other end is

distant from the first, is as far as points near it in the field are con-

cerned, a single magnetic pole (see p. 39).]
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It is clear that the dimensional formula [m] of quantity of magnetism
"given by M = [Ai5/J ?->*].

In the ordinary electromagnetic system of units // is defined (see p. 26

below) so as to be a mere numeric. We shall not make this assumption,

but allow JUL to appear in the formulae, and its dimensions may be

afterwards assigned. By simple deletion of yu from the dimensional

formulae they become those for the ordinary electromagnetic system

in which fyu]
= 1 .

34. Magnetic moment [mj. The numeric for the magnetic moment
of a uniforinly magnetized bar-magnet, is the product of the numerics

for the strength of either pole and the length of the magnet. Hence
we have

[m] = [M*L'T-V*].

Moment of a doublet or of an elementary current circuit [y-^J. The
dimensional fonnuhi is the same as that for magnetic moment.

35. Intensity of magnetization [»/]. The intensity of magnetization

of any portion of a magnet is measured by the magnetic moment of

that portion per unit of volume. Hence if v denote the numeric for

the intensity of magnetization of a uniformly magnetized magnet, the

numerics for the volume and magnetic moment of which are AL^ and

m, we have i/ = \\\/AL^, and so

It is clear that the intensity of magnetization of a uniformly and
longitudinally magnetized bar is equal to the surface density of the

magnetic distribution over the ends of the bar, and therefore intensity

of magnetization has the same dimensional formulae as surface density

of magnetic distribution.

Electric current [y]. Also, since yAju has the dimensions of magnetic

moment,
[yA]=^[M^L^T-^fi-^];

and we get [y] = [M^L^T-^juT ^].

Hence, in the ordinary electromagnetic system, in which [ju] = 1 , electric

current has the dimensions of intensity of magnetization multiplied

by a length. If we consider a uniformly magnetized bar of uniform

cross-sectional area A, current has then the dimensions of the magnetic

moment of the bar taken per unit of A

.

36. Magnetic permeability [nr]. The magnetic inductive capacity,

or the )nagnetic inductivity, is the analogue in magnetism of the electric

inductivity of a dielectric. We define the specific magnetic inductivity,

or the magnetic permeability, of a medium as the ratio of the magnetic

inductivity of that medium to the magnetic inductivity of a chosen

medium, say air at 0° C, and at standard atmospheric pressure, or, as

we shall sometimes suppose, a high vacuum. So far as experiment goes

there is little influence of temperature or pressure on the magnetic
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inductivity of a gaseous medium, and but little variation from one such

medium to another. The results of experiments on high vacua seem

to show that the magnetic inductivity in a nearly vacuous space is

sensibly the same as in air under ordinary temperature and pressure.

If we consider a highly magnetizable material such as iron, and adopt

the Amperean hypothesis that it is a congeries of small molecular

circuits carrying currents, then the magnetization of the iron, however

effected, consists in an alignment of the axes of these circuits, both as

to direction and as to aspect. We may suppose then that the congeries

of circuits is permeated by ether, and imagine a point in the ether. At

such a point there will be a magnetic field-intensity due not merely

to magnets at a distance but to the molecular magnets imbedded in

the ether. If we call this field intensity in ether H, and that due to

magnetic distributions at a distance, estimated in the manner explained

below, H', we shall have HjH' equal to the magnetic permeability of

the substance.

In each case the point is considered as situated in the ether which

pervades the ordinary matter. For H, the field-intensity due to the

molecular magnets, is taken account of, and though the value of H may
vary very considerably from j)oint to point among the molecular

magnets we may assume that in a statistical sense it is definite, and

approximately that within a narrow crevasse (or disk-space), with

parallel walls at right angles to the direction of magnetization, produced

by removing the molecular magnets from that space. For H a tunnel,

or space of small breadth and depth, but of length comparatively great

and in the direction of magnetization, is supposed cleared of the mole-

cular magnets, and the field-intensity at the centre of that space is

taken as H' [see also p. 57].

According to this mode of considering the matter, the permeability

rrr is a mere numeric, and we have [v5] = 1

.

If we use the hypothesis of magnetic matter, we have for H the value

of H' together with the field intensity due to the unbalanced surface

distributions of magnetism produced by the formation of the crevasse,

or H = H' +4:7r(T/iuiQ, or H = H' + 4:7rI//uLQ, if /xq denote the magnetic

inductivity of the medium in the crevasse (ether, we may suppose),

and / the intensity of magnetization at the crevasse, since /, as

noticed above, must then measure the intensity of magnetization. It

is usual to introduce a quantity ic such that I/julq = kH', which gives

H = {l+4t7rK)H\ and so m^l+4:7rK. The multiplier k is called the

magnetic susceptibility.

37. Intensity of magnetic field [H]. A quantity m of magnetism

placed at a point in a magnetic field, at which the intensity is H,

experiences a force 7nH. Hence we have

[mH] = [M-'L^fj.^Hl and therefore [^J = [^^Z"^T-V"*].

It has been agreed to call the c.g.s. unit of H one gauss.
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Blagnetic induction [B], The magnetic induction is the product of

the magnetic field-intensity by //. Hence we get

38. Magnetic susceptibility [k]. We have W=[/][^"*][/x-*j, and

tliereforc, M = I.

This also follows from the fact that k occurs in the factor I + 4x/if

,

whicli is the value of n.

39. Quantity of electricity [Q\. The numeric Q for the quantity of

electricity conveyed in T seconds by a current, the numeric for the

strength of which is y, is yT. Hence [^1 = [7^], or

40. Electric potential, or electromotive force [V]. As above (p. 17),

but using in this case V for the numerical value of a difference of poten-

tial, we get Work = VQ. Thus we have

41. Electrostatic capacity [C]. U Q and V be the immcries for the

charge and potential of a condenser, we have for the numeric of the

capacity C = Q/V. Thus we get

[C] = [i-ir»//-i].

42. Resistance [R]. If V be the numeric for the difference of potential

between the terminals of a conductor (as specified above, p. 17), and

y be that of the current flowing, the numeric for the resistance of the

conductor is R=V/y. Hence

[B]=[ir-V].

If [ju] = l, the dimensional formula for resistance is the same as that

for velocity, and therefore a resistance can be expressed in ordinary

electromagnetic units as a speed, and accordingly in c.g.s. units as so

many centimetres per second.

Consider an ideal electromagnetic engine consisting of two massive

parallel rails, of copper say, laid parallel to one another so that their

plane is at right angles to the lines of force of a uniform magnetic field

of intensity H. Let the rails be insulated from one another and be

at a distance I apart. Now let a sliding conductor be placed across

the rails at right angles, and be moved along them with a steady speed {'.

After a short time a constant difference of potential will be established

between the rails, the numerical value of which in electromagnetic

units is Hlv.

If the rails be now joined by a wire of resistance R, and the rails

and sliding bar have resistance negligible in comparison with R, the

current y in the wire will be given by the equation
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provided the current remains constant. The quantity L is the self-

inductance of the circuit. If the rails and slider have sensible resistance,

R must of course be the total resistance in the circuit. Since ydL/dt

must have the dimensions of Hlv we can find another speed v-^, which

would be that of the slider for the same R and the instantaneous value

of y if the circuit were deprived of self-inductance, so that Hlvj^ = Ry.
Now let the wire be partly contained in the coil of a tangent galvano-

meter, and the field-intensity which gives the return couple on the

needle of the galvanometer, when deflected by the magnetic action of

the current, be also H. This can be arranged by running the rails in a

magnetic east and west vertical plane, so that the horizontal component
of the earth's field is that cut by the sliding bar.

If the turns of wire {n in number) in the coil of the galvanometer

form a ring of small cross-section, we may take each as of radius r, and

as having all the same effect on the needle. If be the deflection of

the needle the current is {Hr/27rn)tsLnO = {Hr''/L)ta,n 0, where L is the

whole length of wire in the coil. Hence we have

"rHan 0'

Now we may suppose that the radius r of the coil = VLI, and that v^

is such that = 45°. We then get R^v-^^.

This illustration of resistance as a speed was given by Sir W. Thomson
(Lord Kelvin) [B.A. Rej). on Electr. Standards, App. B. § 30]. It is rather

remarkable that in the original descriptions of this illustration given

in the B.A. Report [Collected Reports, pp. 68, 69 and 112, 113] and in

accounts of it given by other writers (including that in the first edition

of the present work) no account is taken of the self-inductance of the

circuit. [See also below, p. 31.]

48. Self-inductance [XJ. From the above discussion it will be seen

that iy^y has the same dimensions as Hlvt. Bnt y = HlvJR, and there-

fore Li has the dimensional formula of Rt. Thus

[ij=[V]-

In the ordinary electromagnetic system of units L^ has thus the

dimensions of a length. In that system, as we shall see, the practical

unit of resistance is the ohm (10^ cm/sec) or, as it is sometimes described,

one earth-quadrant per second. The corresponding unit of L^ is therefore

one quadrant in the same system. This is now usually called a henry,

in honour of Joseph Henry of Washington, who independently dis-

covered the main facts of the induction of currents. (See Scientific

Writings of Joseph Henry, Washington, 1886.)

The self-inductance, L^, of a circuit, it will have been seen, is measured

by the ratio of the numeric for the magnetic induction embraced by
the circuit, and produced by the current flowing round the circuit, to

the numeric for that current. Its value may vary, as in the case just
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considered, with the time ; and it may in certain cases be a function

of the current-strength. Definitions differing from that here stated

have been adopted by various writers for greater convenience of dis-

cussion of the cases just referred to ; but none of these alters the

dimensional formula.

44. Mutual inductance [M^]. The mutual inductance ifj of two

circuits is measured by the ratio of the numeric for the magnetic induc-

tion, embraced by either of the circuits and produced by the current

in the other, to the numeric for that current. Clearly its dimensional

formula is the same as that of self-inductance.

It does not matter (unless there is material within either or both of the

circuits the magnetization of which is a function of the cuirent, and
except in certain other cases) which circuit carries the current; the

mutual inductance is unaffected ]>y this circumstance [See the dis-

cussion of the induction coil in Appendix I.]

Vector Potential [A]. The components a, b, c of magnetic induction

at a point are the components of the curl of the vector-potential. Thus,

if F, G, H be the components of A the vector-potential, we have

a = dH/dy-dG/dz, etc.

We see therefore, that the dimensional formula of vector-potential is

that of magnetic induction multiplied by a length, that is

[A] = [M^L^T-^/ui^]. [See Chap. II.]

45. Relation between electrostatic and electromagnetic units. We
have now investigated the dimensional formulae of the absolute units

of all the principal electric and magnetic quantities, in the electrostatic

system or in the electromagnetic system, according as each quantity

is measured in practice. Each may, however, be expressed either in

electrostatic units or in electromagnetic units. The bridge from one

system to the other is the fact that a current in a circuit (defined in

electrostatic units by the ratio q/t) gives a magnetic field-intensity

(the H' of 36 above) which is independent of the nature of the medium
occupying the field, so that if y be reckoned in electrostatic units we
have [y] [Z~^] = [H], that is in electrostatic units

[H] = [q/t] [L-i] = [M^L^T-^Jl

Or the theorem that the work done in carrying a unit magnetic pole

round a current of strength y is 4 Try, whatever themedium, may be taken

as the connecting link, with the same result. We give the following

^^ tables of dimensional formulae for all the quantities and in both systems.

I^K In Tables II. and III. k and /m have biBcn introduced into the formulae

IJ^H as stated in 24 above, with their dimensions undetermined. The ordinary

^H electrostatic and electromagnetic systems are obtained by supposing

^K K or jii to be unity as the case may be.

^H 46. Systems reconciled by '' suppressed dimensions " of yu and k.
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exhibiting the dimensions is that it enables electrostatic and electro-

magnetic quantities to be regarded as of the same absolute dimensions,

since k and /m, not being fixed as to dimensions, can, unless restricted

by definition, have dimensions assigned to them which fulfil this defini-

tion. For example, as suggested by the late Professor G. F. FitzGerald,

each may be taken as having the dimensional formula [TL~'^]. Another

advantage is that problems in which passage from one set of units to

another is involved, are solved with greater ease from first principles.

[See Professor Sir Arthur Riicker's paper, loc. cit. 24 above.]

Fundamental Units.

Quantity. Dimensional fornuila.

Length [L]

Mass [M]

Time [T]

Derived Units.

(i) Dynamical.

Speed [LT-i]

Acceleration [LT~^]

Force [MLT'^]

Entgy} [^^^^-^J

(ii) Electrical Units.

A, in terms of B, in terms of

L, M, T, K. L, M, T, IX.

Quantity of Electricity - - [M^UT'^k^] [MW//"'^]

Surface Density of Electricity
) \M^L~'''T-^k^'"\ \M^L~'^ix~h

Electric Displacement - - j ^ ^

Electric Potential - - -) ^^ij^j^-.^-i^ [m'^L^T-^/^}
Electromotive J^orce - -J

^ '^ -

Electrostatic Capacity - - [Lk] [Z-iT^"^]

Electric Inductivity - -. [k] [L-^T^/u-^]

Current Strength - - - [MuJt-^k^] [M^Z^T-V"^]

Resistance - - - - [L'^Tk-"-] [LT-^ju]

Specific Resistance - - - [Tk-^] [L^T-^/h]

Vector-Potential - - - [M^r'^K'^] [M^L^T-^jul^]
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(iii) Magnetic.

A , in tortus of li, ill tcrniK of

L, AI, T, K. L, AI, T, /x.

Quantity of Magneti.sin or'

Magnetic Pole

Electrokinetic Momentum of
- [M^L^-^] [M^L^r-v*]

Circuit - - - \

Surface Density of Magnetism
\ v^^jj-^^-h

Intensity of Magnetization -) ^
[Mhr^T-^n^

Magnetic Moment - - - [Af*L'/f~*] [M^UT-^H^]

Magnetic Potential - - [M^UT-^k^] [M^L^T-^fi-^

Magnetic Inductivity - - [L~^T^k~'^'] [yu]

Magnetic Force or Magnetic^ [M^T^T-^ -1

Field-Intensity - - j '- '^
-'

[M*L-*r-v"^

Magnetic Induction - - [M-L'^^k'^] [M^x-^r-v']

Self-Inductance

Mutual Inductance - - J

' [L-^T^K-^] [Lfi]

It will be noticed that magnetic induction, which is magnetic field-

intensity multiplied by magnetic inductivity, has the same dimensional

formulae in the two systems as surface density of magnetism and
intensity of magnetization.

47. Examples of dimensional formulae. We now take some examples

of the use of these formulae. The second and third are solutions of

problems stated and solved in Sir Arthur Kiicker's paper {loc. cit. 24

above).

1. The earth's horizontal magnetic force at Greenwich was given

in the Nautical Almanac for 1883 as 3-92 in foot-grain-second units.

Required its value in c.g.s. units.

Let H be the value sought. Then

since 1 gramme = 15*43235 grains, and 1 centimetre = 1/30-47945 foot.

2. The unit change of electricity is defined to be such that two unit

point-charges at a distance of 1 metre, in a medium of electric inductivity

twice that of air, repel each other with a force which would give 1 centi-

gramme an acceleration of 1 metre per second per second : find the

number of ordinary electrostatic units to which this charge is equivalent.

Also find the number of electromagnetic units in the electrostatic unit

thus defined.

If q be the number of electrostatic units required we have ^5^7100^ = 1,

and therefore q = 100\/2.
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If N be the number of electromagnetic units sought, we get by the

dimensional formulae, since the units of length and mass for this value

of q are now the centimetre and the gramme,

N[iul-^]![k^] = 100V2.

But l/VyO/c = 3 X IQio. Hence

iV = iV2xlO-8.

3. Find the number of c.g.s. electrostatic units of magnetic induction

in 10 electromagnetic units of a system in which the units of length,

mass, and time are the metre, centigramme, and second respectively,

and in which the specific inductive capacity and index of refraction of

the standard medium in comparison with air are 2 and 1-5 respectively.

Let N be the number required, and let k and nx refer to air, while

K, fx refer to the standard medium. By the dimensional formulae

we have

iV[(grm)^cnr^^-^] = lo[(^gnny(100 cmrV"^]

But \/2^' - VTiI' = 3^'^Qio = ^
10-1^.

Hence N=J^\0-^\
2\/2

V. UNITS ADOPTED IN PRACTICE.

48. Coulomb, ohm, volt, ampere. In practical work the resistances

and electromotive forces occurring to be measured are usually so great

that if the absolute electromagnetic units of the c.g.s. system were

used, the resulting numerics would be inconveniently large ; while,

on the other hand, capacities are generally so small that their numerics

in c.g.s. units would be small fractions. Accordingly, certain multiples of

the c.g.s. units of resistance and electromotive force, and a submultiple of

that of capacity have been chosen for use in practice. The derivation

of the first two (the ohm and the volt) together with the practical units

of current and quantity (the ampere and the coulomb) may be illustrated

by means of the rails and slider magneto-machine referred to above.

We have seen that if the rails are insulated and only connected by
the sliding bar, the difference of potential between them is Hlv. In

the c.g.s. system this will be unity if H be one c.g.s. unit of magnetic

field-intensity, I be one centimetre, and v be one centimetre per second
;

that is, the difference of potential between the rails would be one c.g.s.

unit.
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This difference of potential is too nmall for use aw a practical unit,

and inntcad of it, the difference of potential which would be produce<l

if, everything else remaining the Hame, the speed of the slider were 10**

centimetres per second, is taken as the practical unit of difference of

potential, or electromotive force, and is called one volt. It is a little

less than the difference between the two terminals of a Daniell's cell

on open circuit.

If the rails be connected by a wire of resistance very great in com-

parison with that of the rest of the circuit, the constant current produced

will, for a given value of i\ (the speed used to replace v in consequence

of the variation of self-inductance of the circuit), vary inversely as the

resistance of the wire. Let us suppose that when the slider 1 cm long

was moving with a virtual speed v^ of 1 cm per second, the current in

the wire was 1 c.g.s. unit ; the resistance of the wire was then 1 c.g.s.

unit of resistance.

This resistance, however, is too small to be practically useful, and a

resistance 10^ times as great, that is the resistance of a wire, to maintain

1 c.g.s. unit of current in which it would be necessary that the slider

should have a virtual speed v^ of 10^ cm (approximately the length of a

quadrant of the earth from the equator to the north pole) per second,

is taken as the practical unit of resistance, and called one ohm.

49. Specification of international ohm, volt, and ampere. An account

of experijnents which have been made for the realization of the ohm is

given in a later chapter, and it will be seen from the results that the ohm
to an accuracy of " one-tenth part of one per cent." {Order in Council

Rekiting to Electrical Standards, Jan. 10, 1910) is equal to *' the resistance

offered to an unvarying electric current by a column of mercury at

the temperature of melting ice, 14*4521 grammes in mass of a constant

cross-sectional area, and of a length of 106-300 centimetres." The
specification here quoted from the Order in Council is that of what is

called the International Ohm, which, with the International Ampere
and the International Volt, was recommended for adoption by the

International Congress of Electricians held at London in 1908.

It is Ohm's Law that if the difference of potential V between two
points in a homogeneous wire, which is at rest in a magnetic field,

be altered in any ratio, the current in the wire will be altered in

the same ratio. It is supposed, however, that there is no sensible

heating of the wire by the current. If F be 1 volt (10^ c.g.s. units

of potential) and i? be 1 ohm (10^ c.g.s. units of resistance) the

current will be y^^ of 1 c.g.s. unit of current. A current of this

strength has been adopted as the practical unit of current, and called

one ampere.

The ampere is defined for practical purposes of measurement and
reproduction by means of electrolysis. Thus, in the Order in Council

already quoted, the International Ampere is defined as " the unvarying

electric current which, when passed through a solution of nitrate of
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silver in water, deposits silver at the rate of 0-00111800 of a gramme
per second."

The Order in Council also defines the International Volt as the differ-

ence of potential " which, when steadily applied to a conductor whose

resistance is one International Ohm, will produce a current of one

International Ampere."
The amount of electricity conveyed in one second by a current of one

ampere is called one coulomb. This unit, although not so frequently

required as the others, is very useful, as, for instance, for expressing the

quantities of electricity which a secondary cell is capable of yielding

in various circumstances. For example, in comparing different cells

with one another, their capacities, or the total quantities of electricity

they are capable of yielding when fully charged, are very conveniently

reckoned in coulombs per sq cm of the area across which the electrolytic

action takes place.

50. Realization of unit of e.m.f. We have now to consider the

energetics of a circuit moving in a magnetic field ; it will be sufficient

for the present purpose, and it will fix the ideas, to take the case of the

simple magneto -machine to which reference has already been made
above (42, 43). The slider of length I between the rails (supposed hori-

zontal) is moving with speed v across the lines of force of a magnetic field

of uniform intensity H. Since H is uniform the lines are uniformly

directed ; we suppose that they are at right angles to the plane of the

rails. If the self-inductance of the circuit be L, the whole resistance

R, and the current y, the equation of currents is

Hh-i(Ly) = Ry (1)

We shall suppose that the current is kept constant, so that the equation

becomes it

Hlv-y'^=Ry (2)

From (2) we derive, since y is constant, the relation

dv d^L

^dt=yi^^ ^^^

so that unless L increases at a uniform rate (which we shall find is not

the case) tlie speed v of the sliding bar cannot be constant.

The backward drag of the field on the sliding bar is Hly, and a force

equal to this in the forward direction must be applied to the bar by
an external agent. The agent therefore works at rate Hlyv. If for

simplicity we su})pose that the sliding bar is not resisted by friction, this

must be equal to the sum of the rates at which work is spent (1) in heat in

the circuit, (2) in increasing the electrokinetic energy of the current, (3)

in increasing the kinetic energy of the moving bar. At the instant

considered the electrokinetic energy is JXy^, and the kinetic energy of
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the bar is hnv^, if yn bo tho mass. Thus, on the expressed condition that

the current is constant, W(; have the activity equation

ffV=«/+i/f +'»''t
<*>

But by (2) we obtain

myv=Ry'-+y^''^^, (5)

which asserts that over and above the rate of dissipation /?y*, electrical

work is done at rate y^dL/dt. Equations (4) and (5) give, however,

^^ir*^-^7' <^)

fio that half the rate of electrical working y^dL/dt, goes to increase the

kinetic energy of the slider. The other half is employed in increasing

the electrokinetic energy.

Now it is known, and will be proved in Chap. XIII., that for two
parallel wires of circular section, radius p, distance / between their

axes, and length x, carrying one a direct the other an equal return

current, L is given by the equation

L = 4:xlog ~ + x-4:l + terms depending on the cross connections.

P

Hence J = 4*(log 1
+ J) = 4. log(U

J).

Thus, by (6), niv = 2y2 Aog - + ^

or if 2y2 log {l/p + i) = ma,

v = a.

Thus, if Vq be the speed at time t^,

v-v^=^a(t-t^).

Also, since v^vdvjdx, we get

where x - Xq is the distance travelled by the slider in time t - 1^^. But

and therefore, in terms of the time, we obtain for the kinetic energy

of the slider,

Jm (v^ - Vq-) = mavQ {t - <o) + i*>^«" (t -
^o)"-

We obtain also by the value of L, and that of a found above,

[ 1\ 2m
yo 4/ y2 " - y-

L - LQ = i{x-XQ)[\og -+ -) =-^ av,(t -t^) +-^^,a' (t -tof.
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51. Disk magneto for realization of unit of e.m.f. The rails and
slider illustration which we have discussed is distinctly inferior to the

arrangement, sometimes substituted, of a metal disk rotating at right

angles to the lines of force of an impressed magnetic field, and touched
at its centre and circumference, or at the circumference and at an inner

concentric circle, by the terminals of the external part of the circuit.

If the field be maintained constant and the disk rotate at a uniform
rate, and there be no variation of contacts of the wire with the disk,

a constant current will be maintained. This of course is the arrange-

ment of a disk magneto-machine, and of the Lorenz apparatus for the

determination of the ohm, except that in the latter case the electro-

motive force in the disk circuit is balanced.

In this arrangement there is no variation of self-induction, inasmuch
as the configuration remains unchanged as the rotation proceeds. The
electromotive force for total integral magnetic induction through the

disk, of amount /, between the circles of contact, and angular speed w
is /ft)/27r ; or if the magnetic field-intensity be uniform and of numeric
H, the inductivity be taken as 1, and the outer and inner circles of

contact have radii a, a\ the electromotive force is \{a^-a'^)H(]d. The
current is \{a^ - a'^)Hw/R in the latter case, or Ia)/27rR in the former.

If we consider an, external part of the circuit, that is a part not

including the slider (or the disk in the arrangement just described)

—the seat of the electromotive force—the whole rate at which work is

done in that part is Vy, if V be the difference of potential between the

terminals of that part. This rate of working may of course consist of

Ey + R'y^, where E is the back electromotive force of a motor, or other

arrangement, due to the performance of work at rate Ey, otherwise

than in producing heat, and R' is the resistance included between
the terminals, so that R'y^ is the rate at which work is spent in heat in

that part of the circuit.

52. Absolute units of electrical energy : B.T.U. and watt. One of the

advantages of the system of units described here is that the value of

the rate at which work is done in a circuit is stated without the intro-

duction of any coefficient such as would have been necessary if the

electrical units had been arbitrarily chosen. When the quantities are

measured in c.g.s. units the value of Ey is given in ergs per second.

Results thus expressed may be reduced to horse-power by dividing

by 7'46 X 10^ ; or, if E is measured in volts and y in amperes, Ey may be

reduced to horse-power by dividing by 746. Thus, if on the terminals

of an arc-lamp a difference of potential of 80 volts be maintained and the

current be 15 amperes, the rate at' which energy is spent on the lamp is

1200/746, or 1-61, horse-power, nearly.

Electrical energy is usually sold in Board of Trade Units (b.t.u.).

A B.T.U. is the energy supplied in 1 hour by an e.m.f. of 1000 volts

and a current of 1 ampere.

If the rate at which work is done in maintaining a current of
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one am})ere through a resistance of one ohm, when the work is all spent

in producing heat in the conductor, is taken as tlie practical unit of

activity, and E is reckoned in volts and y in amperes, rate of working

is simply Ey, and calculations of electrical work are much simplified.

This choice of a unit of activity was proposed by Sir William Siemens

{B.A. Address, 1882), with the suggestion that the unit should be called

a watt. Thus the rate of expenditure of energy on the arc-lamp in the

example taken above is 1200 watts. A watt is equivalent to 10^ ergs

per second or very nearly ^\ ,y horse-power.

53. Kilowatts and joule. The Electrical Congress held at Paris in

1889 adopted the watt as the practical unit of rate of working for

electrical purposes, and the term kilowatt, proposed by the late Sir

W. H. Preece, to designate an activity of 1000 watts, or W^ ergs per

second. To a considerable extent the kilowatt is now used instead of

the horse-power. An activity given in kilowatts can be reduced to

horse-power by dividing by 0-746, or roughly by multiplying by 4 and
dividing by 3.

Sir William Siemens also proposed to call the work done in one second

when the rate of working is one watt, ons..^otde. A joule is therefore

equivalent to lO'' ergs, and the work done in one second in the above

example is 1200 joules.

The Electrical Congress of 1889 also adopted the joule as the practical

unit of work. The International Congress of Electricians, held at

London in 1908, recommended the adoption of an intevnational ivatt,

defined as the energy expended per second by an unvarying electric

current of one international ampere under a difference of potential

of one volt.

54. Unit of capacity. The practical unit of electrostatic capacity

is called the farad, and is defined as the capacity of a condenser which,

when charged by an electromotive force of one volt applied to its

terminals, has a charge of one coulomb. If G be the capacity of

such a condenser in c.g.s. electromagnetic units of capacity, we have
C= 10-710*= 10-^

; or one farad is equivalent to 10"^ c.g.s.

In some cases, when the quantities to be expressed are very large,

units one million times the chosen practical units are employed. These
are denoted by the names of the corresponding practical units with

mega (great) prefixed. On the other hand, for the expression of very

small quantities, units one millionth of the practical units are sometimes
used, and are denoted by the names of the corresponding practical units

with micro (small) prefixed.

Such units are however rarely employed, with the exception of the

megohm, used for expressing the high resistances of insulating substances,

and the microfarad, which is really the most convenient unit for the

expression of capacities. A megohm, in ordinary electromagnetic units,

may be expressed as 10^^' cm per second ; one c.g.s. unit of capacity

is equivalent to 10^^ microfarads.

O.A.M. c
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VI. PRACTICAL UNITS AS AN ABSOLUTE SYSTEM.

55. Practical units as an independent system. The practical units

which have been adopted may be considered as belonging to an absolute

system based on a unit of length equivalent to 10^ cm (one earth

-

quadrant), a unit of mass 1/10^ of a milligramme, or lO-^^ gramme,
and the second as unit of time. The verification of this in the different

cases will furnish some further examples of dimensional formulae.

First let us find what the numerics for resistances and electromotive

forces, expressed in terms of c.g.s. units, become when these new units

of length and mass are substituted. Let R be the numeric for c.g.s.

units and R' the numeric for the new units, of one and the same
resistance. Then n

R' = RILT-^]^R^,.

Calling the unit of resistance in the new system one ohm, we see that

1 ohm = 10^ c.g.s. units of resistance.

Again, let F be the numeric for an electromotive force in terms of the

c.g.s. electromagnetic unit, V the corresponding numeric for the new
system. We have

that is F'=F xlO~l

Calling the new unit one volt, we see that

1 volt =10^ c.g.s. units of e.m.f.

The following table gives the numerics for the various practical units

in terms of the corresponding c.g.s. units

:

Quantitj'. Practical Unit. Equivalent in c.g.s.

Units.

Resistance - - Ohm - 10^

Electromotive Force Volt - - - 10^

Current - - - Ampere - - 10-^

Quantity of Electricity Coulomb - - 10-^

Electrostatic capacity {^^^^^^ \ \ {JqI

56. Ratio of units. We have seen above that if iV, iV' be the numerics

or two quantities, the dimensional formula of iV'/^ is [A^']/[A^], and
this of course applies to the expressions of the same quantity in two
different systems of units. Thus, if q, Q be the numerics for a quantity

of electricity in electrostatic and electromagnetic units respectively

(founded of course on the same fundamental units), we have

M = [M^Z^T-i] and [Q]=^[M'LK
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The dimensional formula [(j]l[Q] is thus [LT"^]. Thus q/Q has the

dimensions of sj)e('(l, and as q/Q is the inverse of the ratio of the

units employed in the two eases, q/Q expresses a certain definite

speed, the numeric for which depends on the fundamental units of

length and time employed. In other words, the number of electro-

static units of electricity equivalent to one electromagnetic unit is the

numeric for this speed.

The same speed is derivable from the ratios of the numerics for

any one of the other electrical or magnetic quantities in the two systems

of units. For example, if e, E be the numerics for one and the same
electromotive force in electrostatic and electromagnetic units respec-

tively, we have

[e/E] = [M^L^IlM^L^r-^] = [L-^T].

The ratio e/E has thus the dimensional formula of the reciprocal of a

speed, and as this is the reciprocal of the ratio of one electrostatic unit

to one electromagnetic unit, we see that the number of electromagnetic

units of electromotive force equivalent to one electrostatic unit is a

certain definite speed. This speed is identical with the former. For if

q, Q be the numerics for one and the same quantity of electricity in the

two systems, and e, E are the corresponding numerics for an electro-

motive force, the work eq must be equal to the work EQ. We get there-

fore E/e= q/Q, that is the two speeds are the same.

By taking the more general dimensional formulae given in the table

of 46, we find that when q, Q refer to the ordinary systems.

Hence the product k~^ijl~^ has the dimensions of a speed. It is in fact

the speed q/Q above referred to.

Denoting this speed by v, we get for the various quantities the follow-

ing relations, in which the numerator of the ratio on the left of each

equation denotes the numeric of the quantity in electrostatic units, the

denominator the numeric of the same quantity in electromagnetic units :

A given Quantity of Electricity

„ Current . - . -

„ Electromotive Force

- 9/Q

-

^/l
- e/E

= V

= V

= 1/r

„ Electrostatic Capacity -

„ Resistance - -

c/C
- r/R

= v^

= l/v-

Therefore, if q and Q, e and E, or the numerics for any other electrical

quantity be determined in the two systems of units, the value of r can

be at once obtained. Experiments of tliis kind have been made by
many investigators, and an account of the different methods employed
and the results obtained is given in a later chapter. It has been found

that v= 3 X 10^^, in cm per second, very approximately, or very nearly

the speed of light in air as deduced from experiments made_by the
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methods of Foucault and Fizeau. According to Maxwell's Electro-

magnetic Theory of Light [Elec. and Mag. vol. ii. chap, xx.] this

relation should hold, and thus the theory is so far confirmed. It is

very remarkable that (kjul)'^ should be the speed of light in the ether,

and the full significance of the result cannot yet be said to be fully

appreciated. In this is no doubt the physical meaning of k and of jul.

In the present chapter we have considered only the scalar magnitudes

of electric and magnetic quantities. For a discussion of dimensions

from a vector point of view the reader may refer to a paper by Dr. W.
Williams, Phil Mag. Sept. 1892.



CHAPTER II.

Section I.

MAGNETS. MAGNETIC POTENTIAL. POTENTIAL ENERGY
OF A MAGNET.

1. Magnetism. Unit of magnetism. We shall suppose the reader

to be acquainted with the elementary facts of magnetic phenomena
and theory, and shall therefore not devote space to the description

of the ordinary phenomena of attraction and repulsion between per-

manently or inductively magnetized bodies. We recall merely such

an outline of theory as may suffice to render intelligible the various

methods of magnetic measurement as these occur in the course of our

discussion, and define clearly the quantities which are determined by
these methods.

It can be shown that magnetic phenomena are capable of being

accounted for by supposing the magnetized body or system to be the

seat of a distribution of imaginary or fictitious magnetic matter.

This matter is of two kinds, each of which repels matter of its own
kind, and attracts matter of the other kind. If two portions of this

matter be supposed concentrated at points in a uniform medium, the

force between them is directly as the product of the quantities, and
inversely as the square of the distance between them. To be quite

definite we may take, as the medium specified, air at standard atmos-

pheric pressure, and at temperature 0° C. The alteration, however,

of the magnetic properties of air, produced by any ordinary change of

])ressure or temperature is imperceptible. Air is thus the medium
with which others are compared, and for which the inductivity /uq,

defined below, is usually taken as unity. Both kinds of matter are

always present in the distribution in equal amounts, but the dis-

tributions may be different in the two cases. It is to be carefully

observed, however, that so far as our knowledge goes, no such matter

exists. The hypothesis of its existence serves merely to fix the ideas,

and afEord to them a convenient, but only provisional, mode of ex-

pressing the polarity of a magnetized particle.

Between this expression and the, as yet, imperfectly understood

37
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physical nature of magnetism, we are able to say that there exists

a certain correspondence. It is very important to notice that the pres-

ence of equal and opposite amounts of magnetism is essential to the

constitution of the particle. The two " polarities," as we describe

them, of the particle are just as inseparable and as exactly comple-

mentary as are the two aspects which a wheel in rotation presents,

according as it is viewed from one side or the other [see p. 20]. If, as

seems probable, the magnetization of a body is due to the rotation

of particles, these two aspects are the polarities.

Whatever may be the view ultimately established as to the essential

nature of magnetism, it is important that the hypothesis of imaginary

matter should not be accepted as more than it is—a way of speaking

—

or be allowed to stand in the way of research as to the physical con-

stitution of magnetized bodies.

We shall, following the ordinary convention, call the magnetism of

the same kind as that of the extremity of a magnet which points north

positive, and the opposite kind negative. The positive direction of

magnetic force will then be that in which a positive magnetic pole is

urged to move in the field.

Unit quantity of this magnetic matter (or magnetism as we shall call

it) is defined as that quantity which concentrated at a point, at unit

distance from an equal quantity of the same kind, also concentrated

at a point, is repelled with unit force, when the medium in which both

quantities are placed is air. This definition of unit quantity of mag-
netism, or unit magnetic pole as it is sometimes called, is that on which

the electromagnetic system of units is founded, and corresponds exactly

to the definition of unit quantity of electricity which forms the basis of

the electrostatic system. If m, m' be the quantities at the points, r

the distance between the points, and /x the magnetic inductivity of the

medium, the force F of repulsion (if /«, yn' be of the same kind) between

them is given by
F=

jULV^

When the distance between the points is 1 centimetre, and the quantities

are such that the force between them is 1 dyne, each quantity is 1 c.g.s.

unit of magnetism, or, as it is sometimes put, is unit magnetic pole

in the c.g.s. system of units. In the case of electric force an electric

inductivity k replaces /n for air. It is usual to omit k and /ul for

this medium, and then we have, but only apparently, the anomaly of

different dimensions for the same physical quantity, according as it is

measured in one or the other system of units. The suppressed constants

K and JUL are to be understood. [See above, Chapter I. passim.]

Thus, if m denote a quantity of magnetism, which, placed at a point

distant L units from an equal quantity of the same kind, is repelled

with a force of F units, we have m^ = FL^ix, and therefore the dimen-

sional formula [m] of quantity of magnetism is [F^Lij^], or [][PUT~^fx^].
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This is a dimensional formula exactly similar to that of the quantity of

electricity in the electrostatic system. [See p. 16 above.

j

The poles referred to in this definition are of course purely ideal,

for, as we have seen, we cannot isolate a quantity of either kind of

magnetism from the opposite kind ; but we can by proper arrangements
obtain an approximate realization of the definition. Suppose we have
two long, very thin, straight steel bars, which are uniformly and
longitudinally magnetized ; they may be taken as having poles at their

extremities ; in fact, the distribution of magnetism in them is such
that the magnetic effect of either bar, at all points external to its own
substance, would be perfectly represented by a certain quantity of one
kind of magnetism placed at one extremity of the bar, and an equal

quantity of the op})osite kind of magnetism placed at the other ex-

tremity. We may imagine, then, these two bars placed with their

lengths in one line, and like poles turned towards one another, and at

unit distance apart. If the lengths of the bars be very great compared
with this unit distance, say 100 or 1000 times as great, the attraction

of the farther pole of one magnet on the unlike pole of the other will

be only 1/10,(KX) or 1/1,000,000 of the repulsion between the near

poles of the two magnets, and so, the farther poles will have no effect

on the others comparable in practice with the repulsive action of the

latter on one another. But there will be an inductive action between
the two near poles which will tend to diminish their mutual repulsive

force, and this we cannot in practice get rid of. The magnitude of

this inductive effect is, however, less for hard steel than for soft steel,

and we may therefore imagine the steel of the magnets such that the

action of one on the other does not appreciably affect the distribu-

tion of magnetism in either. If, then, two equal like poles repel one
another with unit force, each, according to the definition, has unit

strength.

2. Magnetic field. Magnetic field intensity. Equilibrium of a
magnet in a magnetic field. The whole space surrounding a distribu-

tion of magnetism is called the magnetic field of the distribution, and
the intensity of the field at any point is measured by the force which
unit quantity of magnetism, or unit pole, would experience if placed

at the point. A magnetic field intensity (or, as it is often called, a

magnetic force) is therefore a directed quantity. If its value at a point

P in the field be H, the force F on a quantity m of magnetism placed

at P will be niR. Hence the dimensional formula [H] of H is [F/m]

or [M^L-^T-V^]. [See also p. 22.]

If H be the same in magnitude (and therefore also in direction) at

each point in the field, the field is said to be uniform. Since there is

as much magnetism of one kind in a magnetic distribution as of the

other kind, a magnetized body, placed in a uniform field, will, if not in

equilibrium, experience only a couple, and will, if not prevented by
applied forces, turn round until a certain determinate direction in the
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magnet is parallel to the direction of the magnetic force in the field.

This direction in the body is called the magnetic axis.

For example, if a magnet be suspended so as to be free from the action

of all except the magnetic force due to the earth, it is found to experience

no sensible force of translation as a whole, but takes up a position of

directional equilibrium ; that is, there is a direction round which if

the magnet be turned through any angle it remains in equilibrium in

the new position. This direction is that of the magnetic axis of the

magnet.

The magnet is also in equilibrium (stable or unstable) if turned through
180° round an axis at right angles to the magnetic axis. Any angular

displacement of the magnet not compounded of the two which have just

been specified will leave it under the influence of a couple the moment
of which depends on (1) the magnet itself, (2) the angle which the new
direction of the magnetic axis makes with its direction of stable equi-

librium, (3) the intensity of the magnetic field.

In general, for a magnet placed in a uniform magnetic field of intensity

H so that its axis makes an angle with its position of stable equi-

librium, that is with the direction of the force, the moment of the couple

is MHsin^, where M is a quantity depending on the magnet, and
called its magnetic moment. This couple is a directed quantity, being in

fact the vector product of M and H, and could be represented graphi-

cally by a line drawn perpendicular to the axis of the magnet and to H,

towards the side of the plane of the couple from which the turning

action of the couple appears to be counter-clockwise directed.

3. Potential energy of a magnet. Couple on a magnet in a magnetic

field. We denote the scalar (numerical) values of M and H by M and

H. If we assume that the magnet has zero potential energy when
its axis is at right angles to the lines of force, its potential energy E
in the given position is plainly given by the equation

Jt/2
MHsmede= -MHcosO (1)

We shall see in II. 13 below that this is the value of the work done in

bringing any magnet into a uniform field, and placing it with its axis

inclined at an angle to its position of stable equilibrium. For certain

simple cases such as symmetrical bar-magnets, etc., it is clear that this

is the physical meaning of the potential energy defined witli reference

to the position of zero potential energy above choseu.

If the (scalar) components of the magnetic force H referred to three

rectangular axes, one, say that of x, drawn in the true north direction,

another, that of y, drawn east, and the third, that of z, drawn downwards,
be a, |8, y respectively, and the direction cosines of the magnetic axis

referred to the same axes be I, m, n, the equation for E becomes

E= -M{la + ml3 + 7iy) (2)
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For the moment K of the couple tending to bring the magnetic axis

into coincidence with the direction of the residtant force, we have the

value A:=i/{(my-«/3)* + (mi-/y)2 + (/^-/«a)*}* (3)

The component N of this couple round the axis of z is given by

X=M{l/3-ma) (4)

If the angle which the total magnetic force makes with a horizontal

plane, or the dip, be f, and the angle between a north and south vertical

plane, and a vertical plane through the direction of the magnetic force,

or the azimuth of the latter plane, be cj), and the angles for the magnetic

axis be tj and \p {\j/ taken from Ox towards Oy), we have plainly [Fig. I]

a = i/cosf COS0, ^= -Hcos^siiKp, y = 7/sinf,

/ = cos »7 cos t/', m = cos>;sin^, n = sin rj.

The preceding equations become

i!/= -i/ir{cosf cos >/ cos (0 + '/') + sin f sin »/},

N= - MH cos ^ cos r] sin {^ + \p)

(5)

(6)

4. Uniform magnetization. Uniform magnetization has been re-

ferred to in p. 39 above, and we shall now consider it a little more fully.

A uniformly magnetized magnetic filament is an infinitely thin bar

(not necessarily straight nor of uniform cross-section), so magnetized

that its action at any external point can be represented by a certain

quantity of one kind of magnetism concentrated at one extremity

of the bar, and an equal quantity of the opposite magnetism concen-

trated at the other extremity. Such a filament, if divided across, would
be converted into two uniformly magnetized filaments, and each of

these in turn, if divided, into two such filaments, and so on. In short,
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each small element of the filament is to be supposed magnetized in

the same way as the whole bar, and to be indivisible, so that, when the

elements are united, the action of the polarity of any end of an internal

element is annulled by the equal and opposite action of the adjacent

end of the next element. Thus the equal and opposite polarities of

the ends of the complete filament are left unbalanced.

We may suppose, to make this clearer, that each small element of

the filament has equal and opposite distributions of magnetic matter

over its two ends, so that the total quantity on two end faces in contact

is zero. Of course, as we have seen above, this is only a way of figuring

the distribution to the mind ; what we really have is no doubt some-

thing essentially different from an actual distribution of matter.

Any uniformly magnetized bar may be supposed made up of uni-

formly magnetized filaments put together with their ends in the surface

of the bar. We have in this case a surface distribution of magnetism
only.

A non-uniformly magnetized bar may be regarded as one in which

the polarities of the elements in contact do not counteract one another
;

in this case we have, besides the end distributions (which are generally

opposite but not necessarily equal), a diffused distribution of magnetism
throughout the substance of the bar. Here also the distribution is

to be regarded as due to uniformly magnetized filaments, the terminals

of which give the surface and body distributions.

5. Magnetic potentiaL Lines of magnetic force. Equipotential

lines and surfaces. This subject is more easily understood when
considered mathematically. We shall investigate first the potential

and force due to an infinitely short and uniformly magnetized filament,

and then consider the general case of a magnet made up of such elements.

The magnetic filament is its own magnetic axis, and its magnetic action

may be supposed due to equal and opposite quantities of magnetism
placed at its two extremities. For brevity we shall call this elementary

magnet in what follows a magnetic doublet. Its magnetic moment we
define as the product of either of these quantities of magnetism into the

distance between the extremities, and for our present purpose we shall

suppose this product finite. Denoting by Sx the length of the filament,

which we take in the plane of the paper and parallel to the axis of x,

with its centre at the origin of coordinates, we have for the coordinates

of its extremities -\^x, J&. The potential at a point in the plane

of the paper the coordinates of which are ^, /;, due to unit quantity of

positive magnetism at the origin, is {^^+tfy^. Hence if m be the

moment of the short magnet, and the positive magnetism correspond

to the point \Sx, the potential F of the two equivalent point distribu-

tions is given by

jr_^\ 1 ^
1 ^ <'

(7)



(9)

f
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This may be written in either of two other equivalent forms, viz.:

,, d I VI COB /^v

whore is the angle between the axis of the magnet and the Wne drawn
from the centre to the point (f, »;) and r is the length of that line.

The components X, Y, of magnetic force at the point ^, tj, are given

by differentiation of (7), and are

It is easy to verify that these values of X, Y satisfy the differential

equation
-^x 9K Y ,,

w'-^.'r'^
^''^

which is the well-known form which the equation

dx dv dz ^
OX oy oz

takes in the case of a force system symmetrical round an axis. It is

to be noted tliat in (10) the coordinate »/ is the distance of the point

considered from the axis of symmetry, taken as axis of x, and that

therefore Y in (10) above represents (F^+Z^)*, where F, Z are taken

as the component forces along two other axes of rj and f at right angles

to one another and to that of x.

To find the equation of the lines of force we have for any one line

Xld^= Y/dt]. Hence by (9) the differential equation in its simplest

^""^''^'^
3^,;.C?^+(>;2-2f)c^;; = (11)

This equation may be integrated either by the ordinary method of

separation of the variables, or by restoring the omitted common factor

1/r^, and remembering that by (10), tj is an integrating factor of the

equation thus modified. The integral is

"--. = 1 (12)

in which c is a parameter constant for any one line, but variable from

one line to another. [See also the discussion on p. 20.]

6. Graphical construction of lines of force and equipotential lines.

This equation may obviously be written in the form

r = c sin2^, ; (13)

which is very convenient for the graphical description of the curves.
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For let 0, Fig. 2, be the position of the small magnet, OX the direction

of its axis, OY an axis in the plane of the paper at right angles to OX.
From as centre and with c as radius describe a semicircle upon the

axis of X. Then draw any line OA intersecting the semicircle in A.

From A let fall a perpendicular on OF meeting it in B, and from B a

perpendicular to OA intersecting it in P. P is a point on the line of

force whose parameter is the value of c chosen. The oval curve in Fig. 2

represents a complete line of force, successive points on which were

found in this way. It will be seen that the curve, as is also evident

Fig. 2.

from its equation, is symmetrical about its maximum radius vector,

OG, which lies along Y, and is equal in length to c. Points on the curve

near G cannot be found with accuracy by the method just described,*

but this part of the curve can be filled in with sufficient accuracy, by
drawing a circular arc from the centre of curvature for the point G.

The radius of curvature for any point is easily found from (13) and is

c sin (sin2 0+4: cos^ Of/S (sin2 0+2 cos2 6).

For the point G this is c/3, and the centre is on OG.
Fig. 3 shows lines of force for different values of the parameter. The

points F^, F2, etc., are the points of maximum radius of curvature

for the several curves.

The direction of the magnetic force at any point may easily be ob-

tained in the following manner. If cp be the angle between the radius

vector and the tangent to the curve at P, we have

tan = r dO/dr= J tan 6,

by (13). Hence the following construction. Draw from the point of

trisection of OP nearest a perpendicular to OP ; then if M be the

* This elegant method of describing these curves is due to Mr. John Buchanan,
B.Sc. Nature, vol. xxi. p. 371.
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point in which this perpendicular cuts the axis of the magnet, PM is

th« direction of the line of force at P.

This construction gives also the magnitude of the force at P, for by
(9) we get X2+y2 = m2(4^ + »;2)y(^2 4.,^2)4^ and this is easily proved to

be m2 . PM^iOM . OP^f. Hence the magnitude of the force is

m . PM/{OM . 0P3).

Of course a family of lines of force exists on each side of the line OXy
and a similar double family in every plane which contains OX. If

we suppose the diagram of Fig. 3 to make a complete turn about OX,
each line of force will sweep out a surface at every point of which there

will be no component magnetic field intensity normal to the surface.

Thus no work would be done against magnetic forces in carrying a unit

Fig. 3.

of magnetism along an element of the normal to the surface at any
point, and if such an element were continued into a curve cutting the

successive surfaces at right angles, no work would be done in carrjnng

a unit of magnetism along the curve. Such a curve would be what is

called an equipotential line. Such lines cut the family of surfaces at

right angles : we shall see presently that there exists also a family of

equipotential surfaces, which are intersected at right angles by the
lines of force. Clearly there exists a reciprocal relation which suggests

interesting mathematical consequences ; but we do not pursue the

matter further at present.

The equipotential curves in the plane of the paper are obtained by
putting F = const, in (7) or (8). It is easy to verify by (9) and (12)

that these curves cut the lines of force, as they ought, at right angles.

They may be constructed graphically in the following manner. Draw
with \slmlV as radius, from a centre on the axis of x, a circle (Fig. 4)

passing through the position, 0, of the centre of the magnet. Then
draw any line from to meet this circle in A. The length of this line

is ^hnjV, cos ^ if () be the angle which OA makes with Ox, Lay off
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a distance OB along the axis of x equal to OA , and on the other segment
of the diameter describe a semicircle and draw to it a tangent from 0.

The length of this tangent is the length of the radius vector r, which

Fig. 4. Fig.

laid off from along OA will give P a point on the curve. Or the con-

struction may sometimes be more conveniently performed as follows :

Lay off the length OB=OA as in Fig. 5, and describe a circle on the

line made up of OB and the diameter of the former circle. The length

of the tangent OC gives the distance OP. The curves, like the lines of

force, are symmetrical about the axes of x and y and all pass through

the origin. Both sets of curves are shown in Fig. 6.

7. Analogies with fluid motion. The lines of force and equipotential

surfaces due to a small magnet coincide for all external pointsVith those
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of a uniloniily magnetized sphere, a ease approximately realized when

a ball of iron is i)laced in a uniform magnetic field, and also with those

of a conducting or dielectric sphere placed without charge in a imifomi

field of electric force. They further correspond exactly to the lines of

flow and equipotential surfaces within a large mass of a frictionless

incompressible fluid, kept flowing continuously in steady motion through

an infinitely short, straight, narrow tube. We have discussed them

with some fulness, on account of their theoretical importance. We
shall consider them again later in connection with inductive magnetism,

and with the investigations of Hertz on the radiation of electric and

magnetic energy, if we have space for this latter subject.

8. Potential of a magnetic filament. Let us now consider a magnetic

filament regarded as made up of an infinite number of infinitely short

magnets placed end to end. Let x, y, z be the coordinates of the centre

of one of these elementary magnets, ds its length, dm its moment,

X, lUL, V the cosines of the angles which the axis of the element measured

in the direction along the filament from the negative extremity to the

positive, makes with the axes : the potential dV at a, point (f, //, f

)

external to the filament, produced by the element, is by (8) given by

'if'-^{Mi-^)+/^{>i-y) + H^-^)), (14)

since {X(f-a;)-hyu(>;-2/)+j/(f-2)}/r is now the value of cos 0. But if

/ denote the magnetic moment of the element per unit of length, taken

positive when the direction of the axis, as specified above, is from the

negative end of the element to the positive, or, which is the same, if

/ denote the quantity of magnetic matter on the positive end of the

axis, we have

dF^^,{{i-x)d.T, + (n-y)d!/ + {^-^)dz} (15)

where dx, dy, dz, are the projections of ds on the axes. But since

r^ = (^-a^)2+(>;-?/)2 + (f-2;)2 we can write this equation in the form

dV=l'^-dr.
dr r

Hence integrating by parts we get

^=,t-M,-f* <>«)

where /g, /j, rg, r^ are the values of / and r at the positive and negative

ends respectively. If / be uniform along the filament the last term
vanishes, and (16) becomes

'^=^.1-^'. <'^>

or the potential is that due to the two end distributions alone, as stated

above, p. 42.
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Since the potential of a quantity of magnetism dljds . ds at the

distance r is dl/ds . ds/r the interpretation of the third term in (16) is

that -dljds, if not zero, is the linear density of magnetism diffused

throughout the filament. Hence in the general case the total potential

is that due to the end distributions together with that produced by the

diffused distribution.

Let any path be drawn in a magnetic field starting at a point A and
terminating at another point B. If H be the magnetic field-intensity

at any point P of the path, the component of field-intensity along any
element ds of the path at P is fl^ cos 6, if be the angle which ds makes
with the element ds. But if F be the magnetic potential, we have

ds

Also if we take the line integral of H cos from ^ to 5 we get in the

field of magnetic matter

r^cos^.^.s= -(F,~V^).

This integral is very important. As we shall see in the case of a

magnetic field produced by a current of electricity, the integral

\H cos .ds

taken round a closed path is not zero if the path be carried round the

circuit, but has the value 47ry if y be the current which circulates

through the path. In fact we shall see that the magnetic potential is in

this case multiple valued in the sense that the value of this line integral

taken round a closed path is zero or 47rwy according as it threads not

at all round the current, or does so n times. The line integral has been

called the circuitation of the path, and the unit of difference of potential

in the c.g.s. system one gauss. The name gattss is however now used

for the c.g.s. unit of magnetic field intensity, and the use of " gaussage
"

in the sense here indicated is generally given up.

9. Lines of force of a uniformly magnetized bar. The equation of

the lines of force due to a uniformly magnetized filament is of interest,

and may be easily found in a variety of ways. The most elegant is

perhaps the following. It is evident that the system of lines is symme-
trical about the straight line joining the ends A, B, of the filament.

Describe circles from A, B (Fig. 7), as centres with any radii the sum
of which is greater than the distance A B. They will intersect in two

points which will be points on two lines of force having the same

parameter, but on opposite sides of the axis. The circles may be

regarded as the intersection with the plane of the paper of two spheres

having A, B, as centres, and intersecting in a circle through which

pass all the lines of force which can be drawn in space for the magnet
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\ \

Fio. 7.

AB, and which have a certain parameter. PQ are two points on such

a circle, and of all such circloH AB'\» the common axis. Now considering

the total flux of inagn(?tic force (that is, the surface integral of normal

magnetic force) in the same direction through any surface having this

circle as boundary, and the two centres

on the same side of it, it is clear that

it may be taken as that due to the

quantity of magnetism - / at ^4, out-

wards through the segment PRQ of the

sphere described from A, and bounded

by the circle of intersection, together

with that due to +/ at 5 taken out-

wards through the corresponding seg-

ment PSQ of the other sphere. If the

angles PAQ, PBQ be respectively 2^1,

2^2' these fluxes are respectively

-2x7(1 -cos 0^) and 2x7(1 -cos O^).

Hence the total flux is

27r7(cos Oj^-cos 62).

Now let two other spheres be described

in the same way ; then if the flux

through a corresponding surface

bounded by the circle of intersection is the same as that just found,

the two circles of intersection may be supposed joined by a surface

generated by the revolution of a line of force round AB as an axis.

Hence the equation of a line of force is

cos^i-cos 62= 0^ (18)

where c is a parameter varying from one curve to another.*

10. Construction for lines of force of a uniformly magnetized bar.

To construct the lines of force in this case we may proceed as follows :

Describe a circle on AB (Fig. 8f) as diameter, and lay off a distance

AM such that AM = c . AB. Then draw any line from A to cut the

circle in Q, and lay off Aq along AB equal to AQ. From B as centre

with radius Mq describe a circle cutting the former circle in R. Hence,

since cos BAP -^cosABR = AQ/AB-i-BR/AB = {Aq+qM)/AB = c, the

point in which AQ and BR intersect is a point on the curve. The curv^e

in the vicinity of ^ or 5 must be drawn from a knowledge of its inclina-

tion to the axis of x. This is given by the equation cos = c-l.
The cut shows curves numbered 1, 2, 3, 4, 5, drawn for the correspond-

ing values of c, f , 1, J, J, ^. When c= 2, AB (the axis) is the curve,

* See also Chapter III. below.

t This figure is taken by permission from Constnicftre Geometry of Plane CurreM,

by T. H. Eagles, M.A. (London, Macmillan & Co.). The method of construction
here adopted is that given in the same Mork.

U.A.M. p
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when c = 0, the productions of the axis to the right of B and the left of

A are the curves.

The dotted curves intersecting at right angles the lines of force in

Fig. 8 are the equipotential curves, which are given by the equation

--\ = c, (19)

where c is a parameter (the potential per unit of magnetic matter at

A or B) varying from one curve to another.

That the dotted curves are intersected at right angles by the lines of

force is easily verified by considering that if /(r, r') = be the equation of

Fig. 8.

a curve, and lengths df/dr, df/dr' be laid off along r and r\ the resultant

of these lines is in the direction of the normal. We have from (19)

df/dr = - l/r^, df/dr' = 1/r'^. Hence laying off l/r^ from a point on the

curve along r towards A, and 1/r'^ from the same point along r' in the

direction from B, we find that the normal to the equipotential curve

(19) is in the direction of the resultant force due to the equal quantities

of opposite kinds of magnetic matter at A and B respectively.

11. Resultant field obtained by superimposing the field of a bar-magnet

on a uniform field. The resultant field of a magnet placed in an already

existing field is important. We consider here only the case in which

the axis of the magnet and the field are parallel. Let H be the value
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of the uniform field-intensity, and M that of the moment of the

magnet, supposed uniformly magnetized. Take any |ilane containing

the magnetic axis, and let ^, tj be the coordinates of the point in that

plane at which the coordinates X, Y of resultant field-intensity are

taken, / th<^ half huigth of the magnet. We have then

_Mrir 1 1

'I I

(20)

We consider the points, called neutral points, at w})ieh A'^O, nnd

also, (1) ^=0, (2) i; = 0. In case (1) we get

and in case (2) M= -J^-^-^F^'
J

where ^, taken positive, is the distance of the point at which X =
from the centre of the magnet.

Thus in case (1) there is a circle of neutral points round the axis of

the magnet as geometric axis, and lying in what may be called the

equatorial plane through the magnet centre. In the other case, if M
and H have the same sign there is no neutral ])oint in the line of the

axis ; if M and H have opposite signs there are two such neutral points,

at distances ± \/2MI{ - H) from the centre, if the very small.

A useful laboratory exercise consists in laying down the lines of force

on a horizontal sheet of paper, on which lies a bar-magnet in the magnetic

meridian. These lines are obtained by marking the direction of a small

compass needle at any point P, then moving the centre of the needle

a small distance in that direction from its first position, which is also

marked. The direction of the needle and the position of its centre are

again marked, the needle is then moved on through an element of

distance, and so on. Thus a line of force is mapped out. When this

has been done over the sheet of paper, the family of lines has been

obtained, and the lines disclose the neutral points.

Reversal of the magnet and repetition of the process of mapping
gives the pair of neutral points described above.

12. Potential of a magnetized body in a magnetic field. We shall

now find the potential at any point in a magnetic field produced by
a body magnetized in any given manner. As we shall see later, we

Iare

led by magnetic phenomena to suppose a magnetized body made
up of an infinitely large number of infinitely small magnetized mole-

cules, each of which may be considered a magnetic doublet, as defined

above. We shall also suppose that the magnetic axes of these molecules

have in each small element of the body a common direction, of which the
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point continuously in the body. This is called the direction of magnetiza-

tion at the element.

We consider an element of the body, in shape a rectangular parallele-

piped with its edges parallel to the axes, large enough to contain a very

great number of molecules, but not so large that the direction of

magnetization varies in it to a sensible extent. Let n be the number
of molecules in the element, m their average magnetic moment, then

the magnetic moment of the element is nm, and it may be regarded as

a small magnet of this moment, with its centre at the point x, y, z,

and its axis in the direction X, /ul, v. For nm we shall write Idxdydz,
where / is the magnetic moment of the element per unit of volume,

or, as it is usually called, the intensity of magnetization at the element,

and dxdydz is the volume of the element. / is thus the scalar value of

a directed quantity I.

By (14) above we have for the magnetic potential produced by the

element at the point (^, r], f ) the expression

Idxdydz{{^-x)\+{tj-y)iuL+{^-z)v}l7^,

where r^ = {i-x)^+ {rj-y)^-{-{^-z)^. Writing /A, Iju, h = A, B, C, so

that A, B, C are what are called the components of magnetization at

the point x, y, z, and integrating throughout the body we get for the

total potential F at (^, r], f ) the equation

illiwf

-If!

•) + B(r] -y) + C(^ - z)} dx dy dz (22)

This may be written in the form :

y^-dydz^-\^^-dzdx+\^>^-dxdy

in which the first three integrals are confined to the surface and are

reckoned in the following manner. Taking the first of the three, con-

ceive a prism of cross-section dydz, and length parallel to the axis of

X, drawn in the body. The area dydz is the projection at right angles

to the axis of x of the element dS of the surface intercepted at either

end by the prism ; and the element of the integral corresponding to

the negative or left-hand end of the prism is to be taken negative, the

element for the other end positive. Now if Z^, Zg be the. x direction

cosines of the normals drawn outwards from the surface elements at

these ends respectively, dS^, dS,^ the corresponding areas, we have

dydz^l^dS^^-lidS-^^', so that the elements of the integral are

A^l^f^^ih'^+AJ^^dS-ilr-^. Hence we may write the first integral in

the form XAljr.dS, in which the integration is to be extended over

the whole surface. The other surface integrals n>ay be similarly

transformed, and we get
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in which /, m, n are the direction cosines of the normal to an element

(IS of the surface of the body.

Clearly we may interpret the quantity Al+ Bm-i-Cn as a surface

density a- of magnetic distribution, equal at each surface element to the

normal component of intensity of magnetization.

The expression -(dA/dx+dBldif-^dCldz) is interpretable in the

same way as the volume density p oi & distribution of magnetism
throughout the substance of the body.

From these expressions we get by direct integration, as we clearly

ought, the total magnetism of the body equal to zero.

It is almost needless to say that these results are consequences of

our suppositions as to the structure of the magnetized body, and that

the interpretations just stated are to be regarded merely as convenient

modes of expressing the outcome of the analysis. If, however, as seems

certain, the magnetized body be made up of polarized molecules of some
kind, the surface and body distributions found, will correspond to

unbalanced surface and body polarities respectively.

If the potential at (^, »/, f) due to the body is expressed by the surface

integral alone, then

dA dB dC ,, ,o.N
9^-^^ + ^^ =

^ (24)

A distribution of magnetism fulfilling this condition is said to be

solenoidal.

13. The mutual potential energy of a magnet and a magnetic field.

We have now to consider the potential energy of a magnet situated

in a magnetic field. By this we mean the work which has been done

against magnetic forces, in bringing the magnet into the given field

and placing it in the given position. The potential energy of unit

quantity of negative magnetism at a point P, at which the potential

is F, is of course simply - V ; and hence that of a unit of positive

magnetism at a point at distance ds from this point is V+dV/ds .ds.

The potential energy of a magnetic doublet with its extremities at these

points is therefore 7)idV/ds, where m is the moment of the doublet. If

the direction cosines of the axis of the doublet be X, yu, i/, we have
of course

dF /.dF dV dF\ .n.x
^^^^=^(^^^^^^ + ^3^) (2")

Now, as above (p. 52), we may regard this small magnet as a magnetic

molecule of a body of finite size, and take a parallelepiped of the body,

large enough to contain a great number of such molecules, but not so

large that the direction of magnetization, that is the common direction

of the axes of the molecules, varies to a sensible extent. The potential
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energy of the element will be proportional to the number of such mole-

cules contained in the element. Hence by the expression above, the

potential energy ilE of an element of volume dxdydz, is given by

where / denotes the intensity of magnetization as defined above.

Writing as before A, B, C = \I, /ml, vl, and integrating throughout the

magnet we get

'^'=IIK^S^*¥^^w)'^'^'^
<'''>

Integrated by parts this becomes

E=
[
[v{Adydz^Bdzdx + Cdxdu)

111^U^ + aF + aj)^^^'^^'^'^
(26)

The triple integration is taken throughout the space occupied by the

magnet ; the double integrations give, when /, m, n, are put for the

direction cosines of the normal to an element dS of the surface, an

integration over the whole surface of the magnet, so that

E ={V{IA + mB + nC)dS - {{{f(^^+~ ^'^yxdydz^ ...(27)

By the interpretations, stated on ]). 53 above, of the quantities in

brackets, this may be written

E^iVa-dS-^ {{{Vpdxdydz, (28)

which is the energy equation. The field in the present case is inde-

pendent of the distribution brought into it : if the distribution and the

field grew up together, so that the distribution came into its own field,

the energy would have half the value here given.

It it to be noted that V is the potential due to the magnetic system

producing the field, andthat therefore - dV/dx, etc., are the components

a, P, y, parallel to the axes, of the magnetic field intensity due to this

system. Hence we may write

{{{{Aa + Bl3 + Cy) dxdydz (29)

In the case of a uniform field intensity for every part of the magnet
thisbecomes E = -{aMj^-j-^M^-hyM^), (30)

where M^, M^y M^ denote the integrals \A dxdydz, etc. Now we can

find three quantities ]?, q, r fulfilling the equation 2)^-\-q^-{-r^ = \, and

such that Mj^^pM, M^ = qM, M^ = rM,

so that we have E^ - M{pa+ql3-{-ry) (31)

E =
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M is what has been detined above (p. 40) as the value of the magnetic
moment of the magnet, and p, q, r are the direction cosines of its axis.

If // be the value of the resultant magnetic intensity of the field, it«

direction cosines are a///, f-^/H, yjlh and (31) may be written

A'= -MH(pj^-hq^^+r^)\=^ -MlfcoaO, (32)

the e(|uation (1) already obtained in \). 40.

14. Potential energy of a magnet in the field of a single magnetic pole.

It is instructive and useful to consider as a j)articular case the potential

energy of a magnet in the field due to a single magnetic pole, as this

gives the potential of the magnet at the point at which the pole is

situated, and supplies conditions by which the centre and axes of the

magnet may be determined. In this case if PP' be the distance of

the point P(^, ;;, f), at which the pole is situated, from the point

P'{x, y, z) of the magnet, we have for the potential F at P', due to the

unit })ole at P, the value l/PP\ that is

y=~j, = {r^-2f.ir' + /r'^J-(^Z, + Z,Uz,'^^ ...(33)

where r, /•'(>'< r) are the distances OP, OP' from the origin of co-

ordinates to the ])oints P, P', and Zq, Z^, Z.^, etc., are zonal surface

harmonics * of the orders specified by their suffixes, and having their

l)ole at P. Here /x is the cosine of the angle POP', and

Zo=l, Zi=^, Z2 = i(3/x'-l), Z3-i(5.u2-3/>i), etc.

Wherever r'>r we must, of course, use (33) as altered by writing
/•' for r and r for r'.

Substituting these values of Zq, Zj, etc., in (33), then putting for
fj.

its

value {^'C + t]y + ^z)lrr\ and differentiating, we evaluate dV/dx, dV/dy,

dV/dz. Using these in (25), and putting

Pi= [
f f^a;rfa;fl?y(/^, P^={{{Bydxdydz, P^={{{czdxdydz,

Qi=-^^^iBz + Cy)dxdydz, Q^=^^^^{ac+ Az)dxdydz,

Q^ = ^^^{Ay + Bx)dxdydz,

we get (with r used in two senses, that is, with p, q as a direction cosine,

and in l//-^, \/r^, etc., as a distance)

* For the theory of Spherical Harmonics which we shall frequently have to em-
ploy in what follows, the student may consult Thomson and Tait's Nat. Phil.

vol. i. part i., or Ferrers's Spherical Harmonics. A clear and brief acr ount of the
subject is given in Minchin's Statics, vol. ii. 3rd edition. A short explanation,
covering the theorems used in this work, is given in an Appendix to the present
volume.
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+ SH2P,-P,-P,) + S(Q,„^+Q,^i+Q,i^)}^^ + etc .(34)

The quantities P^, Pg, etc., are functions of the coordinates x, y^ z,

and of ^, B, G ; hence we may change the origin to another point

{x', y', z'), and take the direction of the axis of the magnet as that of

X, so that j9 = l,g' = 0, r = 0. This makes

[[[Adxdydz = M, [\\Bdxdydz = 0, [[[c dxdydz = 0.

We have then new values P', etc., given by the equations

P^=P^-Mx', P^=P^, Ps=Ps,

Qi=Qi, Q^=-Q^-Mz', Qs'^Qs-My'.

Hence, if the new origin be taken so that

2P,-P,- P3 ,_Q, \,_Q^

we get P/ = i(P2+P3), g/^O, ^3' = 0,

and (34) takes the simplified form (accents omitted)

£.^f^ +
|(iWaK5!_l!)±2M+etc., (35)

in which ^, >;, f have of course the proper values for the new origin.

The origin thus found is called the centre of the magnet, and the

definition enables us to specify the position of the magnetic axis, as

well as its direction. The magnetic axis is sometimes called the principal

axis of the magnet.

If we turn the axes of y and z round that of x, through the angle

Jtan-i{gi/(P2-P3)}, (35) takes the form

i'„,4 + 3^(,^-12

where U is the quantity which replaces P^-P^. These directions of

the axes of y and z are called the secondary axes of the magnet.

In the case of symmetry round the axis of x, the second term of the

expression on the right of (36) is zero, since then whatever magnetiza-

tion at right angles to the axis there be throughout the body, it must
be such that the coefficient R vanishes identically. To a close approxi-

mation therefore for a unit pole placed at a point (^, tj, f ), the distance

r of which from the origin is considerably greater than that of any part

of the magnet from the same point, the mutual potential energy is

Since the potential energy is mutual, the equations (34), etc., found

for E, give the potential energy of the unit pole in the field due to the

magnet, that is the potential due to the magnet at the point
(f, ;/, f).



MAGNETIC! INDUCTION 57

Section II.

MAGNETIC INDUCTION. VECTOR POTENTIAL.

MAGNETIC ENERGY.

15. Magnetic induction and magnetic force. When a subHtance

capable of being magnetized is placed in a magnetic field, it becomes

magnetic, and a definite relation in general exists between the magnet-

ization produced at each part and the field-intensity. The determina-

tion of this relation has been, especially in late years, the subject of much
careful investigation, and if space allows we shall give an account later

of methods of measurement employed. With this in view, we deal

here with the theory of certain given cases of magnetization. In

general, in the substances with which we have to deal in practice, the

magnetization is in the direction of the magnetic force, and we shall

first consider this case.

We have already (p. 22) referred to the force in the interior of

a magnet. Here, as in all other cases, the magnetic force is that which

would be exerted on a unit magnetic pole if placed at the point, and,

since we could make no experiment as to the internal state of the body,

except within a cavity hollowed out within it, we imagine a small

portion of the magnetized body excavated so as to give a space in which

the force might be measured. The formation of this cavity leaves

unbalanced the magnetism on the extremities of the molecules which

abut against its surface. We shall suppose it formed without disturbing

the magnetization of the rest of the body, and since we cannot divide

a magnetic molecule the signs of the surface distributions will be per-

fectly definite. Thus for a crevasse* cut at right angles to the direction

of magnetization there is positive magnetism on the face next the

negative end of the magnet, and negative magnetism on the opposite

face. We shall suppose the crevasse filled with the standard medium,
of inductivity /xq. On a surface the normal to which, drawn into the

cavity, is inclined at an angle e to the direction of the intensity of

magnetization I [scalar magnitude /], taken as positive when drawn
in the magnet from the negative pole to the positive, the density of

distribution is /cose, and is positive therefore when e is acute, and
negative when e is obtuse.

The force within the cavity depends upon the shape and dimensions

of the cavity, and upon the position of the pole within it. In the first

place we shall consider a cylindrical cavity of finite length and diameter,

cut with its axis in any given direction, in a uniformly magnetized body
(Fig. 9). If the intensity of magnetization of the body be /, and be

the angle which the axis of the cylinder makes with the direction AB oi

* A narrow cavity with parallel plane faces, every dimension of which ia great
in comparison with the width of the cavity.
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Z, we have for the density of the distribution on the curved surface of

the cavity the value 1 sin B at points in a plane through the axis parallel

to the direction of magnetization. In

another plane through this axis making
an angle with the former plane the

density is I sin cos <^. Now the force

which this distribution exerts at right

angles to the axis on a unit pole placed
i''"^-^- at the centre of the axis, is, if 2/ be

the length of the cylinder, and 2r its diameter,

— 27-7 sm 6^1 cos^ (hd(b\ :,
=

—

IsuiO- ,.

^0 J-f J-.(>-- + «')^ ^0 (/•^ + r2)^

The ends of the cylinder give a resultant force along the axis of amount

4:7rl cos {1-1/{r'^-{-l^)^}/ JUL q', and the total force within the cylinder

at the centre of the axis is the resultant of these two components.

Hence if I be great in comparison with r, the force is at right angles to

the axis and of amount 27r/sin ^/yUo- Hence if = 7r/2, the force is

27r

I

julq. If I be small in comparison with r, the force is iirl cos O/iuq.

If = 0, so that the axis of the cylinder is parallel to /, the force

becomes 47r/{I -^/(r^+^^^^l/^Q, and is therefore i-jrl/jUQ or zero,

according as I is small or great in comparison with r. Also the force

is 4:7rI/jULQ in any narrow crevasse bounded by planes at right angles

to /, and is plainly zero in any elongated narrow cavity with its

length parallel to I.

In the important case of a spherical hollow the surface distribution

follows the law of variation from point to point of a material distribution

formed by placing two spheres of equal uniform densities +^ and - p
in coincidence, and displacing the positive sphere in the direction of /

through a small distance ox, We may suppose p very great, and Sx

very small, so that pSx = I, and take in this case iuq = 1. The poten-

tial due to the inner nucleus of the positive sphere at a point distant

/• from the centre is iirlr^/Sx. The potential due to the shell beyond r is

27rI{R^-r^)ISx. Hence the whole potential is 2'7rI{R^- lr^)/Sx. The
potential at the same point due to the negative sphere is plainly

- 27r/(222 _ Ir^ySx-^^Trlr dr/dx.

Hence the total potential is iirlx. The force within the spherical

hollow produced by the surface magnetization is therefore in the

direction of magnetization, and equal to -|7r/.

In the case of a non-uniformly but continuously magnetized body

these cavities have only to be taken small enough to enable the average

value of / over each to be used in the values of the force.

The cases most important for our present purpose are (1) the com-

paratively long narrow cylinder, (2) the short comparatively wide
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cylinder, both with axes paraUd to /. In each case the force within

the hollow, due to the surface distribution upon it, must be increased

by the resultant force at the point due to the distribution producing

the magnetic field and to the rest of the magnetic distribution of the

magnet. If we call this force H, the force within the cavity is in case

(1) simply H, in case (2) it is H -\-i7rI/jULQ, if /jlq denote the magnetic

iiiductivity of air. H is thus the magnetic force within the magnet,

apart from any action of unbalanced polarity produced by cutting a

hollow in the substance. The quantity ijlq{H -\-i7r

I

//jiq) is called the

nnujuetic induction within the magnet. We shall denote it by B.

In the case in which the magnetization is induced by the magnetizing

force H, and has the same direction, if we put IljUiQ=KH, we get

B=/xo(l+47rAr)^ (37)

16. Magnetic susceptibility. Magnetic permeability. We denote the

imiltiplier //^(l 1 47r/v) by jul, and call it the niag)ielic inductive capacity.

The factor k is called the magnetic susceptibility. In general, as we shall

see below, it is a function of H.
It is clear that as here defined k is a mere number. The quantity

/jL is also a mere number when defined by the equation 1 +47r/c. Now
lUL has a definite value for every medium, and it is possible that that

property of the medium (say some form of motion), which makes the

magnetic inductive capacity vary from medium to medium, may give

to it certain dimensions at present unknown. We may use /ul as the

absolute magnetic inductive capacity depending on this property,

t hat is the magnetic inductive capacity with reference to an absolutely

unmagnetizable medium as standard, and regard its dimensions as

unknown ; but we shall in the account of magnetic measurements which

follows, in general employ it to denote 1 +47r/r. According to the

relations used above, 1 +47r/c, is the value of /ulJ/ulq. We call this the

permeability of the magnetized substance, and denote it by nr. Thus
^^''-^ ha^«

nT = l+47r/r (38)

Since B, H, and I are vectors we may replace each by three com-
ponents along the axes. We have then instead of (37) the equation

a = a -\-i'7rA, ^

b^fi + i7r£, • • (39)

c = y + 47r6', J

where a, 6, c, a, /^, y, A, B, 0, are the components of B, H, and I for the

l)oint considered, and /xq i^ taken as unity.

It is easy to prove that the magnetic induction fulfils the solenoidal

condition. We have from (39), with iulq= 1,

da db dc da d^ dy /dA dB dC\ ,.r..

dx dy dz~ dx dy dz \dx dy dz

)
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Now remembering that the quantity within the brackets may be
regarded as a volume density {- p) of magnetism, and that by the de-

finition of H we must have by the characteristic equation •' of electric

and magnetic potential

dx dy dz \ r/
>

and therefore -j- + -i- + -r = (41)
dx dy dz ^ '

In the space surrounding the magnetized body, B coincides with H
in all respects. The transition in value from one side of the surface to

the other, takes place differently in the two cases. The normal com-
ponent of B varies continuously from one side of the surface to the other,

the tangential component discontinuously ; and the reverse is the case

with the value of H. To prove this we have only to notice that by
(39) if Q be the angle between the normal to the surface drawn outwards,

and the common direction of B, H, and I, we have for the normal com-
ponent of B in the interior

5cos0 = (^+47r/)cos0, (42)

and that if R' be the magnetic force just outside the surface at the same
place, and Q' its inclination to the normal, the characteristic equation

of the potential gives, since / cos is a surface density of magnetism,

£f'cos^'=^cos0-|-47r/cosO (43)

Since B and R coincide outside the magnet the quantity on the left

is the normal component of the magnetic induction. The expression

on the right, therefore, shows the normal continuity of j5, and at the

same time the normal discontinuity of H.

The tangential component of B is {H +4:'7rl) sin 6 inside the surface,

and H sin outside the surface. The latter is the value of the tangential

component of the magnetic force on both sides.

17. Vector potentiaL Since the magnetic induction fulfils the

solenoidal condition, it follows that the surface integral of magnetic in-

duction taken over any closed surface whatever, whether wholly within

or wholly without, or partly within and partly without the magnetized

body, is zero. This is clear from the following equation,

\\('»^'nh + nc)dS= _
jjjg +| + gd.rfy</. (44)

in which the quantity on the right is zero identically.

The truth of equation (44) (apart from the special value of the right-

hand side in the present case) may be seen from the following con-

siderations. The expression {daldx-\-dhldy+dcldz)dxdydz represents

the sum, for a small rectangular parallelepiped of the substance having

* Poisson's Theorem, see Appendix, Notes.
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its edges parallel to the axes, of the products of the average value of the

component of induction, at each surface of the element into the area

of the face. The integral on the right of (44) simply expresses the

aggregate value of these sums for such elements making up the portion

of the body considered. Now clearly if we imagine the body divided

into small elements, then each face of these will be common to two

elements, except those faces which abut on the surface. For every

common face the products of induction into area for the two elements

are equal and opposite, and cancel one another. We are left then

with the aggregate of the products for the faces at the surface, and it

is clear by projection that the sum of the products of induction and area

for these faces is ff,, , ^ ,^
\\{la+ inb+nc)dS.

Hence the theorem.

We may of course imagine a magnetic field divided up into unit

tubes of induction, that is, tubular surfaces bounded by lines of in-

duction, and such that the magnetic induction over the cross section

of each is everywhere unity. The magnetic induction over any surface

is then measured by the number of unit tubes (or, as it is frequently

put, by the number of " lines ") of induction which pass through it.

It is clear from the result that the magnetic induction over any

closed surface is zero, that the surface integral of magnetic induction

over an unclosed surface depends only on the bounding curve. For

consider the surface closed by a cap fitted to the boundary and not

enclosing any part of the magnetic distribution, and let the integration

be extended to the whole surface. The total integral is then zero, and

therefore the integral taken over the cap is equal and opposite to that

over the original surface. This holds if the cap close the surface,

whatever be its form and position otherwise ; hence the integral taken

over the surface depends only on the form and position of the boundary.

It follows that we can express the surface integral of magnetic induc-

tion over an unclosed surface by the integral of a certain quantity taken

round the bounding curve. This quantity must be directed, since its

sign must change with that of the magnetic induction. The sign of

the integral will therefore depend on the direction of integration round

the curve. Thus let F, G, H be functions of the coordinates of a

point {x, y, z) on the curve, dx, dy, dz, the projections on the axes of an

element ds of the curve ; we have

{{(la +mb-hnc)dS={{Fdx+Gdy+Hdz) (45)

18. Values of components of magnetic induction in terms of vector

potential. F, G, H have been called by Clerk Maxwell the components
of the vector potential of magnetic induction. We shall now find the

values of a, 6, c in terms of these quantities. We assume throughout

the discussion that julq^^I.
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It is evidently possible to draw on the surface a series of curves

cutting at right angles, so as to divide the surface into a series of

rectangular areas (so small that each may be taken as plane) with

incomplete rectangles round the bounding curve. The area of these

incomplete elements is evidently vanishingly small in comparison with

the sum of the areas of the complete elements, and therefore the in-

duction over that portion of the area may be neglected. Now we can

find the line integral of the vector potential round any element traced

on the surface by calculating its average component along each side

of the element, multiplying by the length of the side, and adding the

results. Thus let du, dv be two adjacent sides of an elementary rect-

angle, and U, V be the mean values of the components of vector

potential along du and dv respectively ; then for the integral round the

element we have

dV . , /._ dU

dudv (46)

Udu-^Vdv-{--z—dudv -( Udu-^-^i—dvdu] - Vd
du \ dv /

'dV dU
du dv

Now writing dS for the area dudv of the element, and equating

the magnetic induction over the element to the value just found,

we get

(^-^)dS=={la-\-mh + nc)dS, (47)
\du dv /

if I, m, n be the direction cosines of the normal to dS. Taking the

line integral as above, and in the same direction, round all the elements

of area into which the surface is divided, and adding the results to-

gether, we have plainly only the integral round the bounding curve,

since each side which is common to two elements of surface contributes

two equal and opposite elements to the sum, and it is easy to see

that for each triangle left round the edge the line integral along the

two rectangular sides can, in the limit, be replaced by the integral

along the third side formed by the boundary, so that a complete series

of elementary integrals, having the same direction round the boundary,

is obtained. Hence integrating round the clirve, and over the surface,

we have finally

I ^ cos <^ f^s = I I {la-\-mb + nc) dS, .(48)

where A is the numerical vector potential A, and (p the angle between its

direction and the element ds of the curve. Substituting the com-

ponents of A parallel to the axes, we have
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If now our circuit be a small rectangle of sides d^, rff at right angles

to the axis of x, we get at once from (47)

fill d(l
a — ', 77

,

and in the same way
,_dF dH .(50)

da _ (IF

It is clear, as we have seen, that F, G, H are directed quantities,

and their signs must be reversed by reversing the signs of a, b, c. In

what follows we shall take the positive direction of integration round

any circuit as the direction in which a person must be imagined to go

round the circuit so as to have the area always on his left, and the posi-

tive direction of the magnetic induction as across the element from the

person's feet to his head.*

19. Specification of vector potential. The vector potential A (scalar

value A) may be specified as follows. Consider an element, volume

<u\ of the magnetized substance, at which the intensity of magnetiza-

tion is I. The magnetic moment of the element is iSv. Then (as will

be seen below) the vector potential produced by this element at a

point distant r from it is numerically I Sv.&inOlr^, where is the

angle between the positive direction of magnetization, and the radius

vector r. The direction of the vector potential is at right angles to the

plane passing through the directions of I and r ; and by the convention

stated above appears to an eye looking in the negative direction of I

to be drawn in the counter-clockwise direction.

To verify this specification let \, /ul, p he the direction cosines of I,

x, y, z, the coordinates of the magnetic element, ^, >;, f,
those of the

point considered ; then we have

^''"''"- =
V^[{«(^^)-"(')-?/)}-^

+ etc.]^ (51)

from which the values of dF, dG, dH can be inferred by inspection.

The quantities on the right of (50) are called the components of the curl of

vector potential. As components of curl occur in other connections we interpolate

the following explanation of the origin of such components. They occur always
as part of the result of the linear vector operation i'd/'dx +j'dl'dy + k'd/'dz (where i,j, k
are unit vectors along the axes) performed on the vector iX+jY + kZ. The com-
plete result is the sum of a scalar part -(dXjcx + 'dY/'dy + 'dZ/'b^) and a vector part

The latter part is the curl, written curl F, if P be the vector quantity of which A',

Y, Z, are the components. We shall see later that, to a factor 4ir, the electric

current in three dimensions is the curl of the magnetic force ; here we see that,
to a factor /jl, the magnetic force is the curl of the vector potential. Thus we have

*^
47r/i(electric current) = curl2(vector potential).
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Writing in (51) u for l/r, and for /A, I/jl, Iv, their values A, B, G,

and integrating throughout the whole magnetized body, we get for a

finite magnet

.(52)

From the equation a = dHldr]-dGld^ we get by (52), remembering

tha,t duId^= -dujdx, etc.,

^ «=-4)]K^S+-»l+4>^'^^''-JlP^^'''^^''^'^^
(53)

The first term of this expression is (for
ij.q
= \) simply the force a at the

point (f, r}, f ), since the first integral is the potential at the point (^, ;;, f).

The second term of the expression is zero unless the point (^, rj, f

)

fall within the limits of integration. In the latter case it is -iirA' if

A' be the value of A at the point (f, >/, f ), for evidently we may regard

u as the potential at (x, y, z), due to a pole of strength A' at (^, rj, f ),

and we know by Poisson's theorem that then the integral has the value

stated. Hence in general we have by (53) a = a-\-4:7rA', where A' is

the component of magnetization, and a the magnetic force, where a

is taken. Similarly we could find from (53) h = ^+i7rB', c = y+4xC,
where /3, y, B', & are the corresponding components of force and
magnetization. Thus the general expressions (52) for the components

of the vector potential are completely verified.

20. Energy of two magnetic distributions in presence of one another.

Returning now to the determination of the energy of a magnet in a

magnetic field, we have proved (p. 54 above) that

l!:= -{{{{Aa-hB/3 + Cy)dxdydz (54)

From the manner in which this expression has been found it is plain

that it measures the increase of potential energy which takes place

when the magnet is caused to take up the given position against the

action of magnetic forces, that is, it is equal to the work which must
be done by external forces in bringing the magnet into the field. We
shall now apply this result to the determination of thewhole work done in

this way [see below] in building up any two distributions (A) and {B) of

magnetism. Plainly this may be regarded as consisting of three parts.

El, the work done if (A) be supposed given in an infinite number of small

parts at an infinite distance from one another, which are then put to-

gether to form the distribution, that is the work done in bringing these

elements into the field simultaneously created by their aggregation
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to form the magnet :
* A' 2, the work done in similarly building up the

other distribution ; and /s'3, the work done in carrying one magnetic

distribution into the field of the other. Calling the components of force

due to the distribution (A) ai, /3i, yj, those due to the distribution

{B) (t2, /^a, 721 and denoting by ^j, B^, C^, A^j B^, C'g, the corresponding

n)agnetization components, we have

E^= -\\\[(A,a,-\'B,^^^C^y,)dxdy(h, (55)

E,^ -\^^^(A^a^-\-BSo^a^^)dxdyih (56)

Also we have A',j= - \\\{A^a^-\- Bc>P^-\-C^y^)dxdydz, (57)

in which the integration is extended throughout the volume of the

ina«?net B. We have of course also by Green's theorem, or by the

})rinciple that the energy of {A) in the field of {B) must be equal to

the energy of (JB) in the field of {A),

E^= -{{{{A,a,^-\-B,/3^-\-a,y^)dxdi/dz (58)

The coefficient J in the two first expressions arises from the fact that

with the annulment of the distribution its field disappears. Hence
the total energy may be written

E-E, + E, + E,=^-i^^^{{A, + A,)(a,^a,) + (B, + B,){fi,+fi,)

+ {C, + C,)(y, + y,)}dxdydz, (59)

or E== -^{{{{Aa-hB^ + Cy)dxdydz,

if A, B, C, a, /3, y be ]3ut for A^+A^, etc., a^ + aa, etc.

The integral may evidently be taken throughout all space, since at

any point not within either of the distributions of magnetism, each of

the quantities A, B, C is identically zero.

We may put this expression into another form, thus : substituting

for A, B, 0, their values (a-a)/47r, (6-/3)/47r, (c-y)/4:7r, we find

+» +00

^^' =^ [ [
[(«' + /^' + y') <^a; dyd^-^W [(«a + h/S + cy) dx dy dz. (60)

Now remembering that a= -dV/dx, /3= -dV/dy, y= -dV/dz, and
integrating the second integral by parts, we see that it vanishes, since

* According to Lord Kelvin, Electrostatics and Magnetism, 2nd edition, p. 441, if

the magnet be broken up into an infinite number of infinitely thin filaments (each
very long in comparison with its thickness) taken along the lines of magnetization,
an(i these be then separated to infinite distance from one another, the work done
has the value given in the text. Proportionality of magnetization to field intensity
is assumed above. The subject of magnetic energy requires further discussion.

IJ.A.M. E
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Va, Vb, Vc, are each zero at an infinite distance, and a, h, c, fulfil the

solenoidal condition (41) above. Hence we have

+^

E = ^^^^mdxdydz, (61)

where H denotes the magnitude of the resultant magnetic force at the

point X, y, z.

If Hi, H^ denote the resultant forces produced at the point x, y, z,

by the distributions (A) and {B) respectively, and the angle between

H^ and H2, we have, by elementary trigonometry,

H^ = Hi'+H2^+2HiH2CosO.

+^

— 00

J5^3 =— I 1 1 H^H^ cos 6 dx dy dz,

which can be verified by (55), (56), (57), (58), it being remembered that

by the definition of E^, E^, we must take

ai = ai+47ry4j, etc., a2 = «2+^'^^2' ^*c.

These expressions are obviously capable of generalization for any
number of magnetic distributions, or a single distribution regarded as

composed of any number of parts. They may be taken as expressing

the fact that the energy may be regarded as residing in the medium
in which the magnetized bodies are placed, and, of course, in these

bodies themselves.

The energy stored in the field is not, however, to be taken as the

whole work done in magnetizing the bodies and the medium : the

amount of stored energy in the case of iron is a matter of uncertainty.

[See further remarks on this subject in the discussion of hysteresis.]

We shall see later that magnetic force exists at every point in the

space surrounding a conductor carrying an electric current, that in

fact the molecular magnets composing any magnetized body are most
probably produced by electric currents flowing in molecular circuits,

which are devoid of resistance, so that the current continues to flow

without diminution of strength from generation of heat. We shall

then find that if a, h, c, be the components of magnetic induction B,

and a, /3, y, those of magnetic intensity H (scalar values B and H),
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at any point in the field, the total magnetic energy E is given by the

.({uation

or

—

»

.(63)

Assuming this, we see that by drawing successive equipotential

surfaces so that the difference of potential between each pair of con-

secutive surfaces is unity, and supposing these cut by unit tubes, we
can divide the whole field up into cells, each of which may be regarded

as containing I/Stt of a unit of magnetic energy.

Section m.

APPLICATIONS OF GENERAL THEORY.
MAGNETIC SHELLS. LAMELLAR DISTRIBUTION.

UNIFORMLY MAGNETIZED ELLIPSOID.

>/ 21. Magnetic shells. A most important form of magnetic distribution

for consideration is that in which we have a thin sheet of matter mag-
netized normally to its surface. Such a sheet is called a magnetic shell.

Its importance arises from the fact proved by Ampere that every

linear circuit carrying a current is equivalent in magnetic action to a

magnetic shell of a certain uniform intensity of magnetization, and
having its bounding edge coincident with the circuit. A magnetic

shell, it may be here stated, may be altered in position, elsewhere than
at its boundary, in any way whatever, without affecting its magnetic
action at any given point, provided only the shell be not so changed in

position as to cause the point to pass through it, and that its magnetic
moment per unit of area be uniform, and kept constant throughout the

changes of position. The chief properties of magnetic shells are in-

vestigated in what immediately follows, and the results will be directly

available when we come to consider the magnetic action of electric

currents.

If dv be the thickness of th^ sheet at any element dS, the volume of

the element is dv . dS. If I then be the intensity of magnetization at

the element, the magnetic moment of this portion is Idi/.dS. The
product Idv is called the strength of the shell, and is usually denoted by
<^. This may vary from point to point of the shell.

The sheet here considered is supposed to fulfil certain conditions not
usually stated. It must be impossible to pass from a point P to another
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P' separated from P by the thickness of the sheet, without passing

through the sheet or following a path round its edge. In other words

the sheet must have two faces, which are distinct in the sense here

indicated.*

We shall consider first a simple shell, that is one for which $ has the

same value at every point. By (14) above, if we consider any element

dS of the shell, and 6 be the angle between the direction of magnetiza-

tion of the shell, taken positive when drawn from the negative to the

positive side, and a line drawn from the element to a point P at distance

r, the potential at P due to the element is ^ dS cos ^/r^. But dS cos

is the projection of the element at right angles to r, and therefore

dS cos Ojr^ is the area duo, traced out on the surface of a sphere of unit

radius, having its centre at P, by a line passing through P, and carried

round the boundary of the element, that is, it is the solid angle sub-

tended at P by the element. It follows therefore that the potential

F at P produced by the whole shell is given by the equation

F=$ft>, (64)

where o) is the total solid angle subtended by the shell at P.

This is also, of course, the potential energy of the shell in the field

due to unit magnetic pole placed at P.

It is evident that the value of F depends only on the strength of the

shell and its boundary, and hence we have the remarkable result, that

any two shells of equal strength, which have the same boundary, pro-

duce equal potentials at the point P, provided P does not lie between

them.

If the shell be closed its potential at any external point is zero, since

the solid angle is then zero. Such a shell therefore produces no mag-
netic effect at any external point. At every internal point in such a

shell however the potential is - 47r$ (if the positive side be outwards,

or -|-47r$ if the positive side be inwards) since the solid angle is then iir.

There is therefore no magnetic force at any internal point.

In the reckoning of solid angles in this connection we shall adhere

to the following convention. Let P, P' be adjacent points on opposite

* It is possible to construct a surface which, in this sense, has only owe face.

Take a ribbon of paper, give it a half-turn of twist, or an odd number of half-turns

of twist, and then gum the two ends together. The result will be a surface which
may be said to have only one face and one edge. It will in this case be possible to

pass from a point P to a point P', situated as in Fig. 10, by a path lying wholly
in the surface. The edge may be taken to indicate the position of a closed circuit

carrying a current : the surface, which it is here considered as bounding, cannot
be taken as that of a magnetic shell, equivalent in magnetic action to the current.

The construction indicated in Fig. 10 is that which must be used for the shell.

Take any point P, not on the surface or its edge, and draw lines from it to successive

points of the edge. These lines will indicate the solid angle subtended at P by the
circuit, and the conical surface which they give will have two faces, and may be
taken as representing the equivalent shell. An attempt to represent the action of

the current by magnetization of the unifacial surface would result in exactly no
magnetization at all, as the reader may verify.
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sides of a shell S (Fig. 10), of which P is on the positive side. Then
supposing the solid angle subtended at P by the shell to be w, that

subtended by the shell at /-*' is to be taken as w-^tt \ for, plainly, if

the generating lines of the cone which meet at P' were

turned round the edge of the shell from meeting at P'

to meeting at P the solid angle would change in the

process by i-rr, and we must take it as being increased

by that amount.

Or, the difference between the solid angles may be

seen thus : consider the two simple shells A, B, of

which a section by the plane of the paper is shown in

Fig. 1 1 , which have a common boundary b, b, and form a

closed simple shell, the positive face of which is the out-

side. Let P, P' be infinitely near points, the former on the outside, the

latter on the inside oiA. Let the potential due to ^4 at iP be Fj, and at P',

V 2- The potentials at P and P' produced by B will be the same, V\
say. But we have Fi = <l>a), F2 + F'= -47r4>, and

Fi + F' = 0. Thus we get Fg = ^{w - 47r) as already

stated.

Hence the potential of the shell F varies, as

the point at which it is measured changes in

position from P to P' round the edge of the

shell, from the value $c«) to the value ^(ft)-47r).

If the point pass from a position infinitely near

the negative side through the shell to an adjacent

position on the positive side, the potential in-

creases by the amount 47r<|>.

22. LameUar magnets. In some cases of mag-
netization, as for example the induced magneti-

zation of soft iron in certain circumstances,

the body may be regarded as made up of simple magnetic shells,

either closed or having their edges in the surface of the body ; in such
cases the magnetization is said to be lamellar. If we take to denote
for such a body the sum of the strengths of the shells encountered by a

point made to pass within the magnet from any given position to any
other position {x, y, z), we easily see that

dcf>
B =

dy' dz
(65)

is called the potential of magnetization, since the quantities A, B, C,

are derived from it by differentiation. When they can be so derived
they are said to fulfil the lamellar condition. Now we have seen,

(22) above, that the potential F at any point (^, >/, f ) due to a finite

magnet is given by the equation
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if II be written for the reciprocal of the distance r from {x, y, z) to

(^» *;> 0* Hence for a lamellar magnet this becomes

Integrating this expression by parts, and putting I, m, n, for the

direction cosines of the normal drawn outwards to an element dS of

the surface, we get

^'^1I'''0£+™S+"S)'^*"11I'''^'"'^^'^''^'^"'
^^^>

in which the first integral is taken over the surface of the magnet,

the second through its substance. Each element of the surface integral

may be written in the form <p cos dSjr^, where is the angle between
the normal and the direction of r. Each element of the second integral

is zero unless the point (^, rj, f) fall within the limits of integration.

In the latter case the integral has the value -4x0' if 0' be

the value of (/> at (^, tj, f ). Hence in general we have, for a lamellar

magnet,

F=^{{j^(pcosedS+i7r^' (68)

The value of V given in (68) is continuous at the surface of the magnet.

For plainly we may regard the surface integral as the potential at P
of a magnetic shell coinciding with the surface, and of strength 0,
varying from point to point. The potentials of this shell at two adjacent

points, one just outside, the other just inside, differ only by the potential

due to the portion of the shell immediately between the points. Thus

denoting the surface integral by Q, if Q^, Qf denote the values of

the surface integral at the external and internal points respectively,

we have il^n,+4:7r<p', (69)

and as the term 4x0' of (68) disappears in the passage from the inside

to the outside of .the surface, the potential is unchanged by the passage.

But the value of F whether at an internal or an external point at

first sight seems indefinite, since the value of depends upon the zero

of reckoning chosen for it. This is, however, not the case, for if any

arbitrary value of (p be taken for a point in the surface, its value is

thereby fixed for any other point, and it is clear that by choosing any

other value for that point we should simply increase the strength of the

shell by the same amount at every point, that is, would superimpose a

simple closed shell of strength c^ say, on the former. The value of

at every internal point would also be increased by the amount c^.

Hence, for the potential V at an internal point we should have

=«i* COS G dS- 4xci +4x (0' +Ci),
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that is, its value would remain unaltered. At an external point the

additional potential would be that of a simple closed shell of constant

strength, which is zero.

The external and internal action of the lamellar magnet thus depends

only on the variation of strength from point to point, and not on its

actual value. For an external point therefore it depends only on the

variation of from point to point along the surface. But by the

values of i4, B, G in (65) it is clear that the rate of variation of
(f>

in any

direction along the surface is the tangential component of magnetization

in that direction. Hence the external action of the shell is given

if the tangential component of magnetization is given for every point

on the surface.

Since in a lamellar distribution of magnetism we have

F = 12+47r(^

and Ay B, G = d(f>ldx, etc., a, j8, y= -dV/dx, etc., we have

, dQ dQ di} ,-^.
a,6,c=--7-, --Z-, --- (70)

dx dy dz

respectively, i} is called the potential of magnetic induction.

It is plain that in a lamellar distribution the direction of magnetization

is everywhere at right angles to the surfaces <p = Ci, that is, the surfaces

of equal potential of magnetization.

The potential energy of a simple magnetic shell in a magnetic field

is given by equation (29) above, modified so as to suit the case of

the shell. If dS be an element of area, I, w, n the direction cosines of the

normal to the shell drawn from its negative to its positive side, $ the

(uniform) strength of the shell, and Sv its thickness, we have ASv= l^y

etc., and therefore

E=: -^{{(la + m,8-\-ny)dS, (71)

that is, it is the product of the strength of the shell into the surface

integral of magnetic induction over the surface. Hence, by (45) above,

the energy of the shell in the field may be expressed by a line integral

taken round its boundary.

V 23. One magnetic shell in the field of another. We have an interesting

and extremely important case when the field is produced by another

simple shell. In this case the mutual energy of the shells is expressible

as a double line integral taken round their boundaries. Calling the

energy in this case jK,.,, we have at once by (45) and (71),

-fc'*« = j(4:-<:-^S*' <^^)
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where ds is an element of the boundary of the shell, and F, G, H are

given by (see equations (52), p. 64)

,(73)

in which the accented letters and the integrations refer to the shell

producing the field, and u is the reciprocal of the distance between a

point {x, y, z) in one shell and a point {x'
, y\ z') in the other. Now by

writing in the first of (73) yn'dS' ^ dz'dx' , n'dS' = dy'dx , it is easy to see

that F is equal to the line integral of udx'jds'.ds' taken round the

boundary of the shell. The same thing may be proved by equations

(49) and (50) of 18, by putting there F = u, G = = H, and using

accented variables. Similarly G and H in (73) may be dealt with.

Hence we find for E^^ the equation

n ^^'ff fdx dx dy dy' dz dz'\ , ,,

^-=-^^]r[rsd.'^ts^''-d-sdsT'^'

= -^^'{{^cosOdsds, (74)

where is the angle between ds and ds\

For a lamellar distribution of magnetism we have, by (54) and (65),

which integrated by parts becomes, since VW = 0,

where dVldv is the rate of variation of V along a normal to the shell

drawn from the negative to the positive side.

Hitherto we have dealt only with simple shells, or with lamellar

distributions built up of simple shells either closed or having their

edges in the surface of the magnet. A complex shell is a thin plate of

substance normally magnetized, but varying in strength from point to

point. It may be conceived as made up of overlapping simple shells.

A magnet made up of complex shells fulfils the condition that the direc-

tion of magnetization at every point is normal to a family of surfaces

;

but the intensity is not derivable from a potential of magnetization.

But complex shells, as suclr, play no part in magnetic measurements,

and further discussion of this subject is therefore omitted.

24. Potential of a uniformly magnetized body. We shall now consider

the potential and force at external and internal points in one or two

'""^s
w
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important cases of magnetization. We shall deal first with the magnet-

ization of a body of uniform susceptibility when placed in a uniform

field, a case which is important for magnetic measurements. The mag-
netization of the body will also be uniform, and we shall suppose it

known in amount. We shall deal with its relation to the magnetizing

force later when we consider determinations of susceptibility.

Any case of uniform magnetization may be regarded as produced

by supposing two uniform volume distributions of magnetism, equal

in density but opposite in sign, to be made coincident with the body
and the negative distribution to be then displaced [15 above] a small

distance in the direction opposite to that of magnetization. The
(finite) product of the volume density p, supposed infinitely great,

into this displacement, supposed infinitely small, is the intensity I

of magnetization. Now if plJ be the potential at the point P produced

by the positive distribution, the potential at the same point produced
by the negative distribution displaced relatively through a distance

-Ss, will be equal in amount and opposite in sign to that which the

positive distribution would produce at P, if P were displaced through
an equal and opposite distance +os, that is, - p{U -^dU/ds .Ss).

Hence if V denote the potential at P due to the magnet, we have

^---ds'P-''=-^li ^^')

If X, iui,v be the direction cosines of I (scalar value /) we have A,
B, C = \I, /ml, vl, as before, and therefore (75) may be written

K= -{A^-^^B'^-^+c'^yAX + BY^CZ (76)

if X, Y, Z, be the components of force at P due to the positive distribu-

tion. From this expression the components of magnetic force can be
obtained by differentiation.

We might also obtain equation (76) by remembering that any element
of volume, 6v, distant r from P, has the magnetic moment ISv, and
produces therefore a magnetic potential at P, of amount / 6v cos Ojr^,

where is the angle between / and r. But this is the component force

at P (on unit mass) in the direction of I due to a material element of

volume ^v and density /. Hence the whole magnetic potential at P
is numerically equal to the resultant force at P due to a uniform distri-

bution of matter, coinciding with the body, and of density / ; which is

what (76) expresses.

25. Case of a uniformly magnetized ellipsoid. We shall now consider

the case of a uniformly magnetized ellipsoid. Let the axes be a, 6, c,

and the intensity of its magnetization I ; it is required to find the mag-
netic potential of the ellipsoid at an external point P{(, tj, 0. By
the last paragraph this problem will be solved if we find the axial com-
ponents of force at P due to a uniform ellipsoid of any density p.
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We know that the force at the surface of a thin elliptic homoeoid *

is at right angles to the surface, and equal to iirrp, where r is the

thickness of the homoeoid at the point. Now, by Maclaurin's theorem

of attractions (extended to confocal homoeoids), the attraction of an
elliptic homoeoid at a point P(f, ;;, f) is equal to the attraction at P
due to a confocal homoeoid the external surface of which passes through

P. The equation of the surface of the given ellipsoid is

/V2 yZ nZ

a^n^+c^=^' (">

and the equation of a similar and similarly situated surface within and

concentric with it is

x^ iP' ^
w^'^Wb^^eh^^^'

^'^^^

where 1 > ^ > 0. li SO he small the equation of the inner surface

of a thin homoeoid for which (78) is the equation of the outer surface

is got from (78) by multiplying 6^ by 1 -2S0I0. Hence the thickness

of the homoeoid at any point is p SO/0, where p is the perpendicular

let fall from the centre on the tangent plane at the point.

Again the equation of an ellipsoid confocal with the outer surface,

and passing through P, is

c2 „2 ^2

where a'^ = 6^{a^+(p^), h'^ = 0^(h^^-cl>^), c'^ = 0^(c^+(j)^), so that is a

function of given by (79). Let p' be the perpendicular let fall from

the centre of this ellipsoid to a tangent plane touching at the point

(s' */' 0> ^^^^ ^^^ thickness of a thin elliptic homoeoid having
(f,

t], f

)

on its outer surface is J^V, where i^ is a constant small quantity. Now
the mass of this homoeoid is to be the same as that of thickness pSO/O,

so that we are to have, if dS\ dS be elements of the areas of the surfaces,

or y^2-^,e^S0.
HOC

Hence the attraction is ^-wpp'v or ^irpp'O^SO . abcja'b'c', and its

direction is along p'. But the direction cosines of p' are p^/a'^, v'vl^'^^

p'^/c'^, and therefore the £c-component of attraction is

iirp^f'WSOahcla'^'c'.

Hence we get for the a;-component of attraction due to the whole ellipsoid

X^iirpabcPx "^ To;, , • (80)

* A shell bounded by two similar and similarly situated concentric ellipsoidal

surfaces.
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We may simplify this equation by substituting for p'^^dQ its value
- H^f/>d(l) obtained by differentiating (79). Equation (80) becomes then

X=2'7rpabcA^ ^^
J, (81)

where 0,^ is the positive root of the cubic for </>* given by (79) when
9^=1. The corresponding expressions for Y and Z may at once be
written down by symmetry. It may be noticed that if (^, »;, f ) be on
the surface of the given ellipsoid the limits of (j)^ are and oo .

Writing now X = L^, Y = Mtj, Z = N^, we have by (76)

V=AL^+BMr]+CN^.

Hence the components of magnetic force «, /3, y at the point

(^, n, are

«=-^(l.4|)-(z..|^CTf>etc (82)

At an internal point the force due to the elliptic homdioid external

to the point is zero, and we have only to calculate the force due to a
uniform ellipsoid similar and similarly situated to the given ellipsoid.

Let the semi-axes be Oa, Oh, Oc respectively, and substitute in (96),

observing that the limits of integration are now and oo .

Then

X=^2'jrf>e'ahcir '^^
.,

Jo {(0%2 + c^2)3(^2J2 ^ <^2)(02,2 + ,/,2)}i

or writing ^^^ for <f)^lO^, we get

X = 2-,rf>abce\ ^^
j, .(83)

and similarly for Y and Z. It is to be observed that the integrals are

now independent of (^, //, f ). Hence we have, writing L, M, N for the
multipliers of ^, //, f,

in these expressions,

V==ALi+BMtj+GNl (84)

and a=-AL, ^=-BM, y=-CN, (85)

that is, the magnetic force is uniform in value within the ellipsoid,

and is the same for the same intensity of magnetization within similar

ellipsoids. The direction of the force is not however that of magnetiza-
tion unless the latter coincide with the direction of one of the axes of

the surface ; then the force acts in the opposite direction.

The integral can be easily evaluated in finite terms when the ellipsoid

is one of revolution. Thus to find L, we write {a^+x^)^ ==^1^^* ^^^ *^®

integral then reduces to a form at once integrable. Similarly M and N
may be dealt with. The results are
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(1) For a prolate ellipsoid of eccentricity e {b = c = ajl -e^),

M=N=27rpl(l
e' "^m\

(86)

(2) For an oblate ellipsoid of eccentricity e (6 = c = a/v/i -e^),

C \6

(87)

From these results (writing 1 for p) we can easily find formulae for

special cases. Thus, if the ellipsoid be infinitely long, (1) gives

L = 0, M =N = 2'7r.

This shows that the magnetic force within an infinitely long uniformly

magnetized cylinder is zero if the magnetization is parallel to the axis,

and is perpendicular to the axis and equal to -2x7 if the cylinder

is magnetized transversely.

Again let the ellipsoid be spherical, that is, let e = 0, and let the

direction of magnetization be parallel to the axis of x. Then the force is

-IL= -iirl, (88)

since iir/S is the value of the vanishing fraction which L is in this case.

These two results might have been inferred from the investigation

on p. 58 above, of the force within a spherical or cylindrical hollow cut

within a magnet.

Lastly, let the ellipsoid be very oblate, a disk in fact ; then

M =N = TT^a/c, and the force at right angles to it is

-7L= -iirl (89)

These forces are all in the opposite direction to that of the magnetiza-

tion, and therefore act as demagnetizing forces. We shall consider

them fully when we deal with induced magnetization and measurements
connected therewith.

Section IV.

INDUCED MAGNETIZATION.

26. Induced magnetization in a uniform field. Weber's theory. We
now pass to the consideration of induced magnetization, and shall

consider here only the problem of the magnetization produced in a
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homogeneous body when placed in a uniform magnetic field. The
essential nature of the magnetization of the b(xly is not known to us

;

but probably Weber's theory is substantially true, viz. that the body
consists of particles already magnetized, but so arranged (not simply

mixed up) in the unmagnetized mass as to give no external

magnetic effect. The magnetization of each of these small particles

may consist in rotatory motion of the ether ; and if this be true the

direction of rotation is what corresponds to the notion of polarization.

According to Weber's theory, when a body, unmagnetized in mass,

is submitted to the action of a magnetic field, the molecular magnets
undergo an alignment, so that like extremities are turned preponder-

atingly in the same direction. Each particle experiences a couple

tending to turn its axis into coincidence with the direction of the

magnetic force, and, unless prevented from turning by frictional or other

resistance, it moves towards that position until brought to rest by an
equilibrating couple due to mutual action between the molecule and the

surrounding particles. Thus the molecular magnets are in general

l)revented from coming every one into coincidence with the direction

of the magnetic force, in which case no further magnetization would
be possible, and we know that by increasing the magnetic force we can
increase the magnetization, although not in an unlimited degree.

Again, when the magnetizing force is removed the substance does

not in general return to its former unmagnetized state, but does so

only to a certain extent, retaining under some circumstances a very
considerable amount of magnetization.

27. *' Coercive force." Hysteresis in changes of magnetization.

Demagnetizing forces. This property of resisting magnetizing action,

and of retaining residual magnetization, is sometimes called coercive

force. It has been attributed to something analogous to frictional

resistance, which prevents the magnetic particles from moving freely

in obedience to the magnetizing force and from returning freely when it is

removed. A theory in which the mutual action of the molecular magnets
plays the chief part, will (if there is space) be considered later, but it

may be stated here that mechanical agitation, such as jarring or tapping
an iron wire or bar, in general increases the magnetization while the
body is under the influence of magnetic force, and diminishes the

magnetization when the magnetizing force has been removed. The
mechanical disturbance enables the particles to obey more completely
the magnetizing or demagnetizing action, as the case may be, by
changing their configuration.

If a piece of iron be subjected to a gradually increasing magnetic
force, and then to a gradually decreasing one, the two magnetizations
for the same magnetic force are, in consequence of residual magnetism,
not identical. This phenomenon we shall see indicates dissipation of

energy in the magnetized iron of an amount which, except under certain

special conditions, as already remarked, does not seem to bear a
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fixed relation to the energy stored in the field in consequence of the

magnetization. We shall deal with this, and with other phenomena
when treating of the experimental work on this subject.

We shall consider first the case of a spherical portion of an seolotropic

body placed in a uniform magnetic field, and examine the magnetization
which it receives, on the following supposition :

The total magnetization which the magnet receives is the resultant

of the magnetizations which the several parts of the magnetizing
system would produce if each acted alone.

This implies, first, that if the intensity of the field at each point is

altered in any ratio, the magnetization is simply altered in intensity

in this ratio at each point without change of direction ; second, that

magnetizations in different directions are produced in the substance,

and are superposed as if no other magnetization were present. In
point of fact these conditions do not hold, and their assumption gives

only an approximation to the result in certain cases ; but in many
important practical cases it does not give anything approaching the

actual result. The magnetic susceptibility is, as we shall see, a function

of the magnetizing force ; and the magnetic behaviour of the material

is further complicated in a great many ways not here taken into account.*

The investigation now to be given however yields results of great

theoretical interest which are of much importance in the theory of

diamagnetism and magnecrystallic action.

The supposition made above gives for A, B^ C expressions of the form

A = pa + u/3 + ty, \

B = ua+q/3-\-sy, I .(90)

C= t'a + s'S + ry, j

where a, /?, y are as usual the components of the resultant magnetic
force H, and p, q, r, s, s', t, t', u, u', coefficients. We shall see directly

that s = s', t = t', u = u', that is, that a magnetic force of a certain in-

tensity acting in the direction of the axis of y produces the same intensity

of magnetization parallel to the axis of ic, as is produced parallel to the

axis of y, by an equal magnetic force acting parallel to the axis of x.,

and so for any other two axes.

Taking the sphere as of unit volume the component magnetic
moments due to the magnetization are simply A, B,C. Hence the sphere

in the field is acted on by a couple round each of the axes, the moment
of which is, for the z axis, /3A -aB ( = N, say). Now let the axes be
fixed in the sphere, and let it then be turned round the axis of z. If

9 be the angle which the direction of H makes with the axis of z, (p the

angle which the proj ection of H on the plane of xy makes with the axis

of X, we have

HsinO cosff)=a, H smOsm(p = p, HcosO = y.

* For a detailed examination of the theory of inductive magnetization the reader
may refer to Duhem's L'Aimantation par Influence. Paris, 1888.
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Hence the work done in increasing (ft by the small angle d<l> is

Nr?0= -£f*[{w'co820-U8in20 +(5r-;))8in</»cos<^}sin2fy

+ (5 cos - < sin </>) sin cos 6^] d<p (91

)

The work done in turning the body through a complete revolution

is therefore

'

\d<j>=^irmB\n^e{n-n') (92)
'0

28. Induced magnetization of an aeolotropic body. Now, since the

body has come back to its former position its magnetization is by
hypothesis the same as before, and no wofk can, on the whole, have

been spent or gained in the revolution, otherwise the body would be

either a continual source of energy, that is, a perpetual motion, or a

place where energy is continually dissipated. We shall see later that

there can be no such dissipation of energy on the supposition of constant

magnetic susceptibility. Assuming then that the work is zero, we
have u' — Uy and in the same way we could show that s = s\ t = t' . The
equations (90) above can therefore be written

A ='pa + w/3 + /y, \

B = ua^-qP^^, ' (y3)

C= ta+ s/3 + ry. j

The magnetization in any direction, the cosines of which are /, m, w, is

lA + mB +nG= pla + qm^ +my + u{lff-h ma)

\-s{my + nP)-\-t{na-{-ly) (94)

If /, m, n be the direction cosines of H this equation becomes

lA + mB + nC=H {pl^ + qm^ + rn^ + 2ulm + 2smn + 2tnl) (95)

Now, if we consider the quadric surface of which the equation is

R^{pl^ + qm^ + rn^ + 2ulm + 2smn + 2tnL) = l, (96)

we see that the quantity within the brackets in (95) is inversely pro-

portional to the square of the radius R of this surface drawn in the

direction of I, m, n. Hence for different directions of H the magnetic
moment of the sphere in the direction ofH is H/R^, where R is the radius

in that direction of the quadric surface of which (96) is the equation.

Further, since by (93) A=H{pl + um + tn), etc., we see that the

resultant magnetization is in the direction of the normal drawn to the
quadric at the point at which the radius in the direction of H cuts

the surface; or, in other words, is at right angles to the diametral

plane of all radii in the direction of I, m, n.

It follows from this, that along the principal axes of the quadric
surface represented by (96) the magnetization coincides in direction
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with the magnetizing force. Now the directions of the axes of this

quadric are given by the equations

pi + um +tn= hi, \

ul + qm + sn =k'm, V (97)

tl-\- sm + rn= hn, J

where A; is a constant. Eliminating I, m, n, we get

p-Jc, u, t, =0,

u, q-k, s, (98)

'

t, ^'j r -k,

which is a cubic from which k can be found. The three roots k^, k^, k^,

of this equation successively substituted in (97) enable I, m, n to be

calculated for each of the three axes.

Now let H be in the direction of one of the axes {I, m, n) thus found.

The magnetization in that direction is lA+mB+nC. Substituting

the values of A, B, G given by (93) and having regard to (97), we see

that the magnetization has the value kH. Hence k^, k^, k^ are the

magnetic susceptibilities in the direction of the axes just found. They
are called the principal magnetic susceptibilities of the substance.

If the axes just found be chosen for reference the coefficients s, t, u
of (93) vanish, and we have p = ki, q^k^, ^ = ^3. We have thus also

three principal magnetic inductive capacities, viz.

yUi =1 +47rA;i, /X2 = l+47r^2' /"a^l+^rxA^g (99)

The physical meaning of the principal susceptibilities is apparent

from their mode of derivation ; that of a principal magnetic inductive

capacity yu can at once be inferred. Cut a crevasse at right angles to

the axis in question, and suppose the magnetization unaffected in the

remainder of the body. Then if H be the scalar value of the magnetizing

force in the direction of the axis and B that of the induction across the

crevasse, we have B = iulH.

Choosing now the principal axes as axes of reference, and putting

a, /3, y for the components of the intensity of the externally produced
field, we get by (88) for the components of magnetic force within the

sphere the values

a-4.IS.7rA, 13-4^13. ttB, y-4/3.7rC.

Hence ^ =^i(a -4/3 . ttA), B = etc., and therefore

^—^,"' ^-xtI^' ''-TTtkJ <!««)

29. Couples on a magnetized aeolotropic body. The sphere is acted

on as we have seen by three component couples, of values

yB-l3C, aC-yA, jSA-aB,
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round the axes of x, y, z respectively, in the positive direction, viz. from

X to y, y to z, z to x. Denoting those by L, M, N, we get by (100)

L= 'fizh -J ft-v

" = (TT>4j(r'-inr^)>'"'

'^ = (1+J^*',)(l+M2)"^^"

The sphere thus tends to turn so as to bring the axis of greatest mag-
netic susceptibility into coincidence with the direction of the magnetiz-

ing force, and is therefore in stable or in unstable equilibrium according

as the axis of greatest or the axis of least susceptibility is in this

direction.

The total magnetic induction through the sphere across a central

section at right angles to B is irr'^B, where r is the radius of the sphere.

Now the components of B are /xja', yU2/5', MaV' where a', p\ y are the

magnetic forces within the sphere in the directions of the principal

axes. Let for simplicity the sphere be so placed that the field of force

is at right angles to the axis of z. Then B= {ijL^^a^-\- ij.^ft'^)^.
But

a=a- iTrA/S = a/(l + iirkJS) = ^aji/JL, + 2) ;

and similarly ^' = 3I3I{/ul2-\-^)- Hence substituting, and putting «/> for

the angle between the direction of H and the axis of x, and >S' for the

surface integral irr^B, we find

If /xj be the greatest magnetic inductive capacity, and /a 2 *^® least,

the greatest number of unit tubes of induction (or, as they are commonly
called, " lines of magnetic force ") which can pass through the sphere

per unit of the impressed magnetizing force is 37rrVi/C"i+2), and the

least number 37rr^iuiJ{/uL^-\-2). The sphere therefore tends to set itself

so that the magnetic induction through it is a maximum.
We may express the resultant couple in terms of S and the magnetic

inductive capacities. Clearly if y = 0, its value is N of (101), and this

may be written

4x(/Xi + 2)(/x., + 2) ^

^ 1 (/x, + 2)(/x., + 2) r/(6-^)
^jQ3^

by (102) above. Here tti^ has been put equal to its value 3/4, so that the

formula is suited to a sphere of any radius.

In the particular case of an isotropic sphere ^i = A'2 = A'3, -k say, and
the susceptibility and magnetic inductive capacity are the same in all

<i.A,M. jr



82 ABSOLUTE MEASUREMENTS IN ELECTRICITY

directions. Thus the coefficients of a, /3, y, in (100) are the same, and
the common value is A;/(l +4:7rA;/3). If k be great this is approxi-

mately 3/47r. Hence the magnetization intensity of a highly susceptible

sphere is always less than, but nearly equal to SH/iir . It is thus

a

Fig, 12.

useless to attempt to determine the susceptibility of a highly susceptible
substance by experiments on a portion of it of a spherical shape. In the
comparison of different specimens, the influence of slight differences

of form would completely mask differences of susceptibility.

Fig. 13.

The couples calculated above vanish for an isotropic sphere, and the
sphere is in equilibrium in all positions. The magnetic induction through
a central section at right angles to the field is now 3/>t/(/x+2) . wr^H.
This is greater or less than ttt^H according as /x> or < 1 . In the former
case the body is said to be paramagnetic, in the latter diamagnetic.

Thus the number of tubes of induction through the central section is
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increased by the presence of the substance if paramagnetic, diminished

if it is dianiagnetic. The fiehl outside and inaide in both cases is

shown in Figs. 12 and 13, which are taken from Lord Kelvin's Electro-

status and Ma4/neti8m, 2nd edition.

30. An aeolotropic ellipsoid in a uniform field. We shall here consider,

very l)rit'fly, th(^ prohlcin uf un a'()l()troi)ic. <'llipsoid in a uniform field.

We shall suppose the ellipsoid cut with its axes of figure coincident

with the principal axes of susceptibility. The force within the body
has now the values in the direction of the axes

a=a-AL, /3' = ft
- BM, y = y-CN, (104)

where L, M, N have the values given in (86) above. The second term

in each expression is the component force due to the magnetization.

Its effect is to oppose the magnetizing component ; that is, AL, BM, CN
are components of a demagnetizing force. Therefore if k^, k^, k^

be the tliree principal susceptibilities the values oi A, B,C are given by
the equations . . q ,

Hence if the field be at right angles to the axis of z, y = y' = 0, and the

couple on the ellipsoid is by (120) (if/, g^ h be the semi-axes),

H = ^^.m^A - aB) .- ^.fyk){XmXm "f' ^'''^

From (120) it follows that if ki, k^, k^ be so small that their second

powers may be neglected, A = k^a,B = k2l3, G = k^y ; that is, the internal

demagnetizing forces AL, BM, ON, are without sensible effect. These

forces depend (see p. 75) upon the form of the body ; hence in weakly

magnetic substances it is of little consequence whether the body be of

elongated shape or not. In fact, for such bodies the shape of the speci-

men experimented on is without influence on the magnetization.

If however the values of k^, k^, k^ be very great the magnetization

of the body depends almost entirely on the shape of the body, since then

the values of A, B, C depend mainly on L, M, N. Thus in highly

magnetic bodies such as iron, the magnetization is principally affected

by the shape of the specimen. For example, the magnetization in the

direction of the axis (say that of x) of a very elongated ellipsoid is practi-

cally independent of L, since by (105) we have A^k^a simply. On the

other hand, for a very short ellipsoid (or disc) we have, since Z = 47r,

A=k^(il{l-^kiL) = {jULi-l)al4:7rjUi. In the case of a diamagnetic body
(see 31 below) k^ is negative, and hence if the body were shaped so as

to give L= -1/^1, a finite magnetizing force would give infinite dia-

luagnetization.

The couple acting on the body has two different limiting values accord-

ing as the susceptibilities are very small or very great. If the former
the couple is /;. i. \^q

^=>/^''iW^r ^'''^
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and the ellipsoid tends to turn its axis of greatest susceptibility parallel

to the direction of the field.

If the susceptibilities be very great the couple is approximately

j^7rfg\{M -L)ap/LM, and this is positive or negative according as

M > 01 <L. Hence by the values of M and L (see above, p. 76) the

ellipsoid will set itself with its longest dimension parallel to the lines

of force.

The influences of form and a^olotropy may be made to counteract

one another, and, under certain circumstances, by properly shaping

the body it may be made to remain in neutral equilibrium when movable,

as supposed above, about an axis in the magnetic field.

In the case of a homogeneous isotropic ellipsoid the values of ^, B, C
and of the turning couple are obtained by putting ki = k2 = JcQ, =k say,

in (105), (106) above. It is obvious at once that the magnetization is

not parallel to the resultant magnetic force, but makes with it the angle

which vanishes for a sphere. Further the ellipsoid will turn its longest

axis parallel to the lines of force, and this whether k be positive or

negative, provided in the latter case the field be intense enough.

Regarding k as & constant, and taking as hitherto iuiQ= l, we have,

if a, h, c, a, ^, y be the components of magnetic induction and magnetic

force at any point of the medium, the equations

a = a{l + ^7rk), h = ^{1 + iirk), c = y{l + i'7rk), (108)

and therefore, since the solenoidal condition holds for the magnetic

induction {a, h, c), it also holds for the magnetic force (a, ^, y). Hence
also it holds for the induced magnetization {A, B, C), that is, this

magnetization is solenoidal.

But since a= -dV/dx, etc., and A=ka, etc., where A; is a constant,

we see that the magnetization is also lamellar (p. 69).

It is to be very carefully observed that these results follow from the

fact that A: is a constant, and do not hold in the general case (unless

the magnetization be uniform) in which ^ is a function of the magnetiza-

tion, and which is the case of actual practice. The total magnetization,

made up of the pre-existent magnetization, if any, and the induced

magnetization, is not solenoidal, unless the former is itself solenoidal.

31. Paramagnetism and diamagnetism. We have considered in-

cidentally above the consequences of a negative value of k, and have

stated that in that case the substance is said to be diamagnetic. The
phenomena of diamagnetism are tojsome extent explicable on a theory

of negative or differential susceptibility, and other theories have lately

been advanced. It is not necessary to discuss any of these here. The
substance placed in the field behaves as if its polarity were opposite

to that which an ordinarily magnetic, or paramagnetic, body would

receive in the same circumstances.
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Hitherto we have been supposing that the medium in which the

magnetized substance is placed is of zero susceptibility, that is, possesses

unit magnetic inductive capacity. We shall now show that a para-

magnetic body placed in a medium of greater magnetic inductive

capacity than its own will behave diamagnetically. The medium,

being in the field, will be magnetized ; and if //, fx be the magnetic

inductive capacities of the medium and the substance imbedded in it,

resi)ectively, we have, from the continuity of the normal component

of magnetic induction at every point of the separating surface, the

"I""*'"" ilV .dV ^

in which v, /' denote normals drawn from the surface into the respective

media. But we have also the characteristic equation of the surface

_ + _+47rcr = 0, (110)

where cr is the surface density of free magnetism on the separating sur-

face at the point where the normals are drawn. These two equations give

iiTfx dr' iTT/j.' dr
'"

The first multiplier is positive and the second negative if iui'>/jL,

that is if the substance be of higher susceptibility than the medium.

Hence the surface density of magnetization where the lines of force pass

from the medium to the body is positive or negative, and where they

pass from the body to the medium negative or positive, according as

/>i'<or>/x. In the latter case the body behaves as a paramagnetic,

in the former as a diamagnetic substance. If /x be put = 1 in the above

results, we have the case of a paramagnetic or diamagnetic body in a

medium of zero susceptibility. It is the case, however, that this

explanation does not account for all the facts of diamagnetism.

These results are in accordance with and explain the behaviour of a

solution of a magnetic salt of iron suspended in a tube within another

solution of greater or less strength, and the whole placed in a magnetic

field. In the former case the suspended salt behaves as a diamagnetic,

in the latter as a paramagnetic.

32. Distribution of magnetism in bar-magnets. Question of " cen-

troids " of magnetism. A great deal of research and theoretical discussion

has been spent on the question of the distribution of magnetism in

straight bar-magnets of rectangular or circular section, and it may be

well, before leaving the subject of magnetic theory, to refer to the widely

prevalent idea of the existence of poles in ordinary magnets. It has

been tacitly supposed by many persons that there are two definite

points or poles, one near each end of a regularly * magnetized bar at

*That is, without "consequent points," not necessarih' uniformly.
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which the whole of the free magnetism of the bar may be supposed

concentrated, the negative at one, the positive at the other, and much
time and labour have been spent in determining the positions of these

poles. Now certainly, according to the theory given above, there is a

certain amount of free positive and an' equal amount of free negative

magnetism in fevery magnet, but so far as the action of the magnet at

external or internal points is concerned, there are no such definite points,

except in the theoretical case of an infinitely thin and uniformly mag-
netized filament, in which case the poles are at its extremities.

In an accurate sense the magnet can be said to have poles or points

at which the free magnetism may be supposed concentrated, when the

couple it experiences when placed in a uniform field is considered. If

its axis is at right angles to the lines of force, the couple experienced is

equal to the magnetic moment of the magnet, and this may be regarded

as due to two forces, each of which is the resultant of the parallel forces

on the elements of free magnetism. The centres of these two systems

of parallel forces, or, which is the same thing, the " centres of mass "

of the two distributions of free magnetism are the poles in this con-

nection. The idea of pole is not here of any utility, as the poles

could not be determined ; what we are concerned with is the magnetic

moment only, which is the resultant of the couples exerted on the

molecular magnets composing the body.

But as a matter of approximation the existence of poles in the sense

of points at which, if the free magnetism were concentrated, the action

of the magnet at an external point would be the same as it actually is,

can be assumed in certain cases, and their position assigned. For

example, when we consider the mutual forces between two magnets,

each symmetrical about its axis and about a plane at right angles to the

axis, and at a distance apatt which is great in comparison with any
dimension of either, such positions of the poles can be found, and the

distance between them used as the virtual length of the magnet.



CHAPITER III.

DEFINITION OF UNIT CURRENT.
DETERMINATION OF THE HORIZONTAL COMPONENT 01'

THE EARTH'S MAGNETIC FIELD-INTENSITY.

1. Measurement of currents. The measurement of a magnetic field-

intensity is of importance for many purposes, and especially for the

measurement of currents in absolute units. For the fundamental

definition of unit current, as that current which jlowing in a thin tvire,

bent into a circle of radius r, prodicces at the centre of the circle a magnetic

field-intensity of 2irlr units (or, in other words, the statement that a

current of strength y flowing in such a circle produces at the centre

a magnetic field-intensity of 27ry/r units) presupposes that some method
of comparing the intensities of the fields which different currents

produce is known.

This definition may be regarded as founded on the law given by
Laplace for the action of an element of a linear circuit in producing a

magnetic field. This law for an element of a circuit gives by integration

a correct result for the magnetic field produced by a complete circuit

of any form. To any expression for the field due to an element which

fulfils this necessary condition may be added any term which, when th3

whole circuit is considered, does not alter the integral effect. For we
have as a rule to consider only closed circuits, or circuits which are

virtually closed, and have no absolute knowledge of the effect of an

element ; so that the adoption of this or that expression for such an
effect is a matter merely of simplicity and convenience. In the theory

of the magnetic effects of convection currents there is something of the

same ambiguity.

2. Law of Laplace. Laplace's law asserts that if ds be the length of

an element of a linear conductor (a thin wire for example) carrying a

current y, r be the length of the line CP from the centre C of the element

to any point P at which the magnetic field is to be considered, and be
the angle which the line GP makes with the direction of flow in the

element, the field-intensity at P due to the element is proportional to

yds Sin 0/r^. To define the unit current we take this field-intensity as

eqiuil to y ds sin 0/r^. The direction of the intensity is at right angles to

87
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the plane containing the element and the x^oint P, and, when the

direction of the current is that settled by the usual convention, is

towards the left hand of a mannikin supposed placed in the element so

that the current flows past him from his feet to his head and with his

face turned toward P.

We thus derive the formal definition : Unit current is that current

which, flowing in an element ds of a conductor, produces at distance r from

the element a ynagnetic field-intensity ds sin O/r^, For the complete

circle referred to above is Jtt for every element if P be at the centre,

or be any point on the axis of the circle, and so for the centre we obtain

by integration ^irrjr'^ or 27r/r ; and the direction is at right angles to

the plane of the circle. Other forms of the definition of unit current

will arise in different connections, but they will be all consistent

with this. [See also V. 34, and the historical note there given.]

The force exerted at P on m units of magnetism there placed, in

consequence of the current in the element, is thus my ds sin O/r^. Re-

garding this as applied to the pole m by the medium, we must suppose

that at P there is exerted a reaction on the medium of the same

numerical value but in the opposite direction. This may be transferred

to the element ds (centre C) of the circuit by applying at C two

equal and opposite forces, of amount my ds sin O/r^, parallel to the

line of the magnetic intensity at P. These with the reaction at P
give a couple of moment myds&mQjr in the plane containing CP,

and at right angles to ds, and a force at C equal and opposite to the force

my ds sin ^/r^, due to the existence of the magnetism at P.

This leads us to the result that if the element of the circuit is situated

in a magnetic field of intensity H, the element is, according to Laplace's

law, acted on by an electromagnetic force yH ds sin 0, where is the

angle between the direction of H and that of y. For we may suppose

the field at C produced by a positive magnetic pole of chosen

finite strength 7n placed at a point Q, situated at a distance vm/H
(great in comparison with ds) on a straight line coinciding at C with

an element of a line of magnetic force.

3. Electromagnetic force. The direction of the electromagnetic

force at C may be specified by reference- to the mannikin placed as

supposed above in the element of the conductor, with his face turned

towards Q. The element of the conductor would be urged towards

the right hand of the figure.

By taking 6 = Jtt, and H = l,we get the following alternative definition

of unit current. Unit current is the current flowing in an element of a

conductor, which, placed at right angles to the direction of the resultant

force in a field of unit intensity at the element, is acted on hy an electro-

magnetic force, the amount of which per unit of length of the element is

equal to unity. The force yH ds sin is of electromagnetic origin, but it

is a force in the true dynamical sense and has the dimensional formula

[MLT-%
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4. Determination of the earth's horizontal magnetic force. The
determination of the horizontal component // of the earth's magnetic

field-intensity is necessary for the measurement of currents in absolute

units by means of a standard galvanometer. Hence, before proceeding

to consider the measurements of currents by galvanometers, we devote

the remainder of the present chapter to the study of methods for

the determination of H. These methods differ in various respects

from those employed at magnetic observatories for the measurement

of the magnetic elements and their variation fron^day to day.

One of the first methods proposed is that due to Poisson {Connaissance

(les temps, 1828) ; but apparently it has been very little used. We shall

indicate it licre with some suggestions as to practical details.

5. Poisson 's method. A very short thin magnetic needle, suspended

by a torsionless fibre of silk or quartz, hangs horizontally with its centre

at a point C and its magnetic axis in the magnetic meridian. With its

centre at another point P, on a line through C at right angles to the

axis of the needle, but with its magnetic axis horizontal in the magnetic

meridian at P, is placed a bar-magnet of moment M. This magnet,

if short in comparison with the distance CP{ = r), produces a field of

intensity h approximately equal to M/r^, or, if the magnet be nearly

uniformly magnetized and of length 21, more nearly (M/r^)(l -3l'^/2r^).

We suppose that M is the moment of the magnet when so directed that

the earth's field enhances the magnetization. The magnetic field h

at C, due to the bar-magnet is oppositely directed to the component
// of the earth's field.

The needle is made to oscillate (1) in the field of intensity H (that is

with the bar-magnet at a great distance), then (2) in the field of intensity

H-h produced by placing the bar-magnet at P, as described. The
oscillations are kept of very small range on either side of the meridian,

and are magnified and rendered easily observed by means of a ray of

light thrown by a fixed source on a mirror carried by the needle

and reflected to a scale placed at a suitable distance. [The small

magnetometer described in 7 below, is a very suitable arrangement
for the purpose.] The time required for a considerable number of

vibrations, say 50, is obtained by means of a stop-watch, or is recorded

if a chronograph is available ; and the periods Tj, T^ are obtained for

the two cases (1) and (2) specified above.

If M' is the moment of the needle in the field of intensity H, the

moment in the field of intensity H-h will be M'{1 -ah), where, if the

needle is of hard steel well magnetized, a is a small constant multiplier.

If yu' be the moment of inertia of the vibrating mass for these oscillations,

we have 4:7r^^_mi i-rr^ _ M\l - ah) jH - h) .j.

i/ fX I,f JUL

These equations enable us to eliminate M'/jm', so that we obtain

{l-ah){H-h) _T,^ .^.

H ~T^ ^
^
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Previous experiments of the sort described in 13 and 21 below enable the

value of a to be assigned for a given value of h, and when this has been

done the value of 1-ah can be inserted in (2). We shall see presently

how the correction can be approximately made.

Now let the needle be removed and the bar-magnet suspended

horizontally in its place, and made to perform horizontal oscillations

under the. influence of the field H. If not too massive, the magnet can

also be suspended by a fibre which can safely be regarded as devoid of

torsion. We get thAi, without any correction for inductive variation

of the moment M of the magnet, provided the terrestrial field at P may,

as in practice is always the case, be regarded as the same as that at 0,

for the period T the equation

^_2^_MH
(3)

where ju, is the moment of inertia in this case.

To obtain an approximate evaluation of the factor 1 -ah in (2), let

this factor be taken as unity for a first approximation. We obtain

the equation r 2

// = A ^ {-i)

But h-
^^- '''
(1-13^ (*)

and therefore (2) can be written

7-H 2W7V'-^?
By (3) we eliminate M and obtain

H-2 = ^^^(l-^Jl) ^i"—
, (6)

or we can eliminate H and obtain

,.3 J^2 _ f^2
J/^^IttV—Vt/V.^.V (7)

1-^3
/2 r2\,

2r

The last equation gives, by substitution in (4),

^^^20^^i2^^,^_^^
(8)

Hence, if we know a from experiment, we have

i_„;.=i_2^{k^\r^._r^.)}* (9)

Denoting the expression on the right by A, we get by (4) and (2)

-SM^ _3l2\^iTl_
(10)
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The exact value of M is iw^iJL/T^H, by (3), and therefore

"'-'<^('-V^mW'T;^)
^"^

Also we have, by (3) and (10),

,p=,.v--VT/iwJ <'^>

Thus (11) and (12) give H and M.
It is most carefully to be observed that the needle is supposed to be

80 small that it can have no sensible effect on the bar-niagnet. This

is the case if the length of the needle be only 3 or 4 mm, which it need

not exceed. If this condition is not fulfilled the formulae become too

complicated for practical use.

The bar-magnet might be placed with its magnetic axis in the hori-

zontal north and south (magnetic) line through C, with its centre at a

point P distant r from C. It should be so directed that the field h

produced at G is in the same sense as H ; the magnet when suspended

at C will then be directed as it was at P, and no inductive correction

will be required in the oscillation equation. The field h then gives a

factor 1 +ah in (2) instead of the 1 -ah of the former case. We have

'-^^(1 + ^^) (13)

In this case for a given value of r nearly twice the former value of h

is obtained, so that with the magnet in the north and south line through

the needle a large value of r may be employed to give the same value of

h as before, which is a distinct advantage.

Equation (13) is now to be used instead of (4) to obtain an equation

for H from (2). Thus we get

g, 2^(^1+2'-^
'^'"

(14)

Again, by (3), we eliminate M and obtain

^^=«^0-25)rW^) ^''^

or we eliminate H and find

M^ =2JI^/^^ (16)

1+2;t,
-'

Thisgives , =^JL±JAf(r/-^* (17)

Denoting now 1 +ai^ by A, we obtain

H=2 Mf, J^\ ATo'
0-<^)?7^^^ <'**>
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Al\
and therefore, by (3),

Also, by (3) and (18), we get

Am':'

.(19)

M^ = 27r2;x

1+2?:,

(20)

Thus (19) and (20) give E and M.
6. Method of Gauss. The most convenient method for the determina-

tion of // in a physical laboratory is that suggested by Gauss.* It

consists in finding (1) the angle through which the needle of a magneto-

meter in the earth's field is deflected by a magnet placed in a chosen

position at a given distance, (2) the period of vibration of the magnet
when suspended horizontally in the earth's field, so as to be free to turn

about a vertical axis. The first operation gives an equation involving

the ratio of the magnetic moment of the magnet to the horizontal

component H of the terrestrial field, the second an equation involving

the product of the same two quantities.

7. The magnetometer. A very convenient form of magnetometer

is that indicated by M in Fig. 14. Within a small closed chamber is

hung, by a single fibre of washed silk, or a fibre of quartz, a small mirror

FIG. 14.

with the needle, j)referably a single short thin bar, either cemented to

its back or, better, attached to a short rigid strip of aluminium hung
from the lower end of the fibre and also carrying the mirror. The silk

fibre may with advantage be replaced by a thin fibre of quartz. The
suspension thread is very carefully attached to the back of the mirror

so that the needle, which should be a very short piece of fine steel

wire, tempered glass-hard, hangs horizontally when the front of the

mirror is vertical. The closed chamber for the mirror and fibre is

easily made by cutting a narrow groove to within a short distance of

"Intensitas vis magneticae ad mensuram absolutam revocata."

—

Comment.
Soc. Reg., Getting. 1833.
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each end along a piece of mahogany of length an inch or 80 greater than

that ))r()|K)S('(l for the fibre. The groove is \videne<l at oiui end to a

circular sj)ace a little greater in diameter than the mirror. The piece

of wood is then fixed, with that end of the groove down, to a horizontal

ba8e-])iece of wood furnished with three levelling screws. The groove is

thus made, to begin with, very nearly perpendicular to the base piece.

It is then set up in a vertical position, and the fibre, to which the

mirror has previously been attached, is suspended within it by passing

the free <'nd through a small hole at the upper end of the groove. It

should be attached to an eye at one end of a pin of brass or copper (not

-hown in the cut), the other end of which is provided over half an inch

with a screw thread to receive a nut. The pin is preferably made of

square section with the screw thread cut on the edges, slightly rounded

in the upper part to receive it. By making the pin pass through a

square hole in a washer fixed to the top of the stand, the pin can be

raised or lowered, without being rotated, by turning a nut fitting the

screw thread and resting on the washer. Thus the height of the mirror

can be conveniently adjusted.

The chamber is closed in front by covering the face of the piece of

wood with a strip of glass, which may be kept in its place either by
cement or by proper fastenings which hold it tightly against the wood.

By making the distance between the front and back of the mirror-

space small and its diameter little greater than that of the mirror,

the instrument can be made nearly dead-beat, that is, the needle when •

deflected through any angle comes to rest almost at once in its true

])osition of equilibrium, that is almost without oscillation.

This magnetometer can be constructed at a trifling cost, and is much
more accurate and convenient than magnetometers furnished with long

magnets, the indications of which must be reduced by the application

of elaborate formulae involving quantities difficult of exact estimation.

The instrument is set up with its glass front in the magnetic meridian,

and levelled so that the mirror hangs freely inside its chamber. The
foot of one of the levelling screws should rest in a small trihedral

hollow cut in the table, or platform, of another in a V-groove, the

axis of which is in line with the vertical axis of the hollow, and the

third on the plane surface of the table or platform. The hollow and
V-groove are best made in brass or copper and carefully inserted in

their proper positions in the wood of the platform. When thus set

u]) with six points of support the instrument is perfectly steady, and
if disturbed can be replaced in an instant in exactly the same position

as before.

8. Mode of measuring deflections. A beam of light passes through a

vslit, in which a thin vertical cross-wire is fixed, from a lamp placed in

front of the magnetometer. It passes through a small convex lens

of, say, rather less than half a metre focal length, placed a little in front

of the mirror, and is reflected from the mirror to a scale attached
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to the lampstand and facing the mirror. The lamp and scale are

moved nearer to or farther from the mirror until the position at which

the image of the cross-wire of the slit is most distant is obtained. The

lampstand should also have three levelling screws, for which the arrange -

ment of trihedral hollow, V-groove, and plane, should be adopted. The

ecale should be straight (the deflections measured are all small) and

placed with its length in the magnetic north and south line ; and the

lamp should be placed so that when the mirror is undeflected the incident

and reflected rays of light are in an east and west vertical plane, and the

spot of light falls near the middle of the scale. To avoid errors due to

variations of length in the scale it should be glued without stretching to

the wooden backing which carries it, not simply fastened with drawing-

pins. This wooden backing should be a massive piece of carefully

dried and seasoned wood, the pores of which have been filled with fine

spirit varnish. Scales well graduated on paper to half-millimetres can

be bought ; but each, after being glued and allowed to dry, should be

carefully compared with a standard scale.

I
FIO. 15.

Instead of a lamp giving a ray of light, a telescope [Fig. 15] may be

mounted above the centre of the scale with its axis pointing to the

mirror, and focussed so that the divisions of the scale (illuminated by a

lamp suitably placed) are distinctly seen, without parallax, along with

a vertical cross-wire in the focal plane of the instrument. The lens

in front of the mirror is of course dispensed with in this arrangement.

9. Construction of deflecting magnets. The magnetometer has now
been set up and is ready for the measurement of deflections. Four or

five magnets, each about 10 cm long and 1 mm thick, and tempered

glass-hard, are made from steel wire. This is done as follows. From
ten to twenty pieces of steel wire, each perfectly straight and with its

ends carefully filed so that they are at right angles to the length, are

prepared. They are tied tightly in a bundle within a serving of iron

wire, and heated to redness in the heart of a mass of uniformly glowing

coals. The bundle, while in the fire, should be kept in a vertical position

to avoid any bending of the wires by their weight. When sufficiently

heated the bundle is quickly removed from the fire and plunged with its

length vertical into cold water. The wires are thus tempered glass-

hard without sensible warping. They are then magnetized to saturation

individually in a helix which is a good deal longer than the wire, and
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closely and uniformly wound with copper wire Btout enough to stand a
strong current of electricity. The piece of steel is placed well within

the helix, and the current turned on, and allowed to flow for a few

seconds. The magnets thus })repared are laid aside on a rack made by
cutting narrow grooves well apart with a saw across a piece of wood,

and are made to point east and west, but alternately in opposite

directions, so that any inductive action between adjacent magnets

may tend to augment the magnetization.

10. Placing of deflecting magnets in position. A horizontal east and
west (magnetic) line is now laid down on a convenient platform (made
of wood) put together without iron and extending east and west on both

sides of the magnetometer. The platform is best held together with

tight-fitting wooden pins, as ordinary brass screws very frequently

contain a core of iron or steel. The part on which the magnetometer
stands should be a little lower than the rest of the platform, so that the

centre of the mirror may be on a level with a magnet laid on the plat-

form east or west of the magnetometer. The east and west line may be

laid down by drawing a line through the position of the centre of the

mirror at right angles to the direction in which a long thin magnet

h:

FIO. 16.

hung by a torsionless fibre in the position of the fibre of the magneto-

meter places itself. [A method of more exact adjustment of this line

will be described later, p. 102.]

One of tlie magnets is placed, as shown in Fig. 16, with its length

in the line thus laid down, and at such a distance that a convenient

but not large deflection of the needle is produced. This deflection is

noted, the deflecting magnet is then turned end for end and the de-

flection again noted. In the same way a pair of observations are made
with the magnet at the same distance on the other side of the magneto-
meter, and the mean of all the observations is taken. The deflections

from zero ought to be very nearly the same, and if the magnet is properly

])laced they will agree very exactly, so that these observations form a

test of the accuracy of the arrangements. The effect of a slight error

in placing the magnet is however nearly eliminated by taking the

mean deflection. If there is any great discrepancy the arrangement
must be carefully scrutinised to find the cause.

The same operation is gone through for each of the magnets, which
are carefully kept apart from one another during the experiments by
being returned to their grooves in the rack after the operations with

each have been carried out. The results of each of these experiments
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give an equation involving the ratio of the magnetic moment of the

magnet to the value of H. Thus, if M denote the magnetic moment of

the magnet, M' that of the needle, /• the distance of the centre of the

magnet from the centre of the needle, 2A the effective length of the

magnet (for a uniformly magnetized thin bar of the dimensions stated

above, the actual length), the magnetic field, in the east and west

direction at the centre of the needle, and created by the magnet is

(M/2X){]/(r-X)2-l/(r + X)2} or 2Mr/(f2_X2)2,

If the needle is deflected through an angle from the meridian, the

couple applied to it by this field is 2MM'r cos ^/(r^ - X^. But for

equilibrium this couple must be balanced by the couple M'H sin ^,

and we have the equation

M (r2 X2'i2

,(21)

If the arrangement of magnetometer and straight scale described

above is adopted, the value of tan 6 is easily obtained, for the number
of divisions of the scale which measures the deflection (whether observed

by the displacement of the spot of light or by the new division brought to

the vertical cross-wire of the telescope), divided by the number of such

divisions in the horizontal distance of the scale from the mirror, is then

equal to tan 2^.

11. " End-on " and "side-on " positions A position of the magnet
in the east and west line through the centre of

the needle, as described above, is sometimes called

an "end-on position," sometimes a " first principal

position." Another position, sometimes called a
" side-on position " or a " second principal posi-

tion," is often employed ; and it is well to make
experiments in equal number for both positions.

These positions are sometimes referred to as the
" A " position and the " 5" position. In a side-

on position the magnet is placed as represented

in Fig. 17 with its length east and west as before,

but with its centre in the horizontal north and

south (magnetic) line through the centre of the

needle. [A vertical line through the centre of

the needle may be used instead of this north and

south line, if that is convenient.]

If we take M, M', X, and r, to have the same
meanings as before, the field produced by the

magnet at the centre of the needle is east and

west and of intensity M/{r^ + \^f. The deflect-

ing couple exerted on the needle when the deflec-

tion is is thus MM' cos 0/(r2 + X^)^. This is balanced as before

Fig. 1'
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by the restoring couple M'H sin 0, and we have the equation

M
H
= (r2 + X*)-tana (22)

This equation applies also to the case in which the deflecting magnet

is placed side-on to the needle but above or below it.

The greatest care should be taken in all these experiments, as well

as in those which follow, to make sure that there is no movable iron

in the vicinity, and the instruments and magnets should be kept at a

distance from any iron nails or bolts there may be in the tables on which

they are placed. It is best to use tables put together without iron.

No brass screws should be used, unless it has been found that they are

j)erfectly free from iron.

12. Oscillation experiments. We come now to the second operation,

the determination of the period of oscillation of the deflecting magnet

when under the influence of the earth's horizontal force alone. The
magnet is hung in a horizontal position in a

double loop formed (by doubling twice and
knotting) at the lower end of a fibre of silk or

quartz, attached to the roof of a closed chamber
[Fig. 18]. A box 30 cm high and 15 cm wide,

having one pair of opposite sides, the bottom,

and the roof of wood, put together with glue,

and the remaining two sides made of glass, one

of which can be slid out to give access to the

inside of the chamber, answers very well. The
fibre may be attached at the top to a stem

which enables it to be raised or lowered by a

screw as explained above (p. 93). The suspen-

sion-fibre is so placed that two vertical scratches, made along the glass

sides of the box, are in the same plane with the magnet resting in its

sling, and the box is turned round until the magnet is at right angles

to the glass sides. The magnetoro.eter is removed from its stand, and
the box and suspended needle put in its place.

If a telescope is available it should be set up for the observation of

the vibrations in the following manner. The experimenter should place

it so that the line of collimation is horizontal and in the plane of the

scratches. The extremity of the magnet next the telescope is then

on the vertical cross-wire in the focal plane. The operator now deflects

the magnet by bringing a small magnet near to it outside the box,

taking care to keep this small magnet always as nearly as may be with

its length in an east and west line passing through the centre of the

suspended magnet. If this precaution is neglected the magnet may
acquire a pendulum motion about the point of suspension, which will

interfere with the vibratory motion in the horizontal plane.

When the magnet has been properly deflected and left to itself, its

O.A.M. ({

Fio. 18.
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range of motion should be allowed to diminish to about 3° on either side

of the position of equilibrium before observation of its period is begun.

When the amplitude has become sufficiently small, the person observing

the magnet says sharply the word " now " (or if a chronograph is used

presses the key which brings into action the registering pen) when the

nearer pole of the magnet is seen to pass the cross-wire in either direction,

and (in the absence of a chronograph) another observer notes the time

on a watch having a seconds hand. With a good watch having a centre

seconds hand moving round a dial divided into quarter seconds, the

instant of time can be determined with great accuracy in this way
after a little practice. [Stop watches are of little use unless they are

of the " fly-back " variety, in which an indicating centre seconds hand
actuated by an auxiliary movement of small inertia is started by pressing

a spring. A good centre seconds arrangement of this kind may be

used instead of a chronograph, in which case a second observer may be

dispensed with.] The person observing the magnet again calls out

sharply " now " when the magnet has just completed ten complete

to and fro vibrations, again after twenty, and, if the amplitude has not

become too small, again after thirty vibrations ; and the other observer

at each instant notes the time by the watch. If the observer at the

telescope has under his control a chronograph or stop-watch, he presses

the spring and stops the registering pen, or stops the indicating hand
of the watch.

The observers, if there are two, then change places and repeat the

same observations. In this way a very near approach to the true

period is obtained by taking the mean of the results of a sufficient

number of observations, and from this the value of the product MH
can be calculated.

For a small angular deflection of the vibrating magnet from the

position of equilibrium the equation of motion (friction neglected) is

+— = 0, (23)

where ju is the moment of inertia of the vibrating magnet round an axis

through its centre at right angles to its length. The corresponding

finite equation is

e =A.m{^^t-B), (24)

where A and B are constants, and therefore for the period of oscillation

T, we have

^=W5 <^')

Hence MH=-^iul (26)
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Now, if W be the mass of the magnet, 21 its length, and p its radius of

cross-section, jul = W{1^/3 + p^/i)y and therefore we have

MH^'^-^frai^ + ip*) (27)

Combining this with the equation already found for the deflection

experiments made in the first or end-on position, we obtain

Jf2=27r2fc^^^V(J/2 + |/)2)tan0, (28)

For a magnet 10 cm long 1 mm in diameter the term ip^ contributes

only about one part in 13,000 to the factor J/^ + j^^^ ^nd therefore affects

the value ot M ot H to the extent of only one part in 26,000. For a

magnet of these or similar dimensions the value of the moment of inertia

may be taken as IWl^. Equations (28) and (29) may therefore be
written

3 Th- '
^'

^

8 'TrHhfF ,3j.
^ "3 7'2(7'-X2)2tan0

^'
^

These are for the end-on position. If a side-on position is chosen, we
have

M^ = -^''^(r^ + \^)^fFt^ne, (32)
3 T^

52 =
4<^2/2 ir

(33)

3 T2 (r2 + X2)-tane

13. Corrections in Gauss's method. Various corrections which are not

here made are of course necessary in a very exact determination of H.

The virtual length 2X of the magnet should be determined, so far as that

is possible as a matter of approximation, by experiment. This virtual

length is only definite in an approximative sense ; there are, strictly

speaking, no such points as the two poles or " centres of gravity " of

magnetic polarity for the two halves of a magnet. But values of A^

can be obtained as follows. The deflections 0, 0' of the magnetometer

needle produced by the magnet, when placed in the position shown in

Fig. 10 at distances r and r\ are observed. We have the equations

d therefore .. r-^s^ftoiTO^ - »V/ tan 6 ^^i)

\/r tan 0' - -Jr tan

lismlis method is not very successful as a rule, as different pairs of distances
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may give different results. Other methods will be described later

(see 19 below).

A small allowance only is necessary for the magnitude of the arc of

vibration, if it is kept down to 6° or less, and the correction may be

dispensed with unless very great accuracy is aimed at, and the observa-

tions are therefore made with an exactitude which renders such a

correction justifiable. The correction for an arc of oscillation of 6°

is a diminution of the observed value of T of only -^-^j per cent., and for

an arc of 10° of ^V P^^ ^^i^*-

Other sources of inaccuracy are the frictional resistance of the air

to the motion of the magnet, the virtual increase of inertia of the magnet
due to motion of air in the chamber, and the effect of induction and,

it may be, of changes of temperature, in producing temporary changes

in the moment of the magnet. The correction for induction is no doubt

the most important ; but its amount for a magnet of glass-hard steel,

nearly saturated with magnetization, and in a field so feeble as that

of the earth, may, if only a fairly accurate result is required, be

neglected.

This correction arises from the fact that the magnet in the deflection

experiments is placed in the magnetic east and west line, whereas in the

oscillation experiments it is placed north and south, and is therefore

subject in the latter case to an increase of longitudinal magnetization

from the action of terrestrial magnetic force. A method of determining

this increase of magnetic moment is described in 21, p. 106 below. By
this it was found that the change of magnetic moment produced

in hard steel bars, the length of which was 12 cm and the diameter

2 mm and previously magnetized to saturation, was found by Prof. T.

Gray to be about ^V P®^ ^^^^- Obviously the factor a of 5 above

may be determined by such experiments. [For particulars of actual

experiments see pp. 108-110 below.]

As stated above, the deflection experiments are to be performed

with several magnets, and when the period of oscillation of each of these

has been determined, the magnetometer should be replaced on its stand,

and the deflection experiments repeated, to make sure that the magnets

have not altered in moment in the meantime. The length of each

magnet is then accurately determined in centimetres, and its weight

in grammes ; and from these data and the results of the experiments

the values of M and of H can be found for each magnet by the formulae

investigated above. The measurements of length may be carried out

by microscopic observation of the positions of the ends of the magnet
when that is placed against a finely divided standard scale of length :

several determinations made with different positions of the magnet
on the scale will give the length to a degree of accuracy within the

limits of the unavoidable errors of the deflection and oscillation ex-

periments. Such a series of observations is carried out for each magnet
to be used as a deflector.
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The object of performing the experiments with several magnets is

to eliminate as far as possible errors in the determination of weight and
length. The mean of the values of H, found for the several magnets,
is to be taken as the value of H for the position P of the magnetometer
needle. This value is to be used in calculating the values of currents

from the indications of a standard galvanometer built for absolute

measurement, and placed with its needle in the position. P.

14. Description of actual determinations. The following account of

a careful determination of // made by the method just described will

form a guide to the student in arranging and carrying out the various

o])erations. The determination was made in the Physical Laboratory
of the University of Glasgow, in the summer of 1885, by the late Professor

T. Gray. The apparatus and its arrangement is shown in Fig. 14.

A table T supports the magnetometer M, two stands A and B for

the deflecting magnets, and a lamp and scale S. The magnetometer
consists of a light mirror about -8 cm in diameter, suspended by a
single silk fibre within a recess in a block of wood, and carrying attached
to its back two magnets each 1 cm long and -08 cm in diameter. Two
holes cut in the wood at right angles to one another (and plugged when
not in use) permit the position of the mirror and magnets to be seen

and adjusted. [In later experiments a preferable form of needle

was adopted. A single very small cylindrical magnet was substi-

tuted for the compound needle just described, and was carried at the

lower end of a strip of aluminium, which was attached to the suspension
libre at its upper end. The mirror was cemented to the aluminium strip.]

The sole plate P, made of mahogany, is supported, on three brass feet,

which rest in a hole-slot-plane arrangement cut as described above, in

a horizontal plate of glass cemented to the table.

15. Deflection experiments. The deflector stands A, B rest each on a
base plate P, of mahogany, supported, according to the hole-slot-plane

device, in precisely the same way as the magnetometer, on plates of

glass f, p cemented to the table. Each stand consists of a horizontal

carriage for the deflector magnet, and is constructed as follows : A
strip of hard wood, about 13 cm long and 4 cm broad, has a V-shaped
groove run along its length in the middle of one side. One end is faced
with a plate of brass in which a brass screw works, and the piece is

cemented with the groove upwards to a plate of glass g. This plate is

supported on three feet of hard wood, resting on the mahogany sole

plate P and is free to turn in azimuth round a closely fitting centre
juvot c fixed in the sole plate. The apparatus is so adjusted that the
bottom of the V-groove is just over the pivot c. The magnet when
placed in the carriage lies along the groove, and the screw s serves to
give a fine adjustment of one end which abuts against it. Over each
carriage a wire of brass or copper bent into a semicircle serves as a sup-
port for a suspension fibre with double loop, by which the deflector

can be suspended for purposes of adjustment or for the oscillation



102 ABSOLUTE MEASUREMENTS IN ELECTRICITY chap.

experiments. A glass shade can be placed on the plate P to prevent

currents of air from disturbing the magnet in the oscillation experiments.

In Fig. 14 the deflecting magnets d, d are shown in positions at equal

distances east and west of the magnetometer, at a distance of 70 cm
between their centres. Four plates of glass are fixed to the table in two
end-on positions and in two side-on positions, each pair of positions

being at equal distances from the magnetometer needle, and on opposite

sides of it. The scale S, shown at a distance from the mirror of 129

cm, is a millimetre scale carefully divided on transparent glass so that

the spot of light may be observed either from the front or the back.

The first adjustment, made in setting up the apparatus, was to place

the table so that the line joining the centres of A and B should be exactly

at right angles to the magnetic meridian. This was done by one or other

of the following two methods according as (a) the end-on, or (6) the side-

on position was required, (a) After the adjustment had been first

roughly made, a plane circuit was formed by stretching a thin wire

along the line joining the centres oi A, B under the magnetometer
needle, and then carrying the wire back, either above the magneto-
meter, or below it, at a greater distance, in a vertical plane. An electric

current was then sent through the wire, and the table T, with the

apparatus, turned until the current produced no deflection of the

needle, (b) One of the deflecting magnets was placed in its carriage,

either south or north of the needle, and lifted out of the V-groove by
the suspension fibre, and the table turned until the suspended magnet
produced no deflection of the magnetometer needle. The magnet and
needle were then in one line, and if the needle was in its proper position

this line produced through the centre of the needle passed through the

position of the deflector on the other side. The deflector was placed

on the oj^posite side of the needle, and the table T, turned until no
deflection was obtained. The position of the needle was then altered,

if necessary, by the levelling screws until the positions of the table for

no deflection, with the magnet first on one side then on the other of the

magnetometer, were coincident. If this could not be done the plates p
were not placed with sufficient accuracy, and their position had to be

changed. This process gave the direction of the magnetic meridian

with accuracy and ensured that the plates p in the north and south

line were properly placed on the table. The two methods taken to-

gether ensured that all four plates p were properly placed.

16. Observation of deflections. Deflectors of different relative

lengths and thicknesses, and of different degrees of hardness, were used.

These were originally magnetized by placing them between the poles

of a large Ruhmkorff magnet excited by a considerable current, and
afterwards by the same magnet excited by a much stronger current.

The relative strengths of the magnets were unchanged by the second

magnetization, and their absolute strengths only very slightly. The
dimensions are given in the table of results, p. 108 below. For the
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deflection experiments, two deflectors were used at the same time, one

on each side of the magnetometer. This arrangement was more
symmetrical than that of a single deflector, and, what was of very great

importance, it enabled a readable deflection to be obtained with the

magnets at a much greater distance from the needle, thus diminishing

error due to uncertainty as to the actual magnetic distribution. As
each magnet was transferred on its carriage from one glass plate to

another the magnets were not handled during the experiments. One
deflector A was placed (end-on) east, another B west of the jnagueto-

meter, and the plate cj turned for each until their lengths were accurately

in the east and west line, with their poles so pointing that each magnet
gave a deflection of the needle to the same side of zero ; and the deflec-

tion was then noted. The plates (j were then turned through 180°,

and the deflection on the opposite side of zero read off. The carriages

were then turned back to the first position and the deflection again

read. The difference between the mean of the first and third readings

and the second reading gave twice the deflection for the position of the

magnets. The same operation was then repeated with the deflectors

in interchanged positions. Two similar series of observations were

next made with the magnets side-on in the north and south line through

the magnetometer and at equal distances on opposite sides of the needle.

The mean deflection for the east and west positions, and that for the

north and south positions, were calculated, and the results were used

in the calculation of H in the manner described below.

17. Observation of oscillations. After the deflection observations

for a particular magnet had been completed, the magnetometer was
removed and the deflector stand put in its place. The magnet was
suspended from the brass bow h over its carriage by a length of single

cocoon fibre, in a double stirrup formed by twice doubling the lower end
of the fibre and knotting. The suspension thus obtained was sufficiently

fine to be practically devoid of inertia, and long enough to give a negli-

gible moment of torsion. The magnet was deflected in the manner
already described (see 12 above), and then left to oscillate. The period

was observed in some cases by noting the times of the successive transits

of the needle across the vertical cross wire of an observation telescope
;

but the method finally adopted was to attach to the stirrup as shown
in Fig. 18 a light silvered mirror m (-3 cm in diameter and -01 gramme in

mass), and to use the same lamp and scale as in the deflection experi-

ments. This latter arrangement enabled the amplitude of oscillation

to be reduced to less than a degree, and so reduced to zero the correction

necessary for arc. The moment of inertia of the mirror was only

about
4 (7^^7r of that of the deflector, and its neglect therefore intro-

duced an error of only j^^ per cent.

Time was observed in these experiments by means of a very accurate

watch provided with a centre seconds hand moving round a dial divided

into quarter seconds. When two observers were available, one counted
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the oscillations and called sharply " Now " at the end of evejy four or

five periods, while the other observed the time at each call. When only

one observer counted the oscillations he used a chronometer beating

half seconds. Having read time, he counted the beats until he could

observe a transit. He then counted the beats until he observed another

transit. From the result he estimated the number of periods in one

minute, and therefore observed the time of the first transit after each

minute so long as there was sufficient amplitude. The fractions of

half seconds were estimated from the positions of the magnet at the

beat next before and the beat next after the transit. With the mirror

and scale arrangement these observations could be made with great

accuracy.

18. Reduction of observations. The observations were combined in

the following manner * so as to give the most probable value of the

period. Supposing the number of observations to have been even,

2n say. The interval between the nth observation and the (?i + l)th,

three times that between the (n- l)th and the (w + 2)th, five times that

between the (n-2)th and the (w + 3)th, and so on to that between the

1st and the 2nth were added together, the sum divided by the sum of

the series 12 + 3^ + 5^ + ... +(2/i- 1)^, and the result by the number of

periods (which was the same in each case) between the observations

of each successive pair. This gave the average period to a high degree

of approximation. If an odd number of observations {2n + 1) was taken,

the interval between the nth. and the (w + 2)th, twice that between the

(n-l)th and the (n + 3)th, three times that between the {n-2)th. and
the (w + 4)th, and so on to the 1st and {2n + \)th., were added together,

and the sum divided by twice the sum of the series P + 2^ + 3^ + . . . + n^.

The result divided by the number of periods in each interval gave the

average period. The period adopted was always the mean of those

given by two closely agreeing sets of observations.

19. Correction for distribution. Assuming that the magnet has two
definite poles, that is (in this connection) points at which the whole of

the free magnetism in each half of the magnet may be supposed con-

centrated in considering the external action of the magnet (an assump-

tion not seriously erroneous in the case of the thin magnets and the

distances used) ; the distance between them can be calculated from the

results of deflection experiments in the side-on and end-on positions

obtained as described above, since the effect of the distribution is

opposite in the two cases. For if r be the distance, the deflection,

for the end-on position, and r', 6' the distance and deflection for the

side-on position, we have by equating the values of MjH given by equa-

tions (21) and (22) :

(r2-X2)2 tan^'

2r(/2 + X2).t tanO
,(35)

*See any treatise {e.cj. Merriman's) on Errors of Observation and the
Combination of Experimental Results.



Ill DETERMINATION OF H 105

Q^

Expanding the numerator and denominator of each side and neglecting

terms smaller than those of the second order we get

:

^-=2?5TW
^""^

By this equation the value of \ used in the calculation of H and M was
found. The results for magnets of different lengths and diameters

arc interesting in themselves.

The nioinent of inertia of the bar was found by weighing the bar and
carefully measuring its length and cross-section, and calculating for

a vertical axis through the centre of the magnet supposed hung hori-

zontally. The axis of suspension of the magnet in any case was not,

however, that vertical, but another near it owing to the compensation
for the tendency of the magnet to dip in the earth's field. The distance

between these two axes can be found approximately for each magnet
from the magnetic moment, mass, and length as given in the table

below, and is so small that any error caused by supposing the magnet
simply to vibrate round the former vertical is well within the possible

limit of accuracy.

20. Theoretical results. For a cylindrical magnet of mass W, actual

length 21 and diameter d, the moment of inertia is W{l^l^-\-d^l\%).

Hence (26) becomes :

,/tf=l-fcV!)«'. ,.(37)

Hence for a single deflector we get instead of the uncorrected equations

others obtained from these by substituting, instead of l^, l^ + M^jlQ.

If two deflectors be used, each of the actual length 11, and diameter </,

but of masses W^, W^, periods T^, T^, and nearly equal effective lengths

which give a mean, X, we get for the end-on and side-on positions

respectively ;

3 (7*^ - X2j27'^27'^2 tan '

^ '

j^,j_'^i±M)mK2±i^jn (39)
3 (7'2-f-X2)f7j2j^2tan^'

In these formulas Q and 0' are the angular deflections found from the

mean readings taken as described above (p. 103) with two deflectors used

simultaneously.

21. Corrections for alteration of moment, and for induction. There

are two corrections for alteration of moment of the magnet, produced

(1) by variation of temperature, (2) by induction when the magnet is

in or near the magnetic meridian when oscillating. The first correction

was found by placing the magnet within a bath, in one of two principal

positions at such a distance from the magnetometer needle that a

deflection of 1,000 divisions was obtained, and then raising the tempera-

ture through about 40° C. It was found that such a rise of temperature
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produced a change of deflection of only about two divisions. Thus the

magnets changed in magnetic moment by only ^ J^ per cent, for a change

of temperature of 1° C. Hence as the variation of temperature in the

experiments never exceeded 2° C. or 3° C. this correction was neglected.

The correction for induction was found by immersing the deflecting

magnet in an artificially produced magnetic field of known strength,

and ascertaining the alteration of magnetic moment which resulted.

The field was produced by surrounding the magnet with a magnetizing

coil, and its intensity calculated from the number of turns of wire per

unit of length of the coil and the current-strength, which was measured.

The coil was sufficiently long to project beyond the magnet at each end

some distance, so that the magnetic field was uniform, and equal to

iwriC, where n is the number of turns per cm of length, and C the

current strength in c.g.s. units. Fig. 19 shows the arrangement of

apparatus for these experiments ; m is the magnetometer needle, C, C are

Fig. 19.

coils each consisting of silk-covered copper wire wound on glass tubes 5

cm in external diameter, S is the lamp scale, R a box of resistance coils,

G the current galvanometer, K a reversing key, and B a battery. DE
represents a horizontal line through the needle and in the magnetic

meridian, and AF a, horizontal line at right angles to DE, and also

passing through the centre of the needle. As shown in the diagram

the coil C was placed with its axis parallel to AF and its centre on the

line DE. C had its axis in the line A F, and the relative distances of

the coils from the magnetometer needle were so adjusted that the

magnetic effect of the current passing through the coils was zero at the

needle, although the current flowing was made many times greater

than that used in the experiments.

The magnet for which the induction correction was to be determined

was then placed in one of the coils and the deflection read while as yet

no current flowed. A field of about ^jy of a c.g.s. unit was then produced

by passing a current, and the deflection was once more read. The cur-

rent was then reversed, and the deflection again noted. The same

operations were then repeated with greater and greater currents until
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a Held of from 1 to 2 units had been reached. The magnet was then

tranHferred to the other coil, and a similar series of observations made.

It was found that a field of considerably greater intensity than the

highest thus used is required to produce any permanent change of

the magnetic moment of hard-tempered magnets. Each increase of

magnetic moment being plotted as an ordinate of a curve, with the field-

intensity for the corresponding abscissa, enabled the change produced

by the earth's field to be obtained by interpolation in an obvious

manner.

A comparison of the results obtained with the two coils showed that

the percentage change of deflection produced by the field was smaller

for the coil G than for the coil C . This was undoubtedly due to change

of magnetic distribution, the effect of which on the deflection is opposite

in the two cases. Assuming that the magnet has an effective half-

length X, the deflection in the first case is given by (21) and in the other by

(22). Thus, by using the coils in the two positions as described, the change

of distribution as well as the change of moment can be approximately

estimated. The plan of having two coils has also the advantage of

allowing the change of magnetic moment to be obtained free from any
error caused by want of exact compensation between the two coils of

their direct effect upon the needle.

The results of the experiment showed that to make the effect of

induction small the magnet should be hard tempered, and its length

should be at least 40 times its diameter. The results are shown in the

table on p. 109 below.

28. Effects of variations of the earth's field. The effects of variations

in the intensity and direction of the earth's magnetic field were quite

marked. The latter showed itself by changes of the magnetometer
zero, which were eliminated by reading the zero before and after each

deflection, and by reversing the magnets. The effect of change of

intensity was allowed for by observing the period of a permanent
magnet kept suspended for the purpose. This period was observed at

the beginning of the experiment, after the deflection experiment, and
again after the oscillation experiment. The necessary correction was
estimated from the results and applied. It will be observed that the

effect of diurnal variation is quite perceptible. The results in the table

on p. 108 are tabulated in the order in which they were obtained, and it

will be noticed that the earlier results of each day are generally the

smaller. On some occasions on account of magnetic storms it was
found impossible to obtain results at all. This was notably the case

on Sept. 1, 1885.

28. Effect in the inductive correction of varying thickness of magnet.

The results of this determination are shown in the following two
tables. The variation of the effect of induction on the magnetic moment
with different ratios of the length of the deflecting magnet to its dia-

meter is shown in the curve of Fig. 20.

I
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Table II.— Showing the effkct of Length and of Hardness

ON THE INDUCTION-COKFFICIKNT OF MaGNETH.

2

o S

•Si

Unit field.

18

ii

1^

.9

n

||! 1
Remarks.

l-s^ 1^^ ^B s

3 10 0-80 0-90 0-85 27 Glass hard.

4 16 0-67 0-73 0-70 32

4 16 0-67 0-70 0-69 35

6 20 0-51 0-67 0-59 36

7 31 0-51 0-58 0-54 39

8 32 0-51 0-58 0-54 54

8 32 0-51 0-58 0-54 52

10 34 0-46 0-56 0-51 40

10 44 0-40 0-56 048 43

7 47 0-46 0-51 0-49 57

10 50 0-44 0-58 0-51 67

10 50 0-48 0-54 0-51 60
10 50 0-46 0-55 0-51 53

10 50 0-46 0-52 0-49 71

10 50 0-46 0-56 0-51 60
10 67 0-41 0-51 0-46 65

7 73 0-41 0-50 0-46 64

10 105 0-42 0-45 0-44 66

10 34 0-47 0-53 0-50 41-5 Glass hard.

10 34 0-63 0-67 0-65 44-5 Yellow.

10 34 0-84 0-98 0-91 54-1 Blue.

10 48 0-32 0-40 0-36 45 Glass hard.

10 48 0-43 0-55 0-49 46 Yellow.

10 48 0-53 0-67 0-60 71 Blue.
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It will be observed that the effect of induction diminishes, rapidly

at first, then more and more slowly, towards a constant value of about
0-4 per cent, for unit field for glass-hard magnets of the kind of steel

experimented on.

Curve illustrating the effect of Ratio of Length lo Diameter on the

Inductive Coefficient.
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The method given above for the determination of the correction for

the non-uniform magnetization of the deflecting magnet, gives of course

only a first approximation to the true correction, but under the con-

dition that the length of the bar is sufficiently small in comparison

with the distance r, say from ^ to yV of r, and on the supposition that

the magnet is reversed at the position on either side of the needle, it is

generally sufficient.

The following method eliminates to a high degree of accuracy the

effect of the magnetic distribution. Let two deflections be taken by
reversing the deflecting magnet at a distance r^, on the west side of the

needle, and similarly two deflections at the same distance on the east

side, and let D^ be the mean of the tangents of these four deflections.

Let this process be repeated for a second distance fg? ^i^d let Dg be the

mean tangent for this distance. It is easy to prove that, approxi-

mately, 2M_ i\^D^-r^^D^

For if we make no particular supposition as to the distribution we
may write instead of equation (21)

.(40)

,^^tanO=l+ — -H ., + etc., ,(41)
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the series on the right converging. Therefore denoting by di, Oi,

the first two deflections obtained as described above, we have

-^^^Uine,^l^-^-,^-,^eto (42)

Now reversing the magnet without altering its distance is obviously

equivalent to shifting it to the same distance on the other side of the

magnetometer without reversing, that is to altering the sign of fj.

Hence, by (42),

6 liJ-- tan a' = 1 - — + -o - —a + etc (43)

Thus four values of \llr^ tan 0/M are obtained which give

siii^ A = l+— + -i + etc (44)
2 M ^ ly rj*

Similarly from the other two pairs of deflections at the distance

it-'^—i^f- •<«>

Multiplying (44) by r^ and (45) by r^, and subtracting, we have

finally, neglecting all terms beyond the second in each equation,

the relation expressed in (40).

It will be shown in the appendix on Reduction of Observations

that if approximately ri = 1-32^2, the effect of errors in the observed

deflections on the value of MIH will be a minimum for these

distances.

24. Elimination of effect of magnetic distribution. If long thin bars

are used in the determination of H, their magnetic distribution could be

accurately found by Rowland's method (see Index for reference) and

the proper corrections applied. On the other hand, short thick bars of

hard steel have the advantage of giving greater magnetic moment for a

given length, and they can therefore be placed at a comparatively

greater distance from the needle, so that the correction for the distribu-

tion becomes of less importance. So far, then, as the deflection

experiments are concerned, it is better to use thick strong magnets of

the hardest steel, and to place them at such a distance from the needle

that the error, caused by neglecting the distribution, becomes vanish-

ingly small. On the other hand, the magnets must be sufficiently long

and thin to render it possible to determine with accuracy their

moments of inertia, and therefore to reduce correctly the results of

the vibration experiments. When the distance is so great that the
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effect of distribution is negligible, we may use the approximate
formula

M='^^HtSLne (46)

for the end-on position, or

M^r'^HtanO (47)

for the side-on position.

25. Magnetic survey. A magnetic survey of horizontal force, in the

neighbourhood of a place for which H has been determined, may very

readily be made with one of the magnets used in the deflection experi-

ments, by simply observing its period of vibration at the various places

for which a knowledge of H is desired. The magnetic moment M of

the magnet being of course known from the previous experiments,

H can be found by equation (29) or (33) above.

By keeping a magnetometer set up with lamp and scale in readiness,

the magnetic moments of large magnets can be found with considerable

accuracy by placing them in a marked position, at a considerable dis-

tance* from the needle, and observing the deflection produced. By
having a graduated series of distances for each of which the constant

^r^H, or r^H, as the case may be, by which tan must be multiplied

to give M, has been calculated, the magnetic moments can be very

quickly read off.

26. Comparison of moments of large magnets. The magnetic moments
of large magnets of hard steel, well magnetized, can be compared very

conveniently with considerable accuracy by hanging them horizontally

in the earth's field, and determining the period of a small oscillation

about the equilibrium position. They should be hung by a bundle of

as few fibres of unspun silk as possible, at least six feet long, so that the

effect of torsion may be neglected. The suspension thread should

carry a small cradle or double loop of copper wire, on which the magnet
may be laid to give it stability, and to allow of its being readily placed

in position or removed. Two vertical marks are fixed in the meridian

plane containing the suspension thread, and the observer placing his

eye in their plane, can easily tell very exactly when the magnet is passing

through the equilibrium position, and so determine the period. Or,

a north and south line may be drawn on the floor or table under the

magnet, and the instant at which the magnet is parallel to this line

observed by the experimenter, standing opposite one end of the magnet
and looking from above. An allowance for the double loop must be

made, in estimating the moment of inertia. The value of M is given

in terms of H by equation (26) above.

Care must of coursejbe taken to avoid undue disturbance from cur-

rents of air, and to prevent the magnet, when being deflected from the

meridian, from acquiring any pendulum swing under the action of

gravity. The deflection from the meridian should be made with another



DETERMINATION OF H 113

magnet, brought with its length along the east and west line through
tlie centre of the suspended magnet, near enough to produce the re-

quisite deflection, and then witlidrawn in the same manner.
27. Stroud's magnetometer for complete determination of H. A new

form of magnetometer by which the determination of // is at once
effected by direct observation of angular deflections, has been invented

10 cm

Ku;. 22.

D{—l/^^-\C

ff

.^^^^U^i

.SM

i

Fio. 23.

I
I I

FIG. 21.

by Prof. W. Stroud. A steel ring (M of Fig. 21) is made by bend-

ing a piece of thin ribbon steel about 1 metre long, -/„ millimetre in
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thickness, and 3 millimetres broad, into a circle, and soldering the

ends together with the overlap at the top or bottom of the ring. The
shape is maintained as nearly as possible a perfect circle by means of

a ring of tissue paper, or, better, aluminium with connecting arms as

shown in Fig. 21. This ring is hung by a bifilar suspension as

described below.

When the bifilar is placed in an east and west (magnetic) vertical

plane, it gives a means of measuring the couple exerted by the earth's

horizontal field. That couple is proportional to MH, if M be the

moment of the ring-magnet, that is, to the couple tending to turn the

magnet in a field of unit intensity and of direction at right angles to

the plane of the ring. The ring is magnetized, so that the poles are

at the ends of a horizontal diameter.

This ring-magnet is hung within a case C, C, supported on levelling

screws. The case is made partly of glass, so that the apparatus can be

seen from the outside. The ring is hung by hooks h, h, from a brass

crossbar 6, by means of which it is attached to the bifilars t, t. The
upper side of this bar is a knife-edge furnished with a V-notch near the

end to receive one of the hooks /?, and thus allow the wire to be removed,

and replaced accurately reversed in position on the bar. A small plane

mirror is carried above the centre of this bar, and serves to determine

the position of the ring.

The details of the suspension are shown in Fig. 22. ^ is a piece of

brass fixed to the wall of the instrument case. A knife-edge is worked
on its upper side, and on this rests a piece of aluminium of the shape

shown in the lowest diagram of the figure. To this piece is attached the

bifilars, and the distance CD between them is about 1 cm.

The knife-edge bisects the distance to at least j\ mm. The thread

rests in a groove in the aluminium piece, so that the whole upper

suspension arrangement is the equivalent of a pulley mounted on a

knife-edge.

28. The magnetometer. The lower end of the suspension is shown in

Fig. 23, and consists of an aluminium piece to which the fibres ^re

attached. One fibre comes from above to E, passes from E to F,

thence round hy G to H, and then up. The distance EH is, like CD,
about 1 cm.

It is to be noticed that at the top the fibres lie outside the space CD,
at the bottom inside EH, so that the product of the distances of the

fibres apart at the top and bottom is accurately CD x EH. CD and
EH are measured by means of a micrometer gauge easily to j^ mm.
Error from effect of the pressure of the gauge does not enter, as CD
is measured directly, then EF, HG, and FG, giving EH by difference

;

so that EH is as much too great in consequence of compression pro-

duced by the gauge as CD is too small. This arrangement also elimi-

nates error arising from the thickness ajid flexural rigidity of the

suspending fibres.
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The length of the fibres is determined as follows. A mirror K (Fig.

23) with a horizontal line on it is attached by a brass arm to a slider L,

worked by a screw with milled head M at the top of the instrument.

The screw is worked until the horizontal line on the mirror, the hori-

zontal line given by the toj) of the piece GH, and the image of the

latter in the mirror K behind it are in one line. By the motion of the

screw, a mark on the nut at the top of the slider L is brought to some
position on a brass scale S attached by brass connecting pieces to the

piece A shown in Fig. 21. The length of the fibres is equal to the

reading on the scale <S' increased by a constant quantity.

Any alteration in the length of the scale due to temperature, etc.,

is thus given by measurement in terms of divisions of a brass scale,

so that the length can always be obtained with almost perfect accuracy.

The residual temperature correction is indeed quite negligible for even

large differences of temperature.

A small needle n is hung from an arm of brass which is attached to

one side of the box, so that the needle, when in position, can hang with

its centre as nearly as may be at that of the ring-magnet. A small

mirror m' fixed at right angles to the axis of the needle is carried

below it.

A forked piece of wood prevents the needle from turning round, and

enables it to be placed at once very near the centre of the ring, while

copper pieces f, p, on the sides of the case, damp the motion of the ring-

magnet and limit the free space in which it swings to about 1 millimetre

of clearance on each side.

Changes of the positions of the ring-magnet and of the small needle

are read by means of a lamp and scale, or a telescope and scale, in the

ordinary manner. (Of course a telescope and scale free from iron

must be used.) With proper arrangement of the positions of the two
mirrors a single telescope, with, if necessary, two scales, can be used to

determine the deflections of both magnets.

29. Use and theory of Stroud's magnetometer. The method of

using the instrument and its theory are as follows. The bifilars

are adjusted so that their plane is approximately east and west,

then the ring-magnet is placed in position, and the deflections of

the needle and of the bar carrying the ring are read off by their mirrors.

If be the angle which the plane of the ring makes with a vertical east

and west (magnetic) plane, the magnetic couple on the ring due to H
is MH cos 0. The total magnetic couple on the ring is thusMH cos 0-L,
where X is a couple in the opposite direction due to the small needle

at the centre of the ring. Since, if necessary, all the suspension threads

may be single fibres of silk, or still better thin threads of quartz, the

torsion of the bifilars may be neglected. Hence if a be the angle which
the plane of the ring makes with a vertical east and west (magnetic)

plane when the bifilar plane is vertical, the angle through which the

bifilar has been turned is - a, and if d, d' be the distances between the
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threads at top and bottom, I their length, and W the mass supported,

the couple given by the bifilar is (Vol. I. p. 244) Wgdcl'sin {6 - a)/4Z.

Hence we have

MHcose = g^^-^fsm(e-a) + L (48)

The small needle is likewise deflected through an angle 0. This

can be measured by observing the positions of the needle with and with-

out the ring-magnet in the instrument.

The component of the moment M' of the small needle at right angles

to the plane of the ring is M'cos {0-
(f)).

Now if we suppose a small

quantity of magnetism Sm of the ring to be situated at a point the radius

to which makes an angle
)(^

with the horizontal diameter through the

centre, the horizontal component force due to Sm will be Sm cos ^/r^,

or Sm/r^ . r cos ^. It follows, if the length of the needle be taken as

very small, and the breadth of the ribbon be neglected, that the moment
of the couple deflecting the needle is M'/^*^ • cos (0-0) 2^w r cos x,
where the summation is extended throughout the whole distribution

of the ring-magnet. But 2 {Sm r cos x) is evidently the magnetic moment
M of the ring-magnet. The couple exerted by the ring on the needle

is thus MM' cos {0 - 0)/r^, and this is equal and opposite to the couple

L exerted on the ring by the magnet.

Hence for the equilibrium of the small needle we have, neglecting the

torsion of the thread,

M
^ cos (0-</>) = i^ sine/. (49)

f==-^^, (50)H cos (0 - </))

But we have also

MHcose = ^!^sm{e-a) + L (51)

Ji L { = M'H sin 0) be small in comparison with MH cos 0, that is if

M' sin ^/M cos 6 be a small quantity, L may be neglected in (51),

and weget

^^ ^ Wgdd' sin (0 - a) cos {0 -
<t>) ^50)

4/?'2 cos sin
(f>

If two experiments be made with the same weight on the bifilar»

but with the ring-magnet reversed, we get if 6' + a, <p', be the angular

deflections of the ring and needle, respectively,

772 _ ^^9^^' sin {0' + a) cos (0' - 4>')
(53)^ Ah^ cos 0' sin </>'

TT sin (0 - a) _ cos (
0' - </>') cos sin /^^x

sin (0' + a)~ cos (0 - (f)) cos
0' sin 0'

from which a can be found, so that H can be calculated from (52/

or (53).
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If the angles arc all so small that they may be replaced by their sines,

and the cosines may be put each equal to 1 , we have ^

„2 JVgdd' e-a IVgdd'eya ,...
^

4P" 4> " 4/r8^ f'
^ '

7/^=^;^:^; (56)

Hence all that is necessary is to take the angular readings before and
after the reversal of the ring. The differences of the readings in the two
cases are + 0' and (/> + </>'.

30. Order of magnitude of errors. The errors due to neglect of the

couples, caused by torsion of the fibres, the couple exerted on the ring by

the small needle, and the error due to uncertainty of magnetic distribu-

tion in the thickness of the wire of the ring, are not all of the same order

of magnitude. The first may be made quite negligible even with silk

fibres ; the couple due to the small needle produced in Prof. Stroud's

first instrument, which had a ring of pianoforte steel wire, gave an
effect of about 1 to 700, and the thickness of the wire gave a possible

extreme error of about 1 in 300. The two latter couples are made
negligibly small by increasing M sufficiently, and making the ring of

thin steel strip instead of wire. Of course the couple due to the small

needle can always be approximately determined and allowed for.

81. Results obtained with trial instrument. The following table

(p. 118) contains examples of determinations of H made by Prof. Stroud

with his first trial instrument.

Other methods of determining H which depend on current induction

will be explained in a later chapter.

32. Errors in usual magnetometer arrangements. In the usual form
of magnetometer the magnetizing solenoid is placed with its axis in

the magnetic east and west line passing through the magnetometer
needle. The effect of the current is balanced at the needle by means
of a compensating coil connected up in the circuit. This latter coil

has its axis coincident, or nearly so, with that of the solenoid. When a

feeble magnetic specimen is under examination the solenoid, and con-

sequently the compensating coil, must of necessity be brought up close

to the needle. If large magnetizing currents are employed, any small

shift of the coils from their correct positions may be sufficient seriously

to impair the balance. In consequence of this the operation of ad-

justing the position of the compensating coil (the solenoid is usually

clamped once for all in a convenient position) is a difficult one, especially

as the slight inevitable movement of the coil which results from clamping

it in position generally results in disturbance of the balance.

I

Even if this adjustment be accomplished with the requisite accuracy

for the undisturbed position of the magnetometer needle, it does not

necessarily follow that the compensation is complete for the needle
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compensating coils are in general slightly inclined to one another and
to the east and west line passing through the needle. The effect of this

is to increase the directive force on the needle for one direction of

the current and to diminish it for the other. That this is the case

will be seen from Fig. 24, in which the want of alignment of the coil and

N

a

solenoid has been greatly exaggerated. The magnetometer needle is

situated at the point P, and it has been assumed that the solenoid and
coil are so placed that they produce fields at P in the directions PS
and PC respectively. If the intensity of the field due to the solenoid

be denoted by F^, and that due to the coil by Fc, then, since the coils

balance for the undisturbed position of the needle it follows that

Fg cos ^j + Fc cos 0^, = 0. There are left, however, the components of the

intensities in the north and south direction, and it is evident from the

figure that if H is the horizontal component of the earth's magnetic

field at P, the total directive force at the needle is

^ + (P,sin^i + PeSine2).

If the current is reversed in the circuit the directions of F^ and Fc
change, and the directive force at the needle becomes

H-(P,.sinei + PcSin02)-

The presence of the effect referred to may be made apparent by
placing a permanent magnet close to the magnetometer, and thus

deflecting the needle. On reversing a current in the circuit, a change
in the deflexion will in general be observed. The magnitude of the

errors introduced may be determined in this way for various parts of

the scale and allowed for in the results, or the coils may be rotated until

the effect disappears. If the former method is adopted, the labour

of computing the results is much increased, and, further, it is difficult

to make a proper correction, since the allowance to be made is a function

both of the angle of deflexion and the strength of the current. The
second method can only be used if the coils are capable of being rotated

on their stands, and the adjustments would be difi&cult and troublesome

to carry out.

The necessity for attending to this source of inaccuracy was first

pointed out by Erhard,* who investigated the magnitude of the errors

* " Eine Fehlerquelle bei magnetometrischen Messungen," Ann. der Phys.
1902, p. 724.
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which were caused by neglecting it. In a magnetometer of the usual

type examined by him, it was found that, with a magnetizing field of

128-3 c.g.s. units in the solenoid, there was a change of 6-8 per cent,

in the directive force on the needle when the current was reversed.

Erhard advised that the magnitudes of the errors introduced should

be determined for various parts of the scale and allowed for in the

results.

33. Improved magnetometer table and accessories. While carrying

out a research on certain feebly magnetic alloys Messrs. Gray and Ross

found that the elimination of these sources of error caused very con-

siderable delay in the progress of the work. An attempt was therefore

made to design a form of magnetometer which should be free from the

objections common to the usual instruments. The following require-

ments were kept in view : (1) capability of accurate and rapid adjust-

ment
; (2) zero Erhard effect

; (3) suitability for testing specimens

at all temperatures
; (4) applicability to the testing of strongly magnetic

and feebly magnetic specimens alike
; (5) a solenoid capable of furnishing

fields up to at least 400 c.g.s. units
; (6) rigidity (and for this all the

parts were fitted on one bed-plate)
; (7) clamping arrangements without

influence on the compensation.

The general principle of the instrument made will be seen from Fig.

25. ns represents the magnetometer needle provided with a concave

mirror, by means of which and a source of light L, its movements are

observed on the scale SS. H is the magnetizing solenoid placed due

east or west of the magnetometer needle and clamped in a convenient

position. Cj and Cg are compensating coils placed with their axes

approximately in coincidence with that of the solenoid. In adjusting

the apparatus the effect of the current in H on the needle ns is first

approximately annulled by means of Cj, which is then clamped in

position. The final adjustment of the compensation, so far as the

undisturbed position of the needle is concerned, is carried out by means
of C2, which on account of its great distance from the needle contributes

only a small fraction of the balancing field, and thus provides

adjustment. The position of Cg necessary for balance having been

obtained, it is clamped in position ; obviously, since the distance of

Cg from the needle is great, any slight movement caused by doing so

produces no perceptible effect on the compensation.

34. Arrangement of compensating coils. If the axes of Cj, H, and

C2 were coincident and passed through the magnetometer needle, the

adjustment would now be complete. If, however, the needle ns is

deflected by means of a permanent magnet, and a large current is

reversed in the circuit, in general an alteration in the scale-reading

on SS will be observed. A coil Cg, placed with its axis in the magnetic

north and south line passing through the needle, is now included in the

circuit. By properly adjusting the direction of the current in Cq,

and altering the distance of Cg from the needle, the compensation can
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be made perfect for all jwsitions of ns* In a magnetometer where »w,

C*p //, and C,^ are all carried on stands moving in one channel in the

bed-plate, there should be little departure of the axes of the coibi from

coincidence. Accordingly the resultant magnetic field, due to the coils

and solenoid, in the north and south direction will be small. The coil

(.'3 is therefore made of little power, and a small change in its position

brings about only a very slight alteration in its effect upon the needle.

It can therefore be clamped without any risk of upsetting the balance.

The manner of making the adjustments will be fully explained later.

The instrument with its fittings is shown in j)lan in Fig. 26 (p. 122).

The bed-j)late is in the form of a cross, and is built of well-seasoned

mahogany planks 22 cm broad and 2-5 cin thick. The length over

all is 350 cm, and the breadth from end to end of the arms 135 cm.

S

Fig. 'lb.

The cross-piece is at a distance of 100 cm from one end of the main
length. Like the main portion of the bed-plate, it is formed from one

piece of wood, and the two lengths are set accurately at right angles and
half checked into one another. The junction is made rigid by means
of glue and brass screws. A channel 11 "5 cm broad is formed over the

entire length of the cross-piece by means of two mahogany strips which
are square in section and fixed parallel to the edges of the arms. A
similar channel runs down the main length of the bed-plate, being

discontinued where it is crossed by the channel already mentioned. The
wooden strips forming these channels are permanently fixed by glueing

and by brass screws driven in from the under side of the base-board.

After they have been constructed they are made of perfectly uniform

width by sand-papering, the width being tested from time to time

during the process by means of a wooden gauge.

A is a mahogany box consisting of bottom, sides, and top, with the

ends which face east and west left open. In the bottom is a slot running

parallel to the cross-piece of the bed-plate. A brass screw projecting

upwards from the base-board of the magnetometer passes through

this slot and is provided with a brass washer and locking-nut. By this

means the box can be moved through a small distance in the north and

* A side coil has been used by Dr. (t. E. Allau in his raagnetometrie work forgiving
1

* A side coil has been used by Dr. (i

nnpensation throughout the scale.
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south direction, and securely clamped in position. On the upper

surface of the box is fastened a plate of glass on which stands the

magnetometer proper. This part of the instrument is also constructed

of mahogany. A wooden pillar 20 cm in height has a narrow hole drilled

longitudinally down through it. This hole terminates in a small cell

with a glass window in front. The cell is just large enough to contain

the mirror of the magnetometer—a concave mirror, 1 cm in diameter,

having a focal length of 50 cm. The mirror has attached to its back

a small piece of magnetized watch-spring about 8 mm in length. The
needle and mirror are suspended by a fine quartz fibre from a screw

at the top of the upright pillar of the magnetometer. By means of

this screw, the axis of which is vertical, all torsion can be removed
from the fibre when the needle is hanging in its equilibrium position

;

and by giving the screw an observed number of complete turns a

determination of the torsional rigidity of the fibre can be made. The
pillar of the magnetometer is attached to a circular base provided with

three small brass levelling-screws. The position of these feet on the

glass top of the box-stand is defined by the hole, slot, and plane method.

AA (Fig. 29) is the magnetizing solenoid. Two coaxial brass tubes

45 cm in length are connected at their ends by brass rings so as to form

a water-jacket BB measuring 4 cm in internal and 6 cm in external

diameter. On the outside of this are wound 868 turns of No. 15 s.w.g.

copper wire in four layers, of which only one is shown in the figure. The
wire is double silk-covered, and each layer is varnished over after it is

wound. The terminals of the coil are mounted on an ebonite block at one

end of the solenoid. D and G are the inlet and outlet tubes of the water-

jacket. Although the water-jacket is somewhat narrow it is found to be

effective in keeping the helix of wire cool, even though the interior is

raised to a temperature of over 1000° C. by means of an electric furnace.

The water-jacket is made small in capacity in order to keep down the

mean radius of the solenoid, and hence maintain the end effect of the

solenoid small. The field at the centre of a coil of length 21 and radius

a is less than 047riiC in the ratio Ij^/l^ + a^, where n is the number
of turns in the coil per unit length and C is the magnetizing current in

amperes. In the case of the solenoid now described the reduction in

the field from the value 0-47r«O due to the finite length of the coil is

1*14 per cent. The solenoid is carried on a mahogany base-board

provided with two vertical supports terminating in V-shaped grooves

to receive the coil. The position of the solenoid carrier in the channel

of the magnetometer board may be fixed by means of a brass clamp
(shown in Fig. 26). This friction clamp is furnished with two screws

which press mahogany blocks against the outer surface of the wooden

I

strips forming the channel of the magnetometer bed-plate.

Ci and Cg (Figs. 25 and 26) are circular coils of 15 cm radius erected on

wooden stands provided with brass clamps as in the case of the solenoid.

I
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into the base of the stand. The sections in the case of 0^ contain 5, 7,

and 9 turns of wire respectively, and in the case of Cg 6, 8, and 10

turns. These sections may be used singly or in combination, and accord-

ingly there is a wide range of variability in the powers of the coils.

Og is a coil of similar construction, but has a radius of only 6 cm, and
is built in two sections of 1 and 3 turns of wire respectively.

Z) is a coil having a radius of 12 cm, and its function is to prevent loss

of time due to vibrations of the needle about its position of equilibrium.

It is connected up in series with a single cell and a reversing key ; and
by properly tapping the key a series of impulses is communicated to the

needle, which is thus quickly brought to rest.

iy is a sliding stand carrying the object screen, which consists

of a vertical wire placed in front of a window of obscured glass fitted

in a metal box containing an electric lamp. By altering the position

of this stand, the image of the cross-wire formed by the mirror of the

magnetometer can be produced at any distance from 110 cm upwards.

From 150 cm to 200 cm is in most cases a suitable value. At this dis-

tance it is received on an engine-divided glass scale of the usual type.

^ is a deflector stand on which a small permanent magnet may be

mounted in the " side-on " position of Gauss. The construction of the

stand is similar to that of the stand which carries the magnetometer

proper. On the top of it is fixed a rectangular block of wood provided

with a groove for receiving the magnet.

The bed-plate of the magnetometer is mounted on six pairs of

mahogany feet, which are fastened to a rigid table by means of brass

screws.

35. Adjustment of the instrument. The process of setting up the

apparatus is as follows. The centre of the magnetometer needle

has first to be placed on the axis of the solenoid. To accomplish this,

coil Ci (Fig. 26) is removed, and the solenoid H is moved along the

bed-plate towards A until its inner end is almost in contact with the

back of the magnetometer casing. The stand A is then moved in its

channel until the needle is brought exactly on the axis of the helix,

and is then permanently fastened in this position by means of the

clamping screw already mentioned. The table carrying the magneto-

meter is now placed so that the long channel of the bed-plate lies due

east and west, the adjustments being carried out and tested by means
of the following method. A wire is stretched out vertically beneath the

needle, and accurately parallel to the short channel of the bench.

On passing a current through this wire a deflexion of the needle is

produced. If the current is reversed in direction the deflexion will

have the same numerical value as before, provided that the

wire lies exactly north and south magnetic. The table is so

placed that this condition is fulfilled, and its feet are then clamped

to the floor by means of L-shaped brass brackets. The scale is erected

on a separate table in order that the movements of the observer
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may not set uj) oscillations of the needle. The coils C„ H, and C'j

are now connected uj) in series with the storage-battery, ammeter, and
variable resistances, etc., care being taken that the direction of the

current in Cy and C'2 is opposite to that in H. The permanent adjust-

ments of the instrument are no>5r complete.

When a specimen is tested the solenoid H is moved to a convenient

distance from the magnetometer needle and firmly clamped. The
coil 6*2 is placed at the farther end of the magnetometer table, and a

current two or three times greater than the maximum to be used in the

subsequent test is sent through the complete circuit. Coil C\ is then

moved until it just falls short of balancing the eifect of the solenoid on

the needle. It is then securely clamped. Coil C^ is next slowly moved

UJ) towards the magnetometer needle until the deflexion of the latter

is brought exactly to zero ; C'g is now clamped, and the accuracy of

the compensation verified by suddenly reversing the current in the

coils. No measurable change in the scale-reading should result. The
current having been interrupted, a small permanent magnet is next

placed east and west on the stand E, and the stand moved along the

cross channel in the magnetometer bed-plate until the sj)ot rests near

one extremity of the scale. The current is again made and reversed,

and, if any appreciable deflexion of the spot on the scale is observed,

coil Cg is included in the circuit, the current through it so directed

that the deviations of the needle from its equilibrium position are

diminished. The coil is gradually moved closer to the magnetometer

until the Erhard effect is completely annulled, and is then clamped

in position. The compensation now holds for all parts of the scale,

and the apparatus is ready for carrying out magnetic tests.

The several sections in which the three compensating coils are built

allow the adjustment to be completely made with the coils in several

different positions. This is a great advantage, as it always affords a

means of escape from any arrangements of the coils which might prove

awkward when specimens are in the solenoid.

The method of adjustment of the coils for balance, in the manner
described above, is systematic, delicate, and accurate, and the operations

can be carried out with great rapidity ; unless the solenoid is very close

up to the magnetometer, the changing over of the apparatus from one

degree of sensibility to another can be completed in about two minutes.

The magnitude of the directive force at the needle is easily determined

by passing a measured current through one of the balancing coils

and noting the deflexion of the magnetometer needle produced. The
value of the directive force is then easily calculated.

Fig. 27 is a photograph of the apparatus when adjusted for the ex-

amination of a strongly magnetic specimen ; Fig. 28 shows the arrange-

ment when a feebly magnetic specimen is being dealt with. When the

solenoid has to be placed very close to the magnetometer needle to allow

of a very feebly magnetic specimen being examined, the coil Cj is placed

i
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on the opposite side of the needle to the solenoid. For general use,

however, it is convenient to have the solenoid and coil on the same
side. It is worthy of remark, in passing, that even if C^ is placed as
close up as possible to the end of the solenoid, it cannot alter the field

at the centre of the specimen by so muijh as J per cent.
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Fig. 28.

36. Testing of specimens at different temperatures. When used for

testing specimens at temperatures higher than that of the room, an
electric furnace of a type similar to that devised by Dr. G. E. Allan,*

is placed within the helix. In Fig. 29 it is shown in position. A tube
E of unglazed porcelain of about the same length as the solenoid, having

an internal diameter of 23-5 mm and a thickness of about 2 mm, is wound
non-inductively with fine platinum wire ; the ends of this wire are

brought out to two terminals mounted on a slate frame at ¥. The
tube is enclosed in a tube G of Jena glass, which fits as a cartridge within

the magnetizing solenoid. The space Rli between the glass and
procelain tubes is packed with dry kaolin clay, which performs the

double duty of supporting the furnace and preventing the coils of the

platinum wire from changing their positions when expanded by heat.

* Phil. Mag. 1904, vol. vii. p. 46.
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A cylinder of electrolytic sheet-copper is placed within the tube E^ and
assists in maintaining a very uniform temperature over the space

occupied by the specimens.

In tlie figure the platinum wire is shown equally spaced over the

porcelain tube. In reality tliis is far from Ixmiil' tin* c^ase. The proper

FlQ. 29.

winding of the tube is an exceedingly troublesome operation, and can

only be accomplished by repeated trial.

The temperature of the furnace is measured by means of the ordinary

thermo-element or a platinum resistance thermometer. The two
wooden stands used for the pyrometer are shown in position in Figs.

27 and 28. As will be seen at once, the several slots in the horizontal

carrier for fitting on the tops of the stands permits of these latter being

placed clear of the sliding bases of the compensating coils.

For tests at the temperature of liquid air the arrangement shown in

Fig. 30 is employed. The specimen A is enclosed in a glass tube BCD,

I1GOO0QOOO0OOOOOOOOOOOGGOOGOGGGGOOOOOOG0OOGOOOOOOOOOOOSCGOGGOl

FIG. 30.

of which the end B is closed and the end D is open and bent up. Cork
stoppers F, F are fitted on the tube so as to bring the axis of the specimen

into coincidence with that of the solenoid. A third stopper ^ or a pad of

cotton-wool is used to prevent access of warm air into the interior of

the solenoid, and a covering of cotton-wool on the portion CD prevents

it from warming up and conducting heat to the specimen. Instead of

closing the glass tube at B, a cork may be used to stop up the opening.

a
The cork, however, if dry, is apt to loosen and permit the liquid air

to leak out, or if it is at all damp it expands and fractures the tube.

Where tests have to be made as the specimen slowly warms up from

the temperature of liquid air, a Dewar tube is used, with its mouth
closed by a cork whicli has two bent tubes passed through it—one for

the pouring in of the liquid air, and the other for the bringing out of
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the leads from one or more thermo-elements in contact with the

specimen.

The dimensions given above for the internal diameter of the solenoid

will be found sufficient for receiving a double vacuum Dewar tube for

tests at - 252° C. on specimens immersed in liquid hydrogen.

A slightly modified form of the stand supporting the solenoid permits

of the latter being carried, in an east and west position on one of the arms

of the cross-piece of the magnetometer. The apparatus is therefore

available for use with specimens in either the ''A" or '' J5" position

of Gauss ; the methods described in this chapter for the determination

of the effective lengths of the specimens thus become available.

The considerable height of the magnetometer needle above the

level of the magnetometer base-board (18 cm) would also permit the

apparatus to be readily adapted for testing by the " one-pole " method.*

Several instruments of the above type have been built in the Physical

Institute of the University of Glasgow, and very greatly facilitate

accurate magnetic testing.

* See Ewing's Magnetic Induction in Iron and other Metals, p. 39.



CHAPTER IV.

CURRENTS IN DERIVED CIRCUITS AND IN A NETWORK
OF LINEAR CONDUCTORS.'

1. Steady flow in linear conductors. It is proposed to give in this

chapter some general results of theory which will be useful in the

discussions which more immediately follow. A special chapter on
Comparison of Resistances will be given later.

We suppose that by means of a battery, or thermopile, or some form

of magneto-electric machine or dynamo, an electromotive force (e.m.f.)

E is maintained in a circuit, two points of which A, B are joined by a

network of linear conductors. In one or more of these conductors

we may assume that electromotive forces of specified amount have their

seat. If the conductors are in a magnetic field it is to be understood

that they are not anywhere in motion relatively to the field, unless it

is expUcitly stated that they are.

It is outside the purpose of this book to describe batteries or other

arrangements for the production of electromotive forces, or to discuss

the* origin of electromotive force : only such matters as relate to the

theory or practice of electrical measurements can be dealt with.

2. Ohm's law. At the foundation of the theory of flow of electricity

in a network of conductors is the law given by Ohm. This law applies

in the first instance to a linear conductor of homogeneous material

(a wire of uniform or variable section) and at uniform temperature

throughout, at two cross-sections, iSj, Szj in which potentials V^, Fg
are maintained by means of an e.m.f. which has its seat, or origin, else-

where in the circuit. Ohm's law asserts that if y be the current flowing

in the conductor
y^]^(r,-F,) (1)

Here IjR is a coefficient of proportionality, in other words, a constant

multiplier ; for unless the physical properties of the conductor are

altered, for example by the influence of heat produced in the conductor

by the current, the value of R remains unaltered. Ohm's law asserts

therefore that in the circumstances stated the current is proportional

to the difference V^ - V2 of potential maintained between the two
cross-sections. The quantity R is called the resistance of the conductor.

O.A.M. 129 I
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3. Ohm's law in a heterogeneous circuit. Equation (1) is not fulfilled

in general by a conductor made up of homogeneous parts of different

materials placed end to end, or by a conductor moving in a magnetic

field. For such cases the equation is

V.-F. + e .ov

y= R '

^^>

where 7^, Fg have the same meaning as before, and R is the sum of

the resistances of the homogeneous portions of the conductor, in the

former case, or the actual resistance of the conductor in the latter.

The conductor in such cases is said to contain, or to be the seat of,

an e.m.f. e, or (as frequently in what follows) an e.m.f. e is said to be in

the conductor. Since in a heterogeneous conductor (1) applies in the

first case to every part, except any, however small, which includes a

surface of discontinuity, the e.m.f. has its seat at the surface or surfaces

of discontinuity. In the case of a conductor between which and a

magnetic field there is action due to relative motion, the e.m.f. has its

seat in every part of the conductor moving in the field, or across which

lines of induction are passing ; the laws of this action are set forth in

treatises on electricity, and we shall have occasion to touch on it only in

connection with certain problems of determination of electrical con-

stants. We have already done so in Chapter I. above, on Units and

Dimensions.

4. Arrangement of a battery. We now consider a battery consisting

of a number N of cells each of e.m.f. E and internal resistance r, and

made to send a current through an external resistance R. If N be the

product of two whole numbers m, n, the cells can be joined in m parallel

rows, each made up of n cells joined in series, all facing of course^ the

same way, and if the m terminals at each extremity of the set of rows be

joined by thick wires or bars of negligible, resistance, each column of

m cells will be equivalent to a single cell of internal resistance r/m.

No current will flow in the arrangement, and the electromotive force

of the set of m rows will be nE. Thus we have a battery of e.m.f.

nE and internal resistance wr/m. If then R^, R^ be the resistances

of the connections joining the battery to the conductor of resistance R,

we get for the current in this latter conductor

nE
y = ,

71

R + R.+Ro + -r

or, as we may write the equation,

y=_ !!}^ (3)

The numerator of the expression on the right of (3) does not change

with alteration of the mode of joining the cells, and there are twice as

many ways of doing so as there are different pairs of factors in iV. The
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total external resistance is R + R^-^-R^, which, for brevity, we shall

denote by the single symbol R, so that (3) beconiCH

mnE , .

>

V=s fj
(•*)

If it be desired to join the battery in such a way as to produce the

greatest possible current in the external part of the circuit, we have a

problem which in general can be solved practically, but for the solution

of which the theory of maxima and minima values of a function of given

variables is not directly available. The variables here are m, n, and
these, being restricted to be whole numbers, do not vary continuously.

If, however, N be resoluble into different pairs of factors, we can find

which pair more nearly fulfils the condition obtained when continuous

variation is assumed.

Since innE is invariable the value of y is a maximum when mR-hnr
is least, subject to the condition that mn = N. Now

mK + nr = {JmR - sfnr)^ + ^Jmn Rr.

I

Thus clearly, since 2v/mw Rr is invariable, mR + nr is least when mR = nr,

that is when R^nr/tn. When this condition is fulfilled the external

resistance R is equal to the internal resistance nr/m of the battery as

arranged. It may not be possible in practice to join a given battery so

as to fulfil this condition, but if the strongest possible current is required

it should be fulfilled as nearly as possible by choosing the most favour-

able pair of factors of N.

The arrangement which gives the strongest possible current is not,

however, an economical one. The whole activity in the circuit is

nEy, and this, since no work is done against back e.m.f., is the rate at

which heat is produced in the circuit. The rate of working in the

external part of the circuit is mnEyR/{mR +nr), which is a maximum
under the same condition as obtains for a maximum of y. Thus the

rate of evolution of heat in the external resistance is a maximum when
the relation mR^nr, is as nearly as possible fulfilled. But if this

relation is exactly fulfilled just as much energy is spent in heat within

the battery itself as in the external resistance ; and it is plain that

for economy as little as possible of the energy of the battery must be

spent in the battery itself, and as much as possible in the working part

of the circuit. Hence for economical working (without regard to cost

of conductors) the internal resistance of the battery and the resistance of

the wires connecting the battery with the part of the circuit (electric

lamps for example) in which useful work is done, must be made as small

as possible. The cost of conductors limits the application of this

principle of purely electrical efficiency ; and it is obvious that when
this cost is taken into account the most economical arrangement is

btained when the annual cost of the connecting cables (that is provision
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for deterioration and interest on capital expended) is just equal to the

cost of the energy wasted in heat in these connections.

The theorem discussed above applies only to the case (not at all

common) in which we have a given battery, and are obliged to arrange

it so as to produce the greatest current through a given external resist-

ance B. It is a fallacy to suppose, as is sometimes done, that of two

batteries of equal e.m.f., but one of which has a high, the other a low

resistance, the former is better adapted for working through a high

external resistance.

5. Networks of linear conductors. We now consider the theory of a

system of linear conductors in which steady currents are flowing.

When a steady current flows across any cross-section of a conductor,

the current strength is the same across every other cross-section
;

in other words, at any instant the rate of flow of electricity into any

portion of the conductor is equal to the rate of flow out of that portion.

This is the principle of continuity as applied to the case of a steady

flow of electricity. By the same principle we have, in the case in which

steady currents are maintained in the various parts of a network of

conductors, the theorem that the total rate of flow of electricity to-

wards a point at which several wires meet is equal to the total rate of

flow from that point. Thus in Fig. 31 the current arriving at A hj

the main conductor is equal to the sum of the currents which flow

from A by the conductors which connect it with B.

If, as we here suppose is the case, the wires connected at A and B
(Fig. 31) be of the same material, no question of difEerence of potential

Fig. 31.

due to contact of dissimilar substances arises. If then A, B have

maintained between them a difference of potential V, while connected

by, say, two wires of resistances r^, rg, the current through the wire of

resistance r^ will be F/r^, and that through the other wire will be Vjr^-

Hence if y be the whole current arriving, say at A, and flowing away
from B, we have, by the principle of continuity.

V V V
r^ 9-2 R

.(5)

where B is the resistance of a single wire which might be substituted

for the two wires between A and B without altering the current y.

Hence

n )-j jj j-j+cj
.(6)
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The reciprocal of the resistance R oi & wire, that is, l/R, is called the

conductance of the wire. Equation (6) therefore affirms that the con-

ductance of a wire, the substitution of which between A and B would

give with the same difference of potential the same current y between

tliese ])oints, is the sum of the conductances l/fj, l/fg of the two wires.

It follows, as also stated in (6), that the resistance R of this equivalent

wire is equal to the product of the resistances r^, fj divided by their

sum.

This result is easily generalized by adding wires (Fig. 31) of resistances

fg, ^4, ... , one at a time, between A and B, and finding the conductance

and resistance in each case of the nmltiple connection. Thus we get

finally for w wires,11111 /7X

B r^ »2 ^'s *'h

and E= r^Y,-rn
(8)

»V'2 ••• nt-i + Vs ••• fn + r^U '•• n + ...

In the last equation the numerator is the product of all the resistances,

the denominator the sum of all the products of the resistances taken

M - 1 at a time.

A simple example is the case of a number n of incandescent lamps,

each of resistance r, placed in parallel across the mains of an electric

lighting installation. If the resistance of the mains between each

lamp and the next be neglected, we get /2 = r"/wr"~^ = r/w.

6. E.m.f. in a circuit in a network. The considerations stated above

lead to the following important theorem.* In any closed circuit of

conductors forming part of any linear system, the sum of the products

obtained by multiplying the current in each part, taken in order round

the circuit (taking account of the sign of the current in each case) is

equal to the sum of the electromotive forces in that circuit. This

follows at once by an application of Ohm's law as stated in (2) to each

part of the circuit.

As an example of a circuit containing no electromotive forces,

consider the circuit formed by the two wires c
(Fig. 31) of resistances r^, rg joining A, B.

The current y^ flows we suppose from A to

B, the current -y^ from ^ to ^. Hence
by the theorem,

7/1-7/2 = 0, (9)

since the wires are not the seat of any e.m.f.

As another example consider the diagram
(Fig. 32) of resistances r^, r^, r^, r^, rg, r^,

which connect the points A, B and the points

* This theorem and the application of the principle of continuity referre<l to

above were rirst stated explicitly by Kirchhotf, Pogy. Ann. Bd. 7-, 1847, also

Gea. Ahlmnd. p. 22.
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C, D. Take the circuit ACD, which we shall suppose contains no e.m.f.

If Va, Vc, Va be the potentials a,tA,C,D respectively, we have identically

But this is the same thing as

yi*"i + 7/5-7/2 = (10)

if Yi, yg, y2 be the currents in the resistances marked by the same
suffixes, taken as flowing in the direction of the arrows.

7. Principle of continuity. Current through a galvanometer in a

bridge. We extend this notation for currents to the other conductors

of this network, and suppose that the directions of flow are as shown by
the arrows. Also we shall assume that the wire of resistance r^ con-

tains an e.m.f. E, so that r^ is the resistance of the battery (or other

electrical generator) and the wires joining it to ^, B. The arrangement

is then that of a Wheatstone bridge or balance, and the chief problem

that arises is the determination of the current which flows in the con-

ductor of resistance r^ joining the points C, D. To solve this we apply

first the principle of continuity to the currents at the points A, G, D.

We get

76 = 7i + 72' 73 = 7i-75' 74 = 72 + 75 (H)

Applying the circuital theorem stated above to the circuits BACB,
ACDA, CBDC we obtain, using (11), the three equations

(r, + rg + /-g) Yi + r,y2 - r^y, = E, \

n7i-^272+ ''575 = 0, (^2)

'371 - '472 - ('3 + U + '5) 75 = 0. .

Eliminating yj and yg we find

^^JVa^E, (13)

where D = r^r^ {i\ + 1\^ + i\ + 1\) + rg {i\ + r^ {u + r^)

+ U ('"l + '2) ('3 + '4) + 'VS ('"2 + '4) + 'V4 ('"l + h)' •••(14)

By substituting for yg in the second and third of (12) its value

76-7i' we get

('•i
+ '-2)7i+ '575 -'276 = 0, ) ^^.^

('•3 + '4) 7i - ('3 + U + '5) 76 - '476 = 0- /

From these, by eliminating y^, we obtain

y^ ('2'3-'-i'-4)76 (16)
^'

'•5('-l + '2 + '3 + '4) + ('"l + '2) ('3 + '-4)

8. Resistance of a bridge network. By means of (13) and (16) we can

solve the problem of finding the equivalent resistance of the system of

five wires which, external to the battery, lie between the points A, B.

For let R be this equivalent resistance ; since y^ is the current through
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the battery we have y(^= E/{r,^-i-R). Substituting this value of y^
in (16), and equating the values of y^ given by (13) and the modified

form of (10), and solving for R, we obtain

^^(r, + 7-2 + rg + ?'J + (r, 4- rjXrg + r,)

Tlie solution of this problem is very easily obtained directly. Con-
sider the three modes of passing from A to B, ACB, ADB, ACDB.
From these, writing y for y^, we get

'171+ '•373-^^7 = 0. »'27. + »'474-'^«'7 = 0, '•i7i + '575 + ^474 = ^^V. -(18)

or, by (11),

-Wl- '•473-(^'^-'-2-^4)7 = 0. [
(19)

('1 + r,) y, - (7-, + r,) y.,
- (K - 7-,) y = 0. J

These give the determinantal equation

= 0, (20)

{R-r,-r,)

-(7-, + r,), -(R-U)
which expanded and solved for R gives (17).

9. Addition of conductors to network without change of flow. It

follows from Ohm's law and the theorems which have been deduced
from it, that any two states of a system of conductors may be super-

imposed ; that is the resulting potential at any point is the sum of the

potentials at the point, the current in any conductor is the sum of the

currents in the conductor, and the electromotive force in any circuit

is the sum of the electromotive forces in the circuit, in the two states

of the system.

The following result, which is a direct inference from the foregoing

principles, and can be verified by experiment, will be of use in what
immediately follows. Any two points in a linear circuit which are at

different potentials may be joined by a wire without altering in any
way the state of the system, provided the wire contains an e.m.f.

equal and opposite as regards the production of a current in the conductor
to the difference of potential between the two points. For the wire,

before being joined to the circuit, will, in consequence of the e.m.f.,

have the same difference of potential between its extremities as there is

between the two points, and if the end of the wire which is at the lower

potential be joined to the point of lower potential, it will have the

potential of that point, and no change will take place in the system. The
other end will then be at the potential of the other point, and may be
supposed coincident with that point, without change in the system.

The new system satisfies the principle of continuity, and the circuital

theorem, and is therefore possible ; and it can be proved that it is the
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only possible arrangement under the condition that the state of the

original system shall remain unaltered.

As a particular case of this theorem we see that any two points in a

linear system which are at the same potential may be connected, either

directly or by a wire of any chosen resistance, without alteration of the

state of the system.

10. Conjugate conductors in a network. Further, it follows that if

an e.m.f. in one conductor. A, of a linear system can produce no current

in another, B, of the system, either conductor may be removed without

altering the current in the other. For let A be removed : the potentials at

the points of the system at which it was attached will in general thereby

be altered. And since any two points in a linear system between which

there is a difference of potential may, without altering the state of the

system in any way, be joined by a wire which contains an e.m.f. equal

and opposite to the difference of potential, we may suppose the con-

ductor replaced with an e.m.f. in it equal to the difference of potential

now existing between the two points, and its presence or removal will

not now affect the current in any part of the system. But the same
result may be attained, of course, without removing the conductor,

by simply placing within it the required e.m.f., and this by hypothesis

does not affect the current in the other conductor. Hence the removal

of the conductor. A, does not affect the current in B. Again, by the

first reciprocal relation below, p. 137, if an e.m.f. in A can produce no

current in B, an e.m.f. in B can produce no current in A. Hence B
may be removed without affecting the current in A.

HA, B, (7, D be any four points of meeting in a network of linear

conductors, in one wire of which joining ^J5 there is an e.m.f., while

CD is connected by one or more separate wires, the network can be

reduced to a system of six conductors arranged as in Fig. 32, and such

that the wires AB, CD, the currents in them and the potentials at their

extremities remain unchanged. For currents must enter any one

mesh of the network at certain points, and leave it at certain other points.

One of the former must be the point of maximum potential in the mesh,

one of the latter the point of minimum potential. The circuit of the

mesh, therefore, consists of two parts joining these two points, and to

any point in one of the parts will correspond a point of the same potential

in the other part. We may therefore suppose any point in one in

coincidence with the point of the same potential in the other. If this

coincidence exist for a sufficient number of points we may as exactly

as may be desired replace the mesh by a single wire joining the two

points, and such that the currents entering or leaving it by wires joining

it to the rest of the system, and the potentials at the points of junction,

are not altered.

Since the only e.m.f. is in the wire AB, the current must enter the

network at one of its extremities, A say, and leave at the other ex-

tremity B. A and B are therefore the points of maximum and
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minimum potential of the network. Hence we can replace the meshes

of the system one by one by single wires, keeping CD unaltered until

we have reduced the network to two meshes, one on each side of CD,
connected by single wires to A and B respectively. Each mesh and

connecting wire can be replaced by two wires joining A and B respec-

tively with CD, and thus the whole system is reduced to an equivalent

system of the form shown in Fig. 32. We can now deduce from this

simple system relations for the currents and potentials in the conductors

AB, CD, which will hold for these conductors in the more complex

system.

Let the c.ni.f. hitherto supposed to act in ^B be transferred to CD^
while the resistances r^j, r^^ are maintained unaltered. The value of y^^

will be obtained from (13) by retaining the numerator unaltered and
interchanging n, and fg, r^+rg and r^+rg, r^+r^ and r^+r^ in D. But
these interchanges will not cause any alteration in the value of Z),

and hence the new value of y^ is equal to the former value of y^. Hence
the theorem : An e.m.f. which, placed- in any conductor Ci of a linear

system, causes a current to flow in any other C^n, would, if placed in G„,

cause an equal current to flow in Ci.

If the arrangement is such that when the e.m.f. is in Ci the current

in Cfn is zero, the current in Ci will be zero when the e.m.f. is in C^ ;

and no e.m.f. in one will produce a current in the other. The two
conductors are in this case said to be conjugate.

11. Reciprocal relation of conductors in a network. We can easily

obtain another iniportant theorem. The five conductors AC, AD,
BC, BD, CD, in Fig. 32, may be regarded as the reduced equivalent

of a network of conductors, at one point of which, ^, a current of amount

yg enters, and at another point of which, B, the same current leaves.

We suppose for the moment that no e.m.f. has its seat in any conductor

of the system considered. The current y- which flows in the conductor

CD is given by (16). Multiplying by r^ we get for the difference of

potential between C and D due to the current y^ the value

^,. ^ 76^5(^2^8 -^-1^4)
.. (21)^''

r,{ri + r,, + r^-i-r^) + (r^ + r^)(r^ + r^)

But the resistance r of this system of five conductors (the equivalent of

the network referred to standing alone, that is, without /-g), between
the points C and D is given by

^•5(^1 -^•^•2)03 + ^4),.^ ^•5^^i-^-^2H^3 + ^V
^ (22)

?! (ri + rg + rg + r^) + (r^ + r^) (r^ + r^)
'

and if a current of amount yg enter this system at G and leave it at D,
the difference of potential between C and D will be equal to this ex-

pression multiplied by yg. The product multiplied by r^/ir^+r^) is

the excess of the potential of C above that of A, and multiplied by
rj{r.^ -\-r^) it is the excess of the potential of C above that of B. Hence
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the excess e of the potential at A above that of B caused by the current

ye in CD is given by the equation

^_ y6^5(^V3 - V4) (23)
^1(^1 + ''2 + ^'3 + ^'4) + (^'i + ^'2) (^1 + » 4)

Now let the network be part of any more general system, and let any

e.m.f.s exist anywhere and produce any system of currents whatever

consistent with zero current in the conductor CD. The superposition

of the state just considered for the given network will be consistent with

the previously existent state, and the difference of potential between

A and B will be altered by the amount just found. Hence we have the

theorem :

If by a current entering at one point A of a linear system of conductors

and leaving at another point B there is caused a certain difference of

potential between two other points CD, then, by an equal current entering

the system at G and leaving at D, there is caused the same difference of

potential between A and B.

12. Derived circuits in a network. The following result is easily

proved and is frequently useful. If the potentials at two points A, 5,

of a linear system of conductors containing any e.m.f.s, be F, V
respectively and R be the equivalent resistance between these, then if

a wire of resistance r be added, joining AB, the current in the wire will

be {V -V')l{R+r). In other words, the linear system, so far as the

production of a current in the added wire is concerned, may be regarded

as a single conductor of resistance R connecting the points AB, and

containing an e.m.f. of amount V -V. For, let the points A, B he

connected by a wire of resistance r, containing an e.m.f. of amount
V -V opposed to the difference of potential between A and B, no

current will be produced in the wire, and no change will take place in

the system of conductors. Now imagine another state of this latter

system of conductors in which an equal and opposite e.m.f. acts in the

wire between A and B, and there is no e.m.f. in any other part of the

system. A current of strength {V -V')/{R+r) will flow in the wire.

Now, let this state be superimposed on the former state : the two

e.m.f.s in the wire will annul one another, and the current will be

unchanged. The potentials at different points, and the currents in

different parts, of the system, will be the sums of the corresponding

potentials and currents in the two states, and will therefore, in general,

differ from those which existed before the addition of the wire.

13. Sensitiveness of a bridge arrangement. The arrangement shown

in Fig. 33 represents the Christie or Wheatstone balance used for

the comparison of resistances. A battery is included between A
and B in the conductor of resistance r^ (so that the total resistance

between A and B through the battery is r^), and a galvanometer

is included in CD. One of the remaining four resistances, say r^, is

given : it is required to find the conditions which must be fulfilled

for maximum current through the galvanometer.
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It is clear that the current y^ is zero when r^tx^r^^, or r^jr^^rjf^.
Let us suppose that instead of fulfilment of this relation we have

c'-^J'^. (24)

where c is a constant multiplier. Then we have by (13)

r,r
y.= £(o-l)-i^S (25)

where E is the e.m.f. of the battery and D has the value given in (14),

but is modified in form by substitution of the value cr^r^lr^ for fj, so

FlQ. 33.

that rg no longer appears in the expression for y . For example, the

relation
»*i/**3

=
**a/^4> once fulfilled, might be deviated from by a small

change of r^ to the value r^^ + dr^. We should then have cr^ (r^ + dr^ = r^r^

or {c-\)r-^rx + cr^dr^ = 0, and -Er^drJD on the right in (25).

We have, then, to find when y- is a maximum on the supposition

that r^, r^, r^, E and c are constants, or,

convenient, when D/rir^ IS a mmmium
which is the same but more
under the same conditions.

Writing u for D/r^f^ ^^^ calculating the values of

du du d^u d^u dhi

d^i' d¥^ dTV' ^' d^^'
we find, by equating the first two differential coefficients to zero, that

either ri==0 and /g-O, or r^ = Jr^rQ and r^ = Jr^rQ{r^+r^)l{r^+rQ).

Substituting these values of r^ and r^ in the expressions for the three

second differential coefficients, we find that the latter pair of corre-

sponding values gives positive values to each of the expressions

dH dht dhi dH / d^u y
\dr^ drj

'

dr^' dr^^' dr^ dr.^ \d)\ (/?-g
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which is the condition for a minimum. The first pair of values, ri =
and r3 = 0, gives neither a maximum nor a minimum.
When the battery and galvanometer resistances are capable of

modification, we have along with the equations found above,

/
/ ^4 + ^'S

the conditions ?-5 = ?i
--

4

^3 +^4 ,. A^\ + '>'3){r2 + U)

'i + rs ® ^-1 + ^2 + ^3 + '4

The first of these last two conditions is proved as follows. We
assume that the mass of wire in the galvanometer coil and the channel

in which it is wound are the same in different coils, which we here con-

sider. When this is the case the electromagnetic force at the needle

is (see XII. 22 below) proportional to the square root of the resistance of

the coil. Hence for a given value of yg the deflection of the needle may
be put equal to ay^Jr^, where a is a constant. Hence we may write

deflection = ?^<^)li^*^.

In this case we have to find when D/r^r^Jr^ is a minimum. This

expression can be put into the form {m+nr^)/kjr^, where m, n, k do not

involve r^. Equating to zero the first differential coefficient of this

quantity with respect to r^, we get for a minimum r^ = m/n. It will be
found that though m/w appears to involve r^, the battery resistance, the

relation r^/rg = r2/**4> fenders it independent of. r^, and so we obtain

,. ^ ri(^3 + ^'4) ^ fa + ^2)(^3 + ^-4)

(26)
5 r^ + r^ rj, + i\^ + rs + r^'

which is the best resistance of the galvanometer, subject to the con-

ditions stated.

Next, let the total area of the acting surfaces in the battery be given,

while the resistance may be varied by the mode adopted for combining
the cells in series and parallel. We have (see p. 131 above) the greatest

current when the battery is so arranged that its resistance is equal

or nearly equal to the external resistance. When balance is nearly

obtained, we may take as the external resistance between the points

A, B (Fig. 32), the value {r,+rs){r^+r^)/{r^+r^+rs+u). If r^

may be taken as the resistance of the battery alone (that is, if the

electrodes joining the battery to A and B be made so massive that their

resistance may be neglected), we have to arrange the battery so that

,. _ (^1 + ^3) (^'2 + ^4)
(27)

^ ri + r^ + r^ + U
When everything except r^ is a matter of choice and arrangement,

it follows that we should make rj^ = r2 = rQ = r^ = r^ = rQ. This however
is almost never a practical arrangement, and the statement of it is apt

to be misunderstood. It is to be observed that for a given available
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electromotive force in the circuit, not susceptible of change, as supposed
here, by a choice, say, of battery arrangement, the sensibility is greater

the smaller r^. The greater the electromotive force the better, if over-

heating is avoided.

If a deviation from fulfilment of the relation rjr^ = rjr^ (see Fig. 32)

is brought about by the change of r^ to r^+dr^, where dr^ is small, we
get, by (13),

ys=-^Hdu (25')

Now let us suppose that the resistance of the battery, with the leads

to A, B, is infinitesimal, so that we may put r^ = 0, then, by (14),

Also if y be the current (only slightly changed by the change in r^)

through AD and DB, we have now E= y{r2-\-r^). Thus we get, since

y,= yjtA ri±!j (26)

* rl + r2 + r^ + r^

But we have seen that the best value of r^ is (irrespective of the battery

resistance) given by

^
^'i + rg ri + r2 + r3 + ?4*

Using this value of r^ in the last equation, we get

_y^,_
^' 2(r,^r,)

^-'^

If we suppose that r^ is practically all in the galvanometer coil, we

know that the deflection is proportional to y^Jr^. But by the first

form of rg given above, we get

^'^'^-*^S^{o7t5?^}* <^«>

We shall obtain applications of this result in the discussion of methods
of comparing resistances.

14. Flow of electricity in three dimensions. So far we have con-

sidered only cases of steady flow in linear conductors. It is of import-

ance however, for the correction of certain measurements with respect

to flow in linear conductors, to consider the distribution of the flow

and the forms of the equipotential surfaces in different cases of con-

ductors which cannot be considered as linear. For this purpose it is

necessary to find the differential equation of the potential for the case

of steady flow in a given medium, and from one medium to another.

We shall consider only media in which the conductivity is the same
in all directions.



^ ( -7-^ + '4-^ + ^^t:V) d^ dy dz.
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By the fundamental principle of the theory of Ohm the rate of flow

of electricity at any point {x, y, z) in any direction is directly proportional

to the gradient of the potential V at that point and in that direction,

we have for the rate of flow per unit of time per unit of area, in three

mutually rectangular directions,

dV dF dV
ax dy dz

since the flow takes place in the direction in which V diminishes. The
multiplier k is the specific conductance (conductivity) of the medium,

and is the conductance (the reciprocal of the resistance) between two
opposite faces of a centimetre cube of the substance.

15. Differential equations of flow. Considering an element in the

shape of a rectangular prism taken in the medium with its centre at

the point {x, y, z) and containing within it no seat of e.m.f., we find

thait the excess of the rate of inflow over outflow for the element is

^d^ <PV dW^

dx^ dy^ dz^

Since the flow is steady this is zero, and we have the differential equation

fiV d^V d^V_
d^*df + d?-^ ^^^>

This is known as Laplace's equation of the potential, which thus holds

for flow of electricity in a uniform isotropic conducting medium. The
theory of solutions of this equation under certain conditions constitutes

the department of analysis called Spherical Harmonics, some results of

which we shall have to use in later chapters.

It follows from this equation that the density of electricity at all

points within a medium, in which the flow is steady, is zero, that is there

is no electric charge on an element of the medium.
At any point of a surface at which a medium of conductivity k^ is in

contact with a medium of conductivity k2 we have the equation

<+^4-S='''
^''^

where dV/dn^, dVjdn^ are the rates of variation /rom the surface along

a normal in each case towards the medium in which the flow is con-

sidered. This follows from the fact that the normal component of

flow in the first medium up to an element dS of the surface is

ki{dV/dni)dS, while the normal component of flow in the second

medium away from dS is -k^idVjdn^dS, and these must be equal to

one another.

Putting A:2 = 0, we get for the equation at a surface separating a

conducting medium from one of zero conductivity

f=«- w
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or the component of flow at Ti^ht angles to the surface is zero at every

point of the surface.

If, on the surface of separation between the media, there be an

e.ni.f. E acting from the second medium to the first, we have besides

(30) the equation y^ _ y^+E^O,

where Fj, V2 are the potentials at the point but on opposite sides of the

surface of contact.

These differential equations are precisely similar to equations which

hold for flow of heat and for electrostatic phenomena. Solutions

obtained for electrostatic problems are at once interpretable for flow

of electricity, if conductivity be substituted for specific inductivity,

flow of electricity per unit of area per unit of time for electrostatic

induction, and line or tube of flow for line or tube of electric induction.

16. Examples of flow. We consider here only a few particular cases

of practical interest. 1. An annular space contained within two

coaxial right cylindrical surfaces is filled with a conducting liquid

(or other homogeneous conductor) : it is required to find the resistance

of the arrangement for conduction from one surface to the other.

This is the case of the column of liquid between two coaxial cylindric

plates in a voltaic cell.

Equation (29) gives for radial flow

Wl^rW-^' ^'')

where r is the distance of any point from the common axis. Integrating

we get V = A\ogr-\-B.

Hence, if at the inner and outer surfaces (radii r^, r^ the potential^

be Fj, Fg, we get

But if I be the length of the cylinder, V^ the greater potential, and k

the specific conductance of the substance, the total current across

the coaxial cylinder of radius r is -2'7rUr . dV/dr, that is -2'7r]clA.

Hence we obtain

ZijiZ2.=_L.w ':i (32)
-27rklA 2TkV^^i\

The expression on the left is the difference of potential between the two

surfaces divided by the total current from one to the other, and this

of course is the resistance to flow. The resistance is therefore

(logr2-logri)/2xA;Z,

and depends on the ratio of the radii, and is inversely proportional to

the length of the cylinder.

17. Resistance between electrodes buried in a large mass of conductor.

2. Two small highly conducting spherical electrodes kept at different
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potentials are buried in an infinitely extended uniform conductor of

comparatively much lower specific conductivity h : it is required to

find the resistance between the spheres.

The potential of each sphere may be taken as nearly the same
throughout its mass, and if the distance of the spheres apart be great in

comparison with the radius of either, the potential at any point near

the surface of one of the spheres, and at a distance r from the centre,

will be approximately in inverse proportion to the distance r. This

follows from the equation of potential, (29) above, which becomes in

the case of a single sphere,

d'-V ^dF^
dr'^ r dr

~

Integrating, we get F= — -\-B, (33)

where A and B are constants. B must be zero since, for large values

of r, V must be small.

Thus, if Fi, Fg be the potentials of the two spherical electrodes

(Fi>F2), and r^, r^ the radii, the potential at such a point as that

specified is V-^r-j^jr or Fg^g/** according to the sphere to which it is ad-

jacent ; and the corresponding outward gradients of potential will be

This gives at the surfaces of the electrodes the values

-FiVri^ and -Y^rjr^.

The outward rate of flow from the sphere of higher potential is

therefore ^irlzV^-^, and the inward rate of flow over the other is

- 47rA;F2^2- Hence if y be the total current, we have

y = 27rA;(/'Vi- ^V2)-

The total resistance B to conduction from one sphere to the other through

the infinitely extended medium is therefore given by

a result pending on the radii of the spheres and not at all on the

distance between them. The result is of interest in connection with the

" earthing " of telegraph wires and other conductors ; for we infer

that the resistance between two electrodes buried in a large mass of con-

ducting material, such as that afforded by a good " earth," is practically

independent of their distance apart.

If the conductor were separated into two parts by a plane passing

through the centres of the spheres the resistance between the hemi-

spherical electrodes in each part would be double that given by (34),

or Xlivhr,
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18. End corrections of bar terminating in large conducting masses.

3. The same case as in 2, except that the electrodes are circular disks

of highly conducting material.

Supposing, as before, that the electrodes are at a distance apart

great in comparison with either disk-radius, the distribution of potential

in tlie medium surrounding either is the same apj)roximately.a8 that in

the field of a single charged disk. Let r^, r^ be the radii of the disks,

Fi, V 2 their potentials in order of magnitude. We shall take first

the electrostatic analogue, and consider the surface density of the

charge on each disk as constant, =(t, say. The outward component
of electric force along a normal is -dV/dn = 4:7r(T. Hence, integrating

over both faces of the disk, and putting Q for the whole charge, we have

-{dS.dV/dn = i7rQ.

But the total outward flow is y= -k\dS.dV/dn, and we write here

for Q, by the theory of a charged disk [see Appendix, Notes] 2riFi/x,

so that we get y = SkriVi. Similarly we get y= -Skr^Vz- Hence

Since ViT^^ - Y ^c^, this gives

^-^; (^^>

We infer that the parts of R due to the respective di.sks are Xj^kr^

and Xj^kr^' If the disks lie in the bounding surface conduction takes

place from only one face of each, and the value of R is twice that just

obtained.

The result gives an inferior limit to the correction to be made on the

resistance of a cylindrical wire which is joined to a large mass of metal.

Let the junction be made by a thin disk of very highly conducting

matter. The flat surface of the end of the wire will be brought to one
potential, and therefore its conducting power will be fully made use of

right up to the disk. Hence an inferior limit to the correction is an
addition of \lih\ to the resistance, or if k' be the specific conductance

of the wire, of irk'rJ4k to the length. The late Lord Rayleigh gave

•SM2k'rJk as a superior limit to the addition to be made to the length

for each end. If k' =--k, as in the case in which a glass tube filled with

mercury opens at each end into a large mass of mercury, we have as an

approximation to a lower limit for the correction 7rr/4 or -7854/ ; that

is this addition at least must be made to the length for the effect of

the spreading out of the lines of flow at each end from the tube into the

large volume of mercury.

This is also the approximate correction to be made on the length of a

resonating cylindrical column of air which responds to a tuning fork

vibrating above it.

a.A.M, K



CHAPTER V.

THEOEY OF ELECTROMAGNETIC ACTION.

I. Actions between Currents and Magnets.

1. Oersted's experiment. The action of a current on a magnet, dis-

covered by Oersted in 1820, is the foundation of the modern science

of electromagnetism, for from it has come by a steady process of

discovery, at once inductive and deductive, the whole theory of the

mutual action of magnets and currents, and of currents on one another,

of the induction of currents by the motion of conductors in a magnetic

field, and the great modern applications of electricity to telegraphy

and telephony, lighting and transmission of power, and electric traction.

We shall follow to a certain
— extent the historical order

of development of this part

of the subject, making use

freely, however, for brevity

and clearness, of the

theorems contained in the
^^^- ^^- digest of magnetic theory

already given, and of the ideas and methods suggested by later writers,

such as Thomson and Maxwell.

In Oersted's experiment, as commonly performed, a magnet is

suspended horizontally in the magnetic meridian, and a conductor carry-

ing a current is stretched parallel to the needle, above it or below it.

The magnet is acted on by a couple which turns it round towards the

position at right angles to the conductor, and it finally rests in equili-

brium in a position in which this deflecting couple is balanced by the

return couple due to the terrestrial magnetic field. The deflecting

couple is reversed in direction by turning round in azimuth through

180°, or *' end for end," the conductor carrying the current, so that,

for example, the current flows from south to north instead of from north

to south ; and it is likewise reversed when the conductor is transferred

from a position above the needle to a position below the needle, and

vice versa. Thus the direction of the deflecting couple is not reversed

140
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when the conductor is both turned end for end and tranuferred from
above to b<'low, or from below to above ; and we see therefore that if

the current flow, say from north to south above the magnet and back

from south to north below the magnet, the deflecting couples due to

both furrents are in the same direction. By multiplying the number
of conductors or portions of one conductor thus carrying currents, the

effect on the needle is also enhanced. Hence by winding the conductor

into a coil of a large number of turns, one part of each of which is above

the other below the magnet, the actions of the various turns on the

magnet are given all the same direction, and the magnet is acted on by
a resultant couple round a vertical axis, made up of the component
couj)les round such an axis which are furnished by the turns of wire in

the coil. This is the construction and mode of action of the old form

of ** galvanic multiplier," and of the modern galvanometer.

2. Equivalence of a current and a distribution of magnetism stated.

Since the needle is deflected by the current just as it would be by
bringing another magnet into its neighbourhood, we are led to regard

the current as producing a magnetic field, which is superimposed on the

terrestrial magnetic field so as to give a resultant field, parallel to a

line of force of which the needle, if short, places its magnetic axis.

In fact, the current produces the same effect as would a certain distribu-

tion of magnetism, and we have to inquire what is the nature of this

distribution. This is set forth in the following general theorem given

by Ampere : Every linear conduclar carrying a current is equivalent

to a simple magnetic shell, the bounding edge of which coincides with the

conductor, and the moment of which per unit of area, that is, the strength

of the shell, is proportional to the strength of the current. The direction of

magnetization of the shell is reversed when the current is reversed,

and may be found in any given case as follows. Supposing an observer

to be standing on the edge of the shell with its surface on his left hand,

and to be looking in the direction in which the current is flowing,*

the side of the shell towards the observer will be covered with northern

magnetism. This may also be remembered by the rule, that the

magnetism of the earth coincides in direction with that of a needle

placed within it, and turned into position by currents circulating round
the earth in the direction of the sun's apparent motion.

The theorem of Ampere just stated depends on another theorem which
we shall consider first. The magnetic field produced by the current in

a plane closed circuit is the same at all points, the distances of which from
every part of the conductor are great in comparison with every dimension

of the circuit, as that produced by a small ma/jnet placed anywhere within

the circuit, with its axis at right angles to the plane of the current, and
having a magnetic moment proportional to the current flowing, a^ui to the

area of the circuit.

* From copper to zinc in the external part of the circuit of a voltaic cell.

)cording to the ordinary convention.
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The truth of this theorem may be demonstrated by a simple experi-

ment which has become a common laboratory exercise. A plane circuit

of convenient form, for example circular, is arranged in a vertical position

parallel to the magnetic meridian, by connecting to a circular coil,

of one turn or more, the terminals of a battery placed at a considerable

distance from every part of the apparatus used in the experiment.

It is easy to prove by separate experiments that the current in the part

of the circuit consisting of the battery itself and the wires connecting

it to the circular conductor, produces no appreciable effect if the wires

are twisted together, and are both joined as nearly as may be at the

same point to the coil. The effective part of the circuit is then only

the coil, and it is this only we mean when we refer in what follows to

the " circuit." A magnetometer is placed with the centre of its needle

on a horizontal magnetic east and west line passing through the centre

of the circular conductor, which is so arranged that the distance of its

centre from the magnetometer needle can be altered at pleasure. It is

found by observing the deflections of the magnetometer needle that the

magnetic forces produced at the centre of the needle are very nearly

in the inverse ratio of the cubes of the distances of the centre of the

needle from the centre of the coil, when these distances are great in

comparison with the dimensions of the circular conductor. The same
result may be obtained for a plane conductor of any other form by so

placing it that the east and west line through the centre of the needle

passes through the plane of the conductor within or near the circuit,

and taking the distance as that between the plane and the needle's

centre. Now, by equations (9), Chapter V., this is precisely the

result that we should have obtained for a small magnet placed as

specified above with regard to the circuit ; and it is possible to adjust

the moment of the magnet so that its action and that of the current

may be identical.

It is further found experimentally that if we have a magnet and a

current which produce the same magnetic force at distant* points

upon an east and west line passing through the circuit, the magnet and
the current produce the same magnetic effect at all other distant points.

Finally, by altering the area of the circuit in any ratio, we find the

magnetic force at every point altered in the same ratio. Hence the

equivalence is completely proved.

3. Definition of current strength and unit current. We define the

current strength in a given circuit as proportional to the intensity of the

magnetic field which the current produces at a given point ; and hence

it is not necessary to prove that the moment of the equivalent magnet
must be proportional to the current, since we know that the magnetic

field due to a magnet at a given point so distant that the effect of dis-

tribution of magnetism does not enter into account, is proportional to

* "Distant" here, as elsewhere in a similar connection, means that the points

are at distances from the circuit great in comparison with any of its dimensions.
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the magnetic moment of the magnet. We shall find that this mode
of measuring current-strength gives results consistent with those

obtained from the definition based on the electrostatic system of units,

viz. the quantity of electricity which passes across an equipotential

surface in the circuit per unit of time.

We fornially define unit current as that current which flowing in a

circuit of unit area can bo replaced by a magnet of unit magnetic

moment. This definition depends on the unit of magnetism already

defined, and, when the latter unit is 1 c.g.s. unit of magnetism, we have

by the definition 1 c.g.s. unit of current. We shall find other, but

equivalent, definitions of unit current.

The magnet equivalent at distant points to the plane circuit may be

supposed broken up into an infinite number of equal short magnets
uniformly distributed over the circuit with their centres in and their

lengths at right angles to its plane. If the aggregate magnetic moment
bo the same as before, the same effect will be produced, since the position

of the equivalent magnet within the circuit and its form do not affect

the force which it produces at distant points. But this converts the

equivalent magnet into a uniform magnetic shell, the strength of which

is, by the definition of unit current just given, simply the strength of

the current.

4. Proof of general theorem of equivalence of a linear current and a

magnetic shell. Ampere's further proposition, that any finite linear

circuit carrying a current is equivalent

to a magnetic shell, can now be proved

at once. For let ABC be the circuit,

in which we shall suppose a current of

strength y to be flowing. We may
construct, as indicated in the figure,

a network of conductors of which the

circuit is the bounding edge, having

each mesh so small that it may be

considered plane. Round each of

these meshes a current y may be supposed to flow in the same
direction as that of the current in the boundary. It is clear that

this will give two equal and opposite currents in every conductor which

is common to two meshes, and thus the system reduces simply to the

current in the original conductor which forms the boundary. Each
of these small circuits may, however, by the proposition just proved,

be replaced by a small magnet, or by an infinite number of equal

infinitely small magnets uniformly distributed over it, and the aggregate

of these small magnets gives a magnetic shell bounded by the circuit.

It is important to notice that the meshes may have any continuous

succession of positions, provided the boundary be undisturbed. Thus
the shell is geometrically defined only by its boundary the conductor.

It should also be observed that there is not here any restriction of the

Fig. 35.
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equivalence to the action at distant points ; only, since the conductor

must always in practice be a wire of finite thickness, the points at

which the action is considered must be at a distance of several diameters

of the wire from the boundary.

5. Work done in carrying a pole in a closed path round a current.

We can now at once show that the work done in carrying a unit pole

from any point P in the field of a current round a closed path to the

point P again is zero, if the path do not embrace the circuit, and is 47ry

if the path embrace the circuit once. For, let a position of the equivalent

shell be chosen which does not intersect the closed path, if the latter

does not embrace the circuit, and one close to the point P, if the closed

path does pass round the circuit. In both cases the work done is equal

to the total change of potential in passing round the path. In the

former case this is zero. In the latter case let the pole be carried first

from the point P to a point Q infinitely near to P on the opposite side

of the shell. The change of solid angle in passing from P to Q is, as

proved in II. 21 above, 47r, and therefore by the definition of current

strength the work done is iiry. Now although the shell was fixed in

position in estimating the work done in carrying the unit pole from

P to Q, it is not necessary to suppose it fixed in the same position in

finding the work done in carrying the pole along the infinitely small

part of the closed path which lies between Q and P. We may therefore

suppose the shell in any other position clear of the element QP of path.

The work done in carrying the pole from ^ to P is therefore infinitely

nearly zero, that is, the work done in carrying the pole round the

closed path is 47ry. Another proof of this theorem is given in 12

below.

6. Case in which the path and circuit interlace any number of times.

If the path be laced round the circuit any number, n, of times, the whole

work done in carrying the pole round

the path will be iiriiy. To see this we
have only to join P to the points P, T,

etc. (Fig. 36.) The work done in

carrying the pole round the path

PQRS ... P, is equal to the work done

in carrying the pole round the n closed

paths P(?PP, RSTR, ... , VWPRTV,
since the portions PR. RT, etc., are

each traversed twice but in opposite directions, so that the work done in

traversing them in one direction cancels the work done in traversing

them in the other.

In the same way, we can prove that if the circuit pass n times through

the path, the work done in carrying the pole round the path is ^iriiy.

For, consider the case represented in Fig. 37, in which the circuit

passes twice through the path, and join the two points Q, S of the path

by the line QS passing between the two portions of the circuit. The
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work done in carrying a unit pole round the path is plainly equal to the
work done in carrying it round the two closed paths PQSP, QRSQ,
since SQ is traversed in opposite directions

in the two cases. But in each case the
work done is 4'7ry, and hence the whole
work done is 2 x iiry. Hence, proceeding
in the same way for further interlacing of

the circuit with the [)ath, we obtain the
general result stated above.

Any combination of the two kinds of inter-

lacing will give a result which can be calcu-

lated according to the circumstances of the Fio. 37.

case by combining the two results just found.

7. Magnetic field of a long straight conductor carrying a current.

Ampere's theorem is confirmed by quantitative experiments on the

magnetic effects of a long straight conductor carrying a current. With
the arrangement of horizontal conductor and horizontal needle, it is

found as has been stated that, according as the conductor is above or

below the level of the needle, the latter is deflected in one direction or

the other, and hence when the conductor is in the same horizontal

plane with the needle, no deflection is produced. If the free period of

oscillation of the needle be observed when the conductor is present in

the same horizontal plane it is found to be the same as when no current

is flowing.

These results show that the current produces then no component
force in the horizontal direction on a magnetic pole, and it follows that

the resultant force is in the vertical direction. The force on a magnetic
pole is therefore at right angles to the plane through the conductor and
the pole.

Tlie same thing is shown by the fact observed by Ampere, that the

position of the needle is at right angles to the conductor in a plane

parallel to it when there is no force acting on the needle except that due
to the current ; for this proves that there is no component in the plane

through the current and a magnetic pole on which the current acts.

8. Lines of force circles round a conductor. It is found that the magni-
tude of the magnetic force due to the current in a straight conductor,

at points not opposite the ends, and at distances from the conductor
small in comparison with its length, varies inversely as the distance

of the point considered from the conductor. Its direction is, as we have
seen, at right angles to the plane through the conductor and the point

considered. A magnetic pole free to move in a circular groove with

'the conductor for its axis would move round the groove in the same
direction and would be acted on by the same force, which would be
everywhere tangential to the groove. In fact the lines of magnetic
force round the conductor, except near its ends, are circles having the

conductor for their common axis.
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These results for a straight conductor are proved by a number of

simple experiments. That the intensity of the magnetic field varies

inversely as the distance from a thin conductor was shown by Biot and
Savart,* who placed a horizontal conductor at right angles to the mag-
netic meridian, and at different distances above and below the centre

of a horizontally suspended needle, and observed the periods of oscilla-

tion when the needle was under the influence of the earth's force alone,

and again when a current was made to flow in the conductor. If T, T'

be the periods in the two cases, M the magnetic moment, and jjl the

moment of inertia of the magnet, the intensity of the field due to the

current is given by the expression 4:7r^/uL/M.{l/T'^ - 1/T^).

9. Law of force found experimentally : method of Maxwell. The
law of variation of force with distance is also shown by the following

elegant experiment apparently suggested by Maxwell, t A conductor

is placed in a vertical position and a light carriage of non-magnetic

material is suspended so as to be free to turn round the conductor as

an axis. It is found that when a magnet is fixed on this carriage there

is no couple tending to turn the carriage round the conductor. Consider

a thin uniformly magnetized bar-magnet attached to the carriage.

It may be regarded as composed of two equal and opposite magnetic

poles at its extremities. The moment round the axis on one pole must
be equal and opposite to the moment exerted on the other, whatever

the position of the magnet on the carriage may be. Let JPj, F2 be the

forces on the poles at right angles to the planes through them and the

conductor, f 1, rg the distances of the poles from the conductor supposed

to be a thin wire. The moments round the conductor give

and therefore - J:s=-^, (1)
^2 *i

or the forces have opposite moments and are inversely as the distances

from the axis.

10. Deduction of law of force from equivalent magnetic shell. We
may deduce the results stated above for a long straight conductor from
Ampere's theorem of the equivalence of a current and a magnetic shell.

We have seen that the shell is defined only by its bounding edge and the

strength of the current. If we consider an infinitely long straight

conductor carrying a current y, the equivalent shell is geometrically

defined only by its edge, and we may take the shell as a plane surface,

otherwise in any position we please. Let the shell be at right angles

to the plane of the paper, A (Fig. 38) the projection of the conductor,

ABoi the shell, P the position of the magnetic pole, CP ( = a) its distance

from the plane of the shell, and AG { = b) the distance of G from A.

Let E be the projection of an element of the shell, the distance GE = yy

* Ann. de Ghim. et de Phys. t. xv. 1820.

t El. and Mag. vol. ii. p. 130 (2nd ed.).
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the distance of the element from the plane of the paper z, and it« area
dydz. The radius vector from P to the element has for length

(y^+z^+a^)*, and the projection of the element at right angles to the

radius vector is a dy dz/{y^ +z^ -\-a^)K Hence the solid angle subtended

by the element at P is a dy dz/{y^ -hz^ -i-a^)K The total solid angle 09

C A E B
r

"—"> / J ^

I

-y

FlO. 38.

subtended at P by the shell, supposing the positive side turned towards
P, is given by the equation

rC a dydz, h .^v
ft)=|

I 5 = 7r-2tan i-
(2)

h ) —^ if ^ z^ ^- aP'Y
«

Hence for the potential 7 at P of the magnetic shell we have

r=y^7r-2tan-i^\ (3)

where for tan~^fe/a is to be taken the angle between and '7r/2 which
has 6/a for its tangent.

The same result may be obtained geometrically with great ease thus :

The solid angle subtended at P by a plane rectangle, of finite breadth

and infinite length, is the area of the lune cut out of the unit sphere

(centre P) by planes drawn through P and the edges of the rectangle.

If ^ be the angle between these planes the area is 47r x dftir = 20. Thus,

if by the addition of a rectangular strip the edge of the shell were

brought to C, the solid angle would be 2 x 7r/2 or tt. But for this strip,

= tan~i h/a. Hence the actual solid angle is tt - 2 tan~^ b/a.

The components of the magnetic force at P are -dV/da, -dV/db
along CP and parallel to AG respectively. Hence the resultant at P is

{(dV/da)^ + {dV/db)^}^ = 2y/{a^+b^)^,

or if r be the distance of P from A it is 2y/r. The direction of the

force is therefore in the plane of the paper, and at right angles to PA,
and from that side of the plane through P and the conductor on which

C lies, for we have

- dJ ^jda = - 2ybl{a^ + b^), - dF/db = '2ya/{a^ + b%

and the equation of the plane the projection of which is PA, i8bx-ay = 0.
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if X be taken from P in the direction FG. The x and y direction cosines

of a normal to this plane are respectively proportional to - 6 and a,

as are also the component forces parallel to x and y. By experiment

it is found that the direction which the current must have in order that

a positive or north-seeking pole should move as here specified is from

below upwards through the paper. This agrees with the rule near the

foot of p. 147. P is thus on the positive side of the shell.

11. Expression for potential found from law of force. We may
proceed from the experimental fact, that the intensity of the magnetic

field at any point is inversely as the distance, r, of the point from the

straight conductor, to determine whether the current has a magnetic

potential or not. First defining the unit of current so that the magnetic

force is 2y/f, taking the origin at J., and the axes of x and y parallel to

CV and along AB respectively, and putting x, y, z for the coordinates

of the point P, we have for X, Y, Z, the components of magnetic force

at P, the values X= -2yy/r^, Y = 2yx/r^, Z = 0, and hence

X dx +Ydy + Z dz = - 2y /^-^(f , ,

that is, the expression in the left is a perfect differential of the function

- y tan~^ yjx -f C, which is therefore the potential at P. This is a many
valued function of x, y, z; but since we have to deal only with the dif-

ference of potential between two points, that is with the work done in

carrying a unit pole from one to the other, there is no ambiguity.

We have here to take into account, as pointed out above, the difference

in the work done in any closed path according as the path does or does

not pass round the conductor. The work done in any closed path is

zero, if the path can be supposed shrunk in upon any point within it

without cutting the conductor, for, clearly, the work done in carrying

a unit pole from any point P to another point Q is equal and opposite

to the work done from ^ to P along the remaining part of the path.

12. Theorem of work done in carrying unit pole round current : second

proof. On the other hand, if the path embrace the conductor this

reasoning does not hold. It is clear that the work
done in carrying a unit pole once round in a circle

of which the conductor is the axis, say TUVWT
in Fig. 39, is 47ry. For the force at each point is

tangential to the circle, and has the value 2y/r,

while the length of path is 27rr, and these give

the product 47ry. Let now the given closed

path, which may or may not be in a plane,

for example PQRSP in Fig. 39, be connected

with the circle by the lines QT and SV. The work done in each

of the closed paths SRQTUVS, SVWTQPS is zero, since neither

embraces the conductor. Hence the whole work done in these two paths

is zero. But if the pole be carried round these paths in the order stated
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above, the whole work done is the sum of the work done in carrying the

})ol(» round the circle TfJVWT, and round the given closed path in the

direction PQRS, since the work done in the paths SV and QT i» zero,

these being traversed twice in opposite directions. Hence the work done

in the path PQRS embracing the conductor is also numerically 47ry.

This nietliod of j)roof leads also to the result, already proved in 5

above, that the work done in carrying a pole round a conductor

whether straight or not is 47ry. For if we suppose the conductor in-

finitely thin and to have finite curvature, and take a closed circular

j)ath infinitely near it, the pole will be acted on only by the portion of

the conductor which is near it as compared with the rest of the circuit,

and this may be considered as a long straight conductor. The work
done in carrying a unit pole round the circular path is i-Try. Then by

connecting with the circular path any other path embracing the con-

ductor, the work done in carrying a pole round it is found to be 47ry.

If the circuit be not infinitely thin the actual conductor may be

supposed made up of an infinite number of filamental conductors

coinciding with the lines of flow, and for each of these the work
done in carrying a unit pole round a path embracing it is 47r x the

current in the filament. Hence in a closed path embracing the whole

current y, the work done upon a unit pole traversing it is 4 Try.

Thus the theorem is extended to non-linear conductors. The case

of interlacing of the path and the conductor may be dealt with as in 6.

The external magnetic field of a long straight conductor of circular

section, carrying a current symmetrical about the axis, coincides there

with that of an axial filament carrying the same current. For the lines

of force are coaxial circles and the line integral for each is 47ry, so that

at distance r from the axis the force is 2y/f . A long tubular conductor

has no internal field.

13. Relation of current to line integral of magnetic force round con-

ductor. If the current strength per unit area at right angles to the

direction of flow at any point be denoted by q, and /, m, n be the direc-

tion cosines of that direction, then we may call Iq, Diq, nq the components

of the current along the axes. Denoting these by u, i\ ti\ we have

for the component of flow in any direction of which the cosines are

X, /x, V, the expression \u-\-iiiv-\-vn\

If now M^e take any closed path round a conductor, or portion of a

conductor, carrying current, and take the line-integral of the magnetic

force round the path, and the surface integral of the current across the

surface, the theorem just discussed may be thus expressed,

47r|(X?f.4-M^ + »/t(;)^^*9= |(^a^ + ^||-f-y|^)rfs (4)

The second integral may be transformed by the following process,

which may also be employed to transform the expression on the right

of (49), p. 62, and so give the values of a, 6, c, in terms of the components



156 ABSOLUTE MEASUKEMENTS IN ELECTRICITY chai».

of vector potential. Let ABC, Fig. 40, be one face of a tetrahedron,

the other three faces of which are OAB, OBC, OCA, and have edges

OA, OB, OC in the direction of the axes of x, y, z.

Y +/^;7 +y ;r ) ^* round the closed path AB, we see at

once that it can be converted into the corresponding integrals round the

three paths OABO, OBCO, OCAO, since the integral along each of the

lines OA, OB, OC is thus taken twice in opposite directions. Thus we
obtain

Taking I ( a

]Anc\ds ^ds ^ lis) ^ ]oAB\ds ^ds)^^^].

dz dx^if dz dx\ ,

ocAVds ^ds)^'

Now consider any one of these three integrals, say the first taken

round OABO. Let a, (3, y be the components

of the magnetic force at 0. Then the values

of the first two components at any point distant

^x, Sy from in the plane xy are

da ^ ,
da „

^-fj^-py

Fig, 40.
If we take the tetrahedron so small that its

edges OA, OB, OC are Sx, Sy, Sz, the integral

round OABO may be found by taking the values of the components

at the middle points of OA, AB, BO as the mean values over these

distances. Thus we get for the integral

1 da 1 da
(a + 2^«^.).5.-(a +

2^f/..
+ 2^^^y)^.:

+ /^ +
1^^

if.^4p')"-{^*ip'}'''

which reduces to

Uf-I)^^^-
-^ - -r- I X area AOB.
ax i

In the same way we obtain corresponding results for OBCO and OCAO.
But if ABC be taken as dS we have area OBC= \dS, OCA=iuLdS,
OAB = vdS.

Hence
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and therefore

1 (dy d^ \

\dy dzr

1 fda dy\

''^VirKTz'-dx}

1 (dp da\

'"''T;r\dx'"d^r

(5)

equations which will be fouiul of great importance in the sequel.

14. A circuit and magnet equivalent in one medium not necessarily

so in another. There is one remark on the equivalence of a current

and a magnetic distribution which ought to be made here, though we
have not space to deal fully with the matter. The mutual action

between a current flowing in a conductor and a distribution of mag-
netism is independent of the nature of the medium in which they are

placed, if that medium be the same throughout, but this does not hold

for the mutual action between two distributions of magnetism.*

The value of the magnetic force at any point, by definition, does

not depend on the nature of the medium at the point in question, but

only on the magnetization elsewhere. In a uniform medium, which

has imbedded in it a conductor carrying a current, the potential at any

point may be taken as made up of two parts, that which would be

produced by the circuit alone, in a medium of unit inductive capacity,

and that due to the magnetization which the medium receives in con-

sequence of its specific inductive capacity differing from unity. Now
the second part of the potential is single valued, and hence the line-

integral of its variation round a closed curve is zero. If the induced

magnetization of the medium is solenoidal (as it always is when k is

uniform) and the medium extends indefinitely in all directions, no

force due to the magnetization of the medium is experienced by a

magnetic pole placed anywhere ; but the action is precisely the same

as if the circuit and pole were situated in air. Of course if the medium
is different in different parts, as for example when it consists partly of

iron, partly of air, the magnetization of the different parts nmst be taken

into account in assigning the value of the magnetic force at any point.

In the case of solenoidal distribution this is effected by taking into

account the virtual surface distribution, resulting from the discontinuity

of the magnetization at the separating surfaces.

15. Action of a magnetic system on a current. We come now to the

action of a magnetic system upon a current. The theorem of the

N^l^ equivalence of a current to a magnetic distribution established above

I^B leads of course to the conclusion that whatever process, or function,

^H is available for the calculation of the forces acting on the magnetic

I

* Neglect of this difference in the two cases has led to the assignment of wrong
dimensions to unit quantity of magnetism in electrostatic units. See a discussion

in the Phil. May. 1882.
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shell, is also available for the calculation of the action on the current

when in the field. This will be manifested as certain forces acting on
the conductor which we have now to investigate. Effects of the electro-

magnetic action on the current itself will be discussed later.

The function from which we determine the force acting on a magnetic
distribution in a magnetic field is the expression for the potential

energy which the system possesses in virtue of its being in the field.

We have found for this in the case of a shell of strength (p, .

.{{f.dV dV dF\j^
.(6)

where V is the magnetic potential (due to the distribution producing

the field and not at all to the shell itself) at the element dS, the co-

ordinates of which are x, y, z, and the integral is taken over the surface

of the shell. But, if there be none of the magnetism producing the

field at the shell itself, we have for the components of magnetic induction

at {x, y, z) a, b, c= -dV/dx, -dV/dy, -dV/dz ; and therefore, writing

for the current strength y, we get instead of (6),

7 {{{la + mh]-nc)dS (6')

If the surface, as supposed here, do not pass through magnetized

matter, a, /5, y coincide in value with a, b, c ; but it is easy to see that

a, b, c ought to be used in the integral in the general case. For let the

surface bounded by the circuit be taken so as to pass through a portion

of another medium. Then since

11
{la + nib + nc) dS

has the same value for all surfaces having the same bounding edge, it

is an expression which gives the same value of E for all positions of the

surface.

The integral in this equation is the value of the magnetic induction

through the shell, and here and in what follows we denote it by N.
It is to be taken positive or negative according as it passes through the

shell from the negative to the positive or from the positive to the

negative side, that is, according as its direction agrees with or is opposite

to that in which a right-handed screw would move through the circuit

if the handle were turned round in the direction of the current. Hence

E=-r^- (7)

If the circuit is imbedded in a medium of magnetic permeability

differing from unity, the magnetization of the medium must be taken

into account in finding the potential energy of the system. We have
simply as above to calculate the value of N for the circuit. It will

not be necessary however to deal practically here with any such case.

Those in which movable coils containing iron cores have to be dealt
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with do not cause any difficulty, since the magnetism of the core forms
ill cacli ta.sc part of the distribution producing the field.

16. Force on element of circuit. Now the magnetic forces acting

on the shell are such as to diminish its potential energy ; and hence,

if dip be any small change of position or configuration of the shell, and
^ the corresponding force producing it, we have for the work done by
this force '^dx/y. The sum of this and the change in the value of the

potential energy is zero, that is

^Frff + (fE = 0, . (8)

or, y remaining constant, ^ = y-^ (^')

The direction of the electromagnetic force is therefore to increase N ;

that is, the circuit if free to move as a rigid whole will change its position

so as to increase A'^, and, what is here of great importance, if flexible,

will alter its form so as to include a greater value of N. It is clear,

then, that no force acts on an element of the circuit in the direction

parallel to the magnetic force, for a displacement in that direction

would not alter the value of E, and the resultant electromagnetic

force on each element is therefore at right angles to the magnetic force.

But the element itself, in the general case, is inclined to the direction

of the magnetic induction. Let the angle between the latter direction

(taken as that in which a north-seeking pole tends to move through the

circuit) and that of the current in an element ds of the circuit be 6
;

and let the element be moved through any displacement d\p at right

angles to the line of magnetic induction at its centre. The change in

A^ is yB sin ds d\p . Thus we have for the force on the element

^ = yBsin^^6- (9)

The direction in which the element tends to move may be remembered
by the following rule. Let, as supposed above, a human figure stand

on the magnetic shell which replaces the circuit, so that, when the face

of the figure is turned in the direction in which the current is flowing,

the ])ositive direction of the magnetic induction is from the feet of the

figure towards the head. Then the element, if free to move, will do so

towards the figure's right hand. Or, if the figure swim in the circuit so

that the current enters at the feet and leaves at the head, and look in

the positive direction of magnetic induction, the element will tend

to move towards the left hand.

17. Equations of electromagnetic force. The direction of the force

on an element of the circuit is shown in Fig. 41. The corresponding

-.^ reaction is discussed below (Section II.).

I^l Denoting by I, m, n, the direction cosines of ds, we have

^m sin e={(rfic- nb)^ + {mi - Icf + {ma - Ib)^}^/B.

^^K Hence (9) becomes

I
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If (T denote the area of cross-section of the conductor at the element
ds, taken at right angles to the direction of y, then u, v, tv, the com-
ponents of current, are defined by the equations

ly/ar, my/o-, ny/(r = u, v, w.

Substituting in (9') and resolving "^/n- along the axes, denoting the
components by X, Y, Z, we find instead of (9'),

X= vc-wh, \

Y=wa-uc, [ (9")

Z= ub - va.
J

X, Y, Z, are the component electromagnetic forces per unit of volume
acting on the conductor : we shall find them useful in

considering action on non-linear conductors.

With regard to the potential energy of the shell and
field, care must be taken, while using this expression for

the calculation of the force on the circuit (a procedure

the legitimacy of which follows from the theorem of

equivalence as regards forces), not to allow it to cause

any misconception as to the energy of the current in

the field. It is not the case that there is any sensible

mutual potential energy of the current and the mag-
netic distribution, such that, when the circuit moves

Fig. 41. in i]^Q figi(j jjj obedience to magnetic force, exhaustion

of this potential energy takes place in the same way as when
the shell moves in the field. The shell and field remaining each

unchanged, the magnets are set in relative motion, and kinetic

energy is acquired, or work is done against external resistance

at the expense of potential energy, which so far as our knowledge

goes at present may be regarded as a function of the configuration of

the system. On the other hand the fact, as illustrated by the experi-

ments of Joule referred to below (Chapter V.), and all experience of the

motion of conductors in magnetic fields, is that the kinetic energy

acquired, or external work done, in the case of motion of the circuit,

is obtained at the expense of the battery or electrical generator main-

taining the current, and no available energy is gained or lost in virtue

of geometrical displacement per se.

II. Action of Currents on Currents.

18. Mutual action of two circuits. It is a result of experiment that

the equivalence of a current and a magnetic shell which enables the

action of a current on a magnet, or of a magnet on a current, to be

calculated, is also available for the determination of the action of currents

on one another.* Experiments which prove this were made first by
* It is to be clearly understood that electrostatic action due to difference of

potential between adjacent conductors is not here taken into account. We shall

have examples later of combined electrostatic aiKl electrodynamic actiori.
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I

Ampere, Weber, and others ; hut the beKt experimental proof of the

truth of thiH propoHition is to be found in the uniformly consiKtent

results obtained by means of measuring instruments made and graduated

to give absolute determinations by a])plying it. Weber's electro-

dynamometer was the first instrument of this kind constructed, and

with it the inventor accurately verified the laws of electromagnetic

action which had previously been announced by Ampere, as a deduction

from his celebrated series of four experiments.

Ampere however, besides giving the theorem of the equivalence

of currents and magnetic shells, took another view of the subject, in

which he regarded every element of a conductor carrying a current as

acted on by every element of the other conductor, and the law of action

which he gave was a law for the mutual action between two elements.

This law agrees with experiment in so far as it gives when applied over

the whole circuit of each conductor exactly the electromagnetic action

observed ; but it is only one of several laws of action between elements

which do the same thing. The actions in all cases which have been

investigated have been actions between parts of different closed

circuits, or between different parts of one closed circuit, and no difference

in result has been found between these two cases. We are in ignorance

of how two unclosed conductors, or two parts of an unclosed circuit,

carrying currents (if such an arrangement can really be obtained) act

upon one another, but, though this be true, it is allowable in the case

of closed circuits to establish and use any formula for the mutual action

of each pair of elements, which is mathematically true in the sense of

giving the actual forces observed between the circuits. A simple

expression of this kind is that found by Ampere. We shall here give

first some account of Ampere's experi-

ments, and show how by means of a

certain assumption the law given by him
can be deduced.

19. Ampere's experiments. These ex-

periments were made by means of

apparatus invented by Ampere himself,

copies of which are now to be found in

almost all collections of apparatus. The
chief piece is one for enabling a part of a

closed circuit (in itself generally nearly a

closed circuit) to turn freely round a

vertical axis. The arrangement with the

movable conductor in position is shown
in the diagram (Fig. 42).

Two metallic cups containing mercury are arranged close together

in the same vertical line at the extremities of two projecting arms,

and in these rest the turned down extremities of the movable con-

ductor. This has different forms according to the effect to be tested

FlO. 42.
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or measured. The two arms carrying the cups are in conducting
contact with the mercury, and one of them is generally attached to

a vertical metallic tube fixed to a heavy sole plate, the other is a

continuation of a wire or rod which, insulated from the tube, passes

up within it from the sole plate. The current is thus led to one cup
and from the other without the conveying wires themselves producing
any sensible action.

The portion of the circuit suspended in the cups in the first two experi-

ments was (as shown in Fig. 42) a

double rectangular frame of wire,

the wires of which are insulated

from one another at the points of

crossing. This frame gives two nearly

closed circuits of equal area ; and
round these the current flows in

opposite directions, so that the sus-

pended conductor does not experience

anv action in the earth's magnetic
field.

Fig. 43 shows Ampere s apparatus

as improved by M. Nodot. A ver-

tical platiimm wire is hung by a silk

thread as shown, passes down through
a mercury cup, the bottom of which
is a plate of mica perforated by a

hole just large enough to give the

wire clearance. A rectangular frame
is attached as shown, and a point at

its lower end dips into a mercury
cup, vertically under the platinum

line above. The current is let in and out at the cups.

In Ampere's first experiment a wire (Fig. 44) carrying a current

was doubled on itself, and the two portions were kept from touching

by insulating material between them. This

double wire being brought near and parallel

to one side of the suspended frame, the latter

did not experience any sensible deflecting

force, showing that the effect of the current

in one direction in one portion of the doubled

conductor neutralized almost exactly the

effect of the opposite current in the other

part. Exact experiments show that this

neutralization is complete, if one conductor be a tube containing

the other.

In the second experiment one of the two portions of the doubled

wire was not straight, but (Fig. 45) contained a series of small and

Fig. 43.

Fig. 44. Fig. 45.
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rather Hharp bends, no part of any one of which was far from the

straight conductor. The suspended conductor was still found un-

affected. The conclusion from this experiment is that the effect of

an element of a straight conductor may be replaced by that of a

small crooked conductor having the same beginning and end as the

element has, if the same current flow in both cases. In other words the

effect of any element may be considered as the resultant in the ordinary

sense of any number of component elements at the same place.

In Ampere's third experiment a conductor which formed an arc

of a horizontal circle was made movable round a vertical axis through

the centre of the circle. This was done by supporting the arc of wire at

its ends on the convex surface of mercury projecting above a horizontal

plane from troughs, and attaching it to a light radial arm of insulating

material moving about the vertical axis. The current passed through

the arc from one trough to the other. It was found that no magnet,

or circuit carrying a current, produced any effect in moving the con-

ductor in the direction of its length, that is the resultant force upon it

was normal to the element.

In the fourth experiment currents were made to pass through three

similar and nearly closed conductors A,

B, a (Fig. 46), the middle one of which B
was attached to the stand and was mov-
able round a vertical axis. The currents

in A and C were of equal strength and in

the same direction ; the direction and
strength of the current in B were in-

different. The three circuits were similar

in form, and the two, A, C, which were on

opposite sides of the movable conductor

B, were of very different dimensions, but

so chosen that each dimension of the

circuit B was n times the corresponding

dimension of A, and l/n of the corresponding dimension of C. The
))osition of the conductor B relative to C was similar to that of ^4

relative to B, and therefore the distance of any element of C from
any element of B was n times the distance of the corresponding

elements in B and A.

20. The action between two elements varies inversely as distance^.

The movable circuit B was thus subjected to two opposite force-systems

from A and C, and was found to remain in equilibrium under that

action. From this it follows that if we assume the action on the whole
of the movable conductor to be made up of the actions on each of its

elements of all the elements of the other two conductors, the action

between any pair of elements varies inversely as the square of the

distance between them. To prove this let r^ be the distance between
an element h^ in B and an element a^in A, and r^ the distance between
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two similarly situated elements, c^ and feg* ^^ ^ ^^^ J^ \ ^nd l^t /(*"!) j

/(fg) be the forces between the elements of the respective pairs per unit

of length and per unit of current in each case. Now if ds be the length

of each of the elements of B chosen, those of the elements a^ and c^ of

A and C are respectively dsin, n ds.

From the equilibrium of JB it is clear that the forces for corresponding

pairs of elements are equal, and therefore we have, if y be the current

in A and C and y^ that in B,

ds^— ryi/0'i)='^^^''ryi/0-2)

. p{A^ (1^)

that is the law of force is the inverse square of the distance.

21. Theoretical results of Ampere's experiments^ Now, since by the

second experiment each element can be replaced by its components,

we may first resolve each into two components parallel to and at right

angles to the line joining the centres of the elements. Also by the

first experiment the forces are as the lengths of the elements and as the

strengths of the currents. Let ds, ds' be the lengths of the elements

AB, A'B', 0, 0\ the angles which they make with the line joining their

centres, as shown in Fig. 47, then the components are ds cos 0,

Fig. 47.

ds' cos 0' along the line, and ds sin 0, ds' sin 0' perpendicular to it. The

last {B'E' in the figure) is not in the same plane with ds sin 0, and

gives, if r] be the angle B'E'F' between these two, the components

ds' sin 0'Gos rj, ds' sin 0' sin rj, parallel to and at right angles to ds sin 0.

We now consider the actions (couples excluded) between the different

pairs of these elements.

In the first place we have the two elements ds cos 0, ds'cos 0' in the

same straight line. The only determinate direction of any action

between these two elements is the straight line in which they lie. We
suppose, therefore, that when 0, 0' are both acute the force between

the elements is an attraction. It has the value ^yy'cos cos O'ds ds'/r'^,

where ^ is a constant, and r is the distance between the centres of the

elements.

We take next the two elements ds sin 0, ds' sin 0'cos tj, which are

parallel to one another and at right angles to the line joining their

centres. The force here has for value 5yy'sinOsinO'cos rjdsds'/r^, where

5 is a constant, and must act in the plane of the elements ; for there is
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no reaHon why a component at right angles to this plane should act

towards one side or the other of it. Further it must act in the line

joining the elements, for to change the sign of one of the currents reverses

the action, and to change the sign of both must leave the action un-

changed. We shall suppose that it is also an attraction.

Lastly we have the four pairs of elements at right angles to one

another. Of these the pair ds sin 0, dsmi 0'm\ rj are at right angles to

one another and likewise to the line joining their centres. Now if we
make the assumption that the force between two components at right

angles to one another is in the line joining their centres (an assumption

necessary for Ampere's theory in the cases of the other two pairs of

elements), we can easily prove that the force between the pair of ele-

ments now being considered is zero. Suppose that we have such a pair

of elements a, /8, at right angles to one another, and let the force act as

shown in Fig. 48 from left to right. Now if the whole system be turned

tt
*

v/''

a-

FlO. 48.

through 180° round the direction of a as an axis (or be looked at from

the other side of the paper), the direction of ^ will be reversed, and the

force will now act from right to left. The system then turned from its

new position through 90° about the line joining a, ^ gives the original

arrangement of the elements, with the force between them reversed.

Hence no such force can exist.

The assumption made above is not really necessary for this case,

since, if there exist a component at right angles to the line of centres,

it must act in the plane of one of the elements and the line of centres,

or in a plane bisecting the angle between the planes of the elements and
the line of centres, and there is nothing to determine in which plane

it must act.

There remain the three pairs of elements <?5cos0, ds'smO'co^tj,

ds cos 0, ds' sin O'sinr], and dsainO, ds'cosO', and the constituents of

each pair are in one plane. Making the assumption stated above
for these, we see that between the elements of each pair there can be no
force, since if a force did exist it would not be reversed by the reversal

of the current in ds sin 6, cZs'sin ^'sin »;, or ds' sin 0' cos rj, for this

would merely be equivalent to turning the whole system through 180°

round the line joining the elements. We find therefore, collecting these

results, a total force of attraction between the two elements ds, ds'. of

mount
IdF= yy'ds ds'-^{A cos cos & -k-B sin Q sin 0'cos >/), (11)

and it remains to determine the coefficients A and B.

Now applying the result of Ampere's third experiment we resolve

the force on ds into two components, one along ds, the other at right
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angles to it, and equate the integral of the former, taken round the
circuit of ds', to zero. Hence

yy'dslA \ -co&^O cos 6' ds' + b\ -^sin0co3 08m0'cosrids'\ = 0. (11')

This expression can be transformed as follows. We have by geometry,
if the coordinates of the centres of the elements be x, y, z, x, y\ z\

-cosO = ^^; -cos^=^ (12)

and 9-2 = {x - x'f ^{y- y'f + (^ - z'f.

The last gives

dr ^ , dx , ,.dy , ,^dz

and differentiating this with respect to s' we get

d^ dr dh' _ _dx dx dy dy dz dz'

_

ds ds' dsds' ds ds' ds ds' dsds'~ *' ^ ^

where e is the angle between the elements ds, ds'.

But by (12)

dh' . ^dO . ^,dO' ' n - n> /I ix

since by geometry dO dO' . ^,- r -p = r -TT cos t] = sm ij cos //.

Therefore by (12) and (13)

cos€= -cos^cos^' + sin ^sin^'cos ;; (15)

Substituting from (12) and (14) in (IT) and rearranging, we find

rr'^^[(^-P)JiS^-Bl,4|,i(*)>.]-o. ...(16)

22. Second proof of equation (16). Discussion of pairs of elements

may be avoided and equation (16) proved as follows. We have seen

that the mutual action of ds and ds' is equal to

yy'dsds'fiO, 0', e)/r2,

where f{0, 6', e) is a function of the relative positions to be deter-

mined. But by Ampere's second experiment it is the sum of the

forces between the element ds' and the three components dx, dy, dz,

into which ds may be resolved. Hence

f{0, 6', e) ds ds' = Pdx ds' -\-Q dy ds' +Rdx ds',

where P, Q, R depend only on the position of ds'. Thus f{0, 6', c)

is a linear homogeneous function of the direction cosines of ds ; and
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similarly it must be a linear homogeneous function of the direction

cosines of ds'. To fulfil these conditions and involve e it must be made
up of two parts, Adr/ds .dr/ds'y Brdhjdsds', where A and B arc

constants. Hence Ampere's third experiment gives

J f 1 f J /di\*dr B d*)- dr] , , .
= vr ''^

]
,:, {

- A (s) 2? + *'•
3FJ, rf.,)

"** = 0,

which is equivalent to (16).

The second integral in (16) vanishes' when taken round the circuit

of .s', and we are left with the equation

yr-feM-ii<)Ji,(J)V = (16')

Now the integral in this equation does not in general vanish, and
therefore A = \B. This may be seen by considering the particular

case of a circuit, formed by two perpendicular straight lines, and a

circular arc joining their extremities, acting on an element ds at the

centre of the circular arc and in line with one of the straight lines.

If the radius of the circle be c, and the distance of ds from the straight

line perpendicular to it be a, the portion of the integral contributed by
the latter straight line is l/3a - a^/Sc^, by the other straight line 1/c - 1/a,

and by the circle zero. Hence the total integral is not zero. Hence
substituting in (11), and using (15), we get

dF= Byy'ds ds'-^ (cos € + 1 cos ^ cos 6'\ (17)

Ampere's expression for the action between the elements.

Ampere assumed B to be equal to 1, which amounted to defining the

unit of current as that current which flowing in the same direction in

each of two parallel elements at unit distance apart gives unit force of

attraction between them. We shall show that for agreement with the

definition of unit current adopted above the value 2 must be given to B.

Thus Ampere's unit of current is \IJ2 of the electromagnetic unit

of current now in ordinary use.

23. Ampere's expression deduced from the magnetic shell theory.

Returning to equation (74), p. 72, for the mutual potential energy of

two magnetic shells we are led, by the theorem of equivalence of currents

and magnetic shells, to write for the mutual potential energy of two
closed circuits p „^„ .

E= -yy'\ -^dsds* (18)

*F. Neumann gave -yy' dsds' cose/r (\s the mutual potential of the two
elements. The corresponding expression in (19) is due to Wel)er. Either gives
the same result for closed circuits as does Ampere's formula. Thus the forces
l>etwcen tlie circuits may be found from (17), (18), or (10). The energy of the
system is calculated for particular cases in Chapters VI. md XIH. below.
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We shall inquire what expression for the action between two elements

can be deduced from the quantity on the right, and compare it with

that given in (17). Substituting for cose its value given by (13) and
noticing that the integral of the complete differential dhfdsds'.ds

is zero, we get

-MJJ:^'>*' ^''^

Now let the circuit of ds be slightly deformed in any way while that

of ds is kept unchanged : r, dr/ds, drjds', ds will be affected by the de-

formation. The change in E is ^E, and by taking the variation of the

right-hand side of (19), remembering that

dr _ d&)- dr dSs c. dr _ dSr

ds ~ ds ds ds ' ds'
~

ds'
^

_ - ._ ' r f f 1 ^^^' /I dr ^ d&)' dr d8s\ , , ,

find gE=-yy^jj-^^^^-^8r-^+^^je;.^.

nldr d&i' ,, r f 1 dr dr ,. , ,1-
J-, -7- dsas -

\ I
- ^ T-7 dos .ds •

r as ds J J r ds ds j

The last integral and the last term of the first integral cancel one

another, and we have

._ _ _ '{ {f}L^^S'--- — —-^ — —\ 7 /

'

^20^~
J J V^'"^ ds ds' r ds ds' r ds' ds J

'

^ '

Integrating the last two terms by parts and rejecting the integrals,

round the circuits, of perfect differentials, we get

for the corresponding part of SE. Hence finally, by (20),

which by (15) becomes

8£==2yy' {{\(cos e + ^ cos cos 0') 8r dsds' (22)

The interpretation of this result is an attraction of amount
2yy'(cose+f cos0cos0')/r2 between the elements ds, ds' in the line

joining them. This agrees with Ampere's result and shows that the

value of B in (17) is 2.

Having thus shown the equivalence of the two modes of regarding

the mutual action of currents, we now^ give a very short account of the

apparatus and experiments by which Weber investigated the subject.

24. Weber's experiments. Weber made his measurements of electro-

magnetic action by means of his electrodynamometer. This consisted

of two circular coils, one suspended by bifilar wires (which also conveyed
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the current) so as to be free to turn round a vertical axis, the other coil

fixed and arranged so that by levelling the planes of its windings could

be made vertical. The apparatus was in two forms : (1) with the

movable coil suspended within the fixed coil, with the centres as

nearly as might be coincident
; (2) with the fixed and movable coils

distinct so that they could be placed at any required distance from one

another, and in any relative positions. Deflections of the movable coil

were measured by the mirror and telescope method described above

{II. 8).

By the first experiment made by Weber it was proved that the electro-

magnetic action between the two currents varied as the square of the

current strength. Apparatus (1) was used, and the fixed coil was set

up with its axis perpendicular to, while that of the suspended coil was

in, the magnetic meridian. Currents of different strengths were sent

through the coils, and to prevent too great a deflection, the current

through the suspended coil was reduced to 1/246-26 of the whole current

by a shunt of thick wire inserted between the terminals to which the

bifilar wires were attached. A magnetometer with magnetized steel

mirror in a damping covering of copper was set up north of the fixed

coil, at a distance of 58-3 centimetres, and the tangents of the deflections

of this mirror (read by a telescope as in the other case) gave a com-

parative measure of the different currents used. The results shown in

the following table were obtained ; and from these it will be seen that

the mutual action between the systems was proportional to the square

of the current, that is, to the product of the strengths of the two (equal)

magnetic shells.

No. of
cells used.

Comparative
values of

force between
coils =.4.

Force on
magnetometer

needle in
arbitrary units

Force on needle
found by
formula

51553WA.

Diff.

5-515534v/^.

3

2

1

440-038

198-255

50-915

108-426

72-398

36-332

108-144

72-389

36-786

+ 0-282

+ 0-009

-0-454

In another series of experiments Weber used the apparatus (2).

The axis of the suspended coil was placed horizontal and parallel to

the magnetic meridian, while the fixed coil was placed with its axis at

right angles to the magnetic meridian, and its centre (1) in the magnetic
north and south horizontal line, (2) in the magnetic east and west line

through that of the suspended coil. Experiments were made in each

case with distances between the centres, of respectively 0, 30, 40, 50, 60
centimetres. The current from eight Bunsen's cells was sent through
both coils, and also through a coil set up about 8 metres from the fixed

coil so as to act on the magnetometer referred to above, and through
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a reversing key, so arranged that the current through the suspended

coil could be sent first in one and then in the opposite direction without

altering its direction in the rest of the circuit. The object of thus

reversing the current was to determine and allow for the turning

moment of the earth's magnetic field, when the axis of the suspended

coil was deflected from the magnetic meridian. The corrected results

of the experiments are shown in the table below, in which the second

column for each series of positions gives the corresponding numerical

values calculated by Ampere's formula, (17) above.

Position of centres of coils.

Distance of
centres In magnetic east and west line. In magnetic north and south line.

apart.

Couple observed. Couple calculated. Couple observed. Couple calculated.

cm
22960 22680 22960 22680

30 189-93 189-03 -77-11 -77-17

40 77-45 77-79 -34-77 -34-74

50 39-27 39-37 - 18-24 - 18-31

60 22-46 22-64 — —

Here the results for the greater distances agree very fairly well with

calculation from Ampere's formula, and we have shown that Ampere's

formula and the magnetic shell theory give identical results.

It is to be remarked that in these experiments the two coils are not

independent circuits ; but that they may be so regarded is plain from

the fact that the remaining portion of the circuit, if the wires are close

or twisted together, is of no effect since it can be altered at pleasure

without affecting the action between the coils, provided the current be

maintained constant.

But the deflections 0, 0' in the two cases agree closely for the greater

distances with the formulae

tan^ = -^(l+^j, tan^=^(l+^,)

which express the action between two magnets of moments M, M'

,

in the " end-on" and " side-on" positions and at distances d apart,

great in comparison with the dimensions of the magnets.

Elaborate experiments have also been made by Cazin, Boltzmann,

and others in verification of the theory. For these the student should

consult Wiedemann, Elektricitdt, vol. iii.

25. Forces between straight conductors. It is an experimental fact

that the action between two long parallel conductors carrying currents

is an attraction when the currents are in the same direction, and a
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repulsion when the currents are in opposite directions, and that if the

conductors arc not parallel there is attraction between them if the

directions of the currents in the portions forming equal acute angles

with one another are both towards or both from the shortest line joining

the conductors, and repulsion if the

direction of one is towards that line, and
of the other from it. We have not space

here to go into calculations regarding

such cases, but their general nature may
easily be seen by considering the mag-
netic fields produced by the currents,

and the consequent motions of the con-

ductors according to the rules given /'

above. In both cases the lines of force '^-^

are closed curves surrounding each con-

ductor, and it is obvious that if we
consider each circuit completed by a

return wire at a great distance, the

magnetic induction through each will be

increased by the ai)proach of the con-

ductors if the currents are in the same
direction, and diminished if they are in the opposite direction. The
same will clearly be the case if the two conductors considered be parts

of the same circuit. The action of a current in a straight conductor,

on an element of a parallel conductor, is shown in Fig. 49, which with

the statements made above explains itself.

26. Ampere's formula applied to find the action of a thin solenoid. We
give here the application made by Ampere* of his formula to the calcula-

tion of the force on an element of a conductor, and the turning moment
on a given finite conductor produced by a simple solenoidal electro-

magnet, that is, a succession of infinitely small circuits arranged equi-

distantly at infinitely short distances apart with their centres on, and
their planes at right angles to a given curve, and carrying currents such

that the product of the area of the circuit and the current strength is

the same in each case. The solution of this problem is of the greatest

importance in Ampere's theory of magnetism, in which he supposes

all effects of magnets to be produced by currents flowing in molecular

circuits within the body. We shall see that the arrangement specified

above is equivalent to a uniformly magnetized magnet, having a strength

of magnetic pole equal to the sum of the products of current and area

for the circuits round unit length of the given curve forming their

common axis.

**'Theorie des ph^nom^nes electro-dynamiques," M^nioires de VlnstUiU, vi.

1823. The proof of Ampere's formula, and the ^pphcations here given, have
been very elegantly treated by quaternion methods by Professor Tait : see his

Quaternions, 2nd edition, p. 249.
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Let ds be an element of the closed circuit, and consider its action on
an element ds' of another conductor, the current being unity in each

case. If the coordinates of ds be x, y, z, and the origin be taken at

the centre of ds', the direction cosines of ds and r are dx/ds, dy/ds, dz/ds,

and x/r, y/r, z/r respectively. The expression for the action between

the elements may be written

j.'i/ .

^^'' ldrdr\
r^ \ ds ds' 2 ds ds'

j

which by (14) becomes

2dsds'-^l -rsmO'-j- - ^ cos 6 -p\ = 2dsds'r~^ -j-^r'^ cos 6').

Hence the component of this action along the axis of x, or dX, is

given by
n /7 i

dX==2dsds'xr-''~(r-^ cos 0') (23)

But if X, /UL, V be the direction cosines of ds',

Hence (23) becomes

cosO =.A- + u- + v-.
r r r

</z=2,fo&'^^[i{;j(x.+^,+K.)j]

But

and

x d /y^\ _ d /xy\ 1 / dy dx\

ydsVy^ds\r^)'^i^Vts~'^dsf

X d {z'

z ds

Substituting in (24) we find

dX = dsds\ -y

dx dz

ds ds

'ids{v^^'^
x-hfxy + vz)V +

jii / dy dx\

r^\\ls ^ ds)

V / dx
?-3 \ ds

.(25)

The first term disappears when integrated round the circuit of ds.

Hence

-A\T^i:
dy dx (v ( dx dz\ , 1X= ds^ \~Ax''^-y^]ds

Similarly we obtain

^=*'{1!^(4'-4D*-1^
dz

ds ^&;*r

(26)
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27. Ampere's directrix of electrodynamic action. Denoting the in-

tegrals (divested of the multipliers X, yu, i') in these expressions by

A, B, C, we have

X= ds(fjLC-vB), \

y^ds'ivA-XC), \ <27)

Z=ds'{\B-/uiA). J

These equations give \X+/ulY-{-pZ = 0, as they ought, since the

component force along ds' is zero. Their form also shows that the

resultant force on ds' is at right angles to the line the direction cosines

of which are proportional to ^, B, C, that is, its direction is at right

angles to the plane through ds' and that line. The resultant of ^, B,

C, Ampere called the directrix. By comparison with (9) above we see

that it is the magnetic induction at ds' produced by the circuit.

Equations of precisely the same form as (27) hold of course for any
assemblage of circuits. In that case however A, B, C are sums of

integrals of the form given in (26).

The component force in any plane may be found as follows. Let

<p be the angle between the given plane and the plane containing ds'

and the directrix. Then clearly the angle which the resultant force,

R, makes with the given plane is 7r/2 - 0, and the component is R sin
(f).

Squaring equations (27) and adding we find R = ds'D8m(jD, where w
is the angle between ds' and the directrix, and D = J{A^ + B^-\-C^).

If \p be the angle between the directrix and the given plane, we get, by
projecting unit distance along the directrix on a line at right angles to

ds', and then at right angles to the given plane, for the final projection

the length sin co sin (/>. But the same line projected directly gives sin \p.

Hence sin w sin = sin \p. The component force in the given plane is

therefore ds'D sin w sin (fy^ds'D sin ip. If a, h, c be the direction cosines

of the normal to the given plane, Bm\l/ = aA/D-{-bB/D-hcC/D, and the

component is ds'{aA+hB+cG), or ds'U, where

U= aA+hB-}-cC (28)

From this we obtain the remarkable result that the action in the

given plane is independent of the direction of ds' if only the element

lie in that plane.

28. Calculation of result for a small circuit. To apply the results

found above to the problem of the solenoid, let the circuit be small and
plane. The values of the components A, B, C can be calculated ap-

proximately for this case as follows. Let MPQN, Fig. 50, represent

the circuit, and let it be cut by planes passing through the axis of z.

Let two of these planes meet the circuit in MNy PQ, and Onm, Opq
be their traces on the plane of x, y, meeting the projection of the circuit

in mn, fq, we have for C the equation

^=Wi-y%y^ (^^)
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taken round the circuit. Clearly this may be written

^=j^^ .(30)

Fig. 50.

if a be the angle which Omn makes with Ox, and u the distance from

of the element of the projection corresponding to ds.

Now since the circuit is small

we may suppose the elements

mj),nq, intercepted by the planes,

to be at a small distance Su apart,

corresponding to a small distance

Sr between the actual elements

MP, NQ. We then find the

value of C by calculating the sum
of the contributions to it cor-

responding to the pairs of

elements mp, nq of the projec-

tion on the plane of xy. Now
taking the area swept out by the

radius vector as positive when
the end of the radius moves from

m to p, and therefore negative when it moves from q to n, and taking a
between the extreme tangents drawn from to the projection, we get

Now r^ = u^-\-z^, and therefore Sr = {uSu-tzSz)/r. Letting fall a

perpendicular OE from 0, on the plane of the circuit, and calling its

length h, and its direction cosines I, m, n, we have OG = h/)i. But if

HMS be drawn parallel to the plane of x, y, we have by the similar

triangles MSN, MHG, Sz/{z - OG) = Suju. Hence

Sr = {u^-\-z{z- h/n)}Su/ur= (r^ - zh/n) Su/ur.

Substituting in (31), and taking mean values of r and z, which since

the circuit is small, may be those for the mean point of the area, we
have, if S be the area of the circuit.

-f{' Ji(?* 2u8u\da. .(31)

and similarly,

^40

r^ \ mr-J

.(32)

29. Application of the result to a solenoid. Now consider a solenoid,

as defined above (p. 171), made up of such circuits uniformly arranged

along a common axis, and such that the current and the area in each
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case have a constant infinitely small product ; then taking the circuits

as infinitely close, denoting by 7 the sum of these products per unit of

lengtli of the axis, and by ds an element of the axis, we have 7 dn for the

sum of the products for the element ds. Hence, to find A, B, C for

this ])art of the assemblage of circuits, we have to substitute gds for

S in (32). Doing this, and denoting by A\ B\ (" tlie values of ^4, B, C,

for the whole assemblage of circuits, we have

(33)

Now we have here

I, m, n=dx/ds, dy/ds, dz/ds, and k=xdxlds-\-ydy/ds +zdzld8.

Hence substituting and integrating from one end of the axis of the

solenoid to the other, we find

^'-A^.-'^y ^=K&-f^»> ^-K^-rt')
<'*>

where the suffixes distinguish the values of the quantities for the two
ends of the solenoid.

These values of A', B', C are proportional to the direction cosines

of the directrix for this case, and substituted in (27) give the com-

ponents of the force on ds'. It is evident that the force on ds' depends

only on g and the positions of the ends of the solenoid.

If the axis be a closed curve or extend to infinity in both directions,

the values of A', B', C are zero, and hence by (27) the solenoid exerts

no force on ds'.

If the axis extend to infinity in the direction of integration the first

terms in (34) are zero, and we have

A'=^-gxJr,^ B'=-gyJr^\ C = -gzjr,^ (35)

30. A singly infinite solenoid equivalent to a magnetic pole. Substi-

tuting these values in (27) we see at once that the action is at right

angles to the plane through ds' and the extremity of the solenoid. Let
now the conductor be straight and infinitely extended in both directions.

Then changing the origin to the extremity of the solenoid, taking as

the plane of xy the plane through the conductor and the end of the

solenoid, and the direction of the conductor as that of x, we find

A' =gx/r^, B' ^gy/r^, C = 0, X = l, iui
= v = 0. Hence the resultant force

is Z =g ds'a/{a^ + x^)^, where a is the constant value of y. Writing dx
for ds', and integrating over the whole conductor from - 00 to + 00 , we
find the value 2g/a for the total force. This result shows that the
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action between the conductor and the extremity of the solenoid is the

same as that (see iO above) between the conductor and a magnetic pole

of strength g.

Returning to (35) it is clear that if we had another solenoid with

value of g numerically the same but opposite in sign, and extending to

infinity from the point x^, y2> ^2^ we should have for it

A'==gx^lr2^ B'^gy^lri, C ==gzjr.,\ (36)

and these two solenoids acting together would be equivalent to the

finite solenoid already, discussed.

31. Action of a solenoid on a finite conductor. We can now consider

the action of a finite solenoid on a conductor of finite length s' carrying

a current of unit strength. The component forces on the element ds'

are by (27) and (34),

Y= etc. etc.,

Z= etc. etc.

.(37)

If we no longer take the origin at ds', but transfer it to the extremity

Xi, yi, Zi of the solenoid, and take the line joining its ends as axis of x,

the calculation of the action on the conductor will be simplified. The
coordinates of ds' are now -x^, -y^, -z^, which we shall write x, y, z.

If I be the numerical value of the distance between the ends of the

solenoid, a?2= -x-\-l. Substituting these in (37) with the values dx,

dy, dz for \ds, juids', vds, we get equations adapted to the calculation

of the force components for the whole conductor.

We shall apply these to find the moment tending to turn the con-

ductor round the line joining the extremities of the solenoid. The
moment, dM, of the forces on ds' is Zy - Yz. Calculating this by equa-

tions (37), modified as just described, we find after reduction

'^^=4i(^)~i©}*'=^i'^"°'^^"""^'^*'' - (38)

where ^2» ^i ^^^ *^® angles which the radii drawn from the extremities

of the solenoid make with the axis of x. Integrating from one end of

the conductor to the other, and distinguishing by accents the angles

for the end where the integration terminates from the angles for the end

at which it begins, we get finally

M=5r(cos6>'2-cos^'i-cos6>2 + cos6>i) (39)

32. A solenoid compared with a uniform magnet. This result, derived

from Ampere's formula, agrees with that which we should obtain

from equation (8) above, by considering^the solenoid as an infinitely

thinjuniformly magnetized bar-magnet. The turning moment of such

a magnet on the conductor may be obtained most simply as follows.
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The magnetic field of the magnet may bo regarded as produced by
(•<|iial and opposite quantities of magnetism at its extremities. Take

the line joining these as axis, and draw lines from the ends to an element

(U of the conductor making with the positive direction of the axis the

angles ^,, 0^, and let the element make angles </»j, ^g ^^^^ these lines.

First suppose the conductor wholly in a plane through the axis. Let

the strength of each i)ole be m, then considering the action first of the

positive; pole (distant r^ from the element), the force on the element is

mf/.ssin i{>ilr^, and its direction is at right angles to the plane in which

th«' conductor lies. The moment of this force round the axis is there-

fore wrfssin^jsin ^j/fj. Similarly the other pole gives a moment
- m (Is sin $2 sin ^g/^a- "^^^ total moment is therefore

mds (ain 0^ sin (f>ilr^
- sin O2 sin ^/jg/^j).

But r^ dOJds = sin
(p I, r2d0 2/ds = sin <p 2- Hence the moment may be

written m{sin0jd9^ -sin ^2^^ 2)' *"^ *^® *o**l moment is therefore

m(co8 0'2-Gos9\-cos92+cos9i), (40)

which, if w be taken equal to g, agrees with the value given in (39).

If the conductor be not in a plane through the axis, we may resolve

any element ds into two components—one in such a plane, the other at

right angles to it. The latter component will be acted on by a force

passing through the axis, and therefore having no moment round it.

Each element having been thus dealt with, all the components in

planes through the axis may by rotation round the axis be transferred

without alteration of turning moment to one such plane. They will

therefore give a continuous curve in that plane, the values of ^j, ^g*

0\, 9' 2, for which are the same as for the actual conductor.

By (40) and the equation of the lines of force of such a magnet, (18)

Chap. II. above, we obtain the following interesting result. Let the

lines of force be revolved round the magnet so as to generate coaxial

surfaces. Then the turning moment on a conductor carrying a given

current in the field of the magnet, is the same whatever be the length

and position of the conductor, provided it terminate in the same two
of these surfaces. The moment is equal to the difference of the para-

meters of these surfaces, and is therefore zero when both ends are on
the same surface.

33. Moment on a conductor in the field of a single pole. By the process

just employed we can show that the moment on a conductor in the field

of a single magnetic pole, tending to turn it round any axis through the

^^^pole, depends only on the position of its ends. For each element can

iJpbe resolved into two components, one in a plane through the element and
^^^containing the axis, the other at right angles to that plane. The force

on the latter passes through the axis, and gives no moment. The former

gives (supposing current and pole both unity) a moment -sin^rf^,

where 9 is the angle which the line drawn to it from the pole makes with

O.A.M. Mk
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the axis, and dO is the change in 9 between the ends of the element, for

this is the same both for the element and its component in the plane

through the axis. Hence integrating along the conductor from ^^ to

O2 we get co^O^-cosOi for the total moment. This is zero if 9^ = 0^,

that is if the circuit is closed.

We obtain the same result for each of any number of magnetic poles,

and hence if we have any number of magnetic poles in one line, the

moment which they exert on an unclosed conductor in their field is

S^m (cos 9 2 - cos 9-^), the sum being taken for every element, dm, of

magnetism in the magnet. Hence for a closed circuit this sum is zero

round the line in which the elements lie.

It follows by equality of action and reaction that the couple which a

straight linear distribution of magnetism experiences round its own
line as axis, or that on a single pole round any axis, in consequence of

the action of the current in a closed conductor in the corresponding

field, is zero.

We can employ the result obtained above to find the equation of the

lines of force of a uniformly magnetized magnet, or indeed of any
straight linear distribution of magnetism. For let there be a single

magnetic pole at a given point. Let the conductor be supposed made of

flexible material, and to be held fixed at one end and laid along a line

of force. Then let the other end be carried round the axis on which

lies the magnetism, and be stretched and guided so as always to rest

on the surface swept out by the line of force. No work is done against

or by the action of the field, since the conductor is nowhere made to

cut across lines of force. Hence for a single pole we have the equation,

cos^j -cos 9 2 =0, that is the line of force is a straight line through the

pole. In the same way we find for any assemblage of poles in a straight

line the equation of the lines of force

S(cos^i -cos ^2) = const (41)

84. Reaction of the elements of a circuit on a magnetic system. It

has been shown (V. 16 above) that an element of a circuit carrying a

current in a magnetic field, in which the induction at the element is B,

is acted on by a force at right angles to the element and the direction of

the magnetic induction, of amount By sin 9 ds, where ds is the length of

the element and 9 the angle between its direction and that of the

magnetic induction. We may of course suppose the induction at the

element to be due to a single magnetic pole of proper strength, and
properly situated in a field of uniform permeability. The reaction of

the element on the magnetic system in the general case, and in this on

the pole will therefore be By sin 9 ds.

If we suppose the action on the element to be a single force of magni-

tude By sin 9 ds applied at the element itself, the reaction on the pole

will be an equal and opposite force at the element, and this is equivalent

to an equal force at the pole and a couple. The moment of the integral
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couple due to the whole circuit is zero, as has just been seen. We may
therefore use the elementary forces on unit pole to calculate the magnetic

action of the circuit upon it, that is the magnetic field-intensity which

the circuit there produces, with certainty that no action between the

pole and the circuit will be neglected, although these, or any other

terms which integrated round the circuit give a zero result, are left out

of account.

Thus we take as the intensity of the field produced at the pole by the

element the expression By sin 9 ds. But B is /xH, where H is the intensity

of the field produced at the element by the pole, and if a spherical

surface of radius r equal to the distance between the pole and element

be described round the pole as centre, we shall have iirr^ =47r, or

B = \, K = \, (42)

and By iimOds = y sm 9 ds/r^* The direction of this force is at right

angles to the plane through the element and the line joining its centre

to the pole. To specify the direction of the field-intensity due to an
element, let an observer be supposed immersed in the current in the

element, so that it flows from his feet to his head, and have his face

turned towards the pole, then the latter, if positive or north-seeking,

will tend to move towards his right hand.

It is to be observed that this result illustrates the fact stated in V.

1 4 above, that the action of a circuit on a magnetic pole, and therefore

on any other distribution of magnetism, is independent of the nature

of the medium occupying the field.

It also gives another definition of unit current (which may be com-
pared with that given in V. 3 above), as that current which flowing in a

thin wire forming a circle of unit radius acts on a magnetic pole placed

at the centre with unit force per unit length of the circumference. Since

the forces due to all the elements are in the same direction, the force

at the centre of a circle of radius r carrying a current of strength y is

27ry/r. Unit current is therefore that current which, flowing in a

circle of unit radius, produces a magnetic field-intensity at the centre

of 27r units.

* This law is generally attributed to Laplace, who wrote nothing on electro-

magnetism. It appears to have been given orally by Laplace in a discussion
at the Academie des Sciences, in 1820, of a paper by Biot and Savart, entitled,
" Note sur le magnetisme de la pile de Volta," which was never published. [See
Annales de Chimie et de Physique, xv. 1820.]



CHAPTER VI.

MAGNETIC FIELDS DUE TO CURRENTS.
MAGNETIC ACTION OF COILS.

1. Unit current. The numerical measure of a current is defined by
the intensity of the magnetic field produced by it at a given point.

This mode of numerically reckoning currents, which we take as the

fundamental method, gives results which are consistent with those

obtained by other methods which are sometimes used, for example

that of electrolysis. The definition may also be stated as follows.

Unit current is that which, flowing in a plane linear circuit of unit

area, can be replaced by a magnet of unit magnetic moment, placed

within the circuit and at right angles to it, without altering appreciably

(according to the amount of inaccuracy tolerated) the magnetic field

at a point at a distance from the circuit which can be regarded as small

in comparison with any dimension of the circuit or the magnet. In

the c.g.s. system unit magnetic moment is the moment of a doublet

composed of two opposite point-charges of magnetism, each 1 c.g.s.

unit, placed at a distance of 1 cm -apart. Thus when the area of the

circuit is 1 sq cm, and it is replaceable as regards magnetic action by
such a doublet, the current flowing is 1 c.g.s. unit.

2. Magnet equivalent to a current. Magnetic shell. The equi-

valence of a linear circuit and a magnetic shell has been discussed in

IV. 3, 4. We there saw that the magnet equivalent at distant points

to the plane circuit may be supposed replaced by a very large number
of equal small magnets uniformly distributed over the area enclosed by
the circuit, with their centres in and their lengths at right angles to

this plane.

Also it was shown in Fig. 35 that the circuit may be converted by
cross conductors into a network without any displacement of the

boundary, and that round each mesh a current y may be supposed to

flow in the same direction as that flowing in the original conductor.

We have shown that the action of the boundary current is the same
as that of the system of mesh currents imagined. But each mesh may
be taken so small that it may be regarded, with as little error as we
please, as a plane circuit : and each of these small circuits is replaceable,

180
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HH we havo seen, by a small magnet, or by a magnetic shell of strength

' ([ual to the current. This replacing of each of the meshes by a shell

would give a shell of strength y bounded by the circuit.

Any point at which the action of the finite shell is considered need

oFily be at a distance from any part of the equivalent shell great in

comparison with the dimensions of a mesh, hence the limitation as to

distance imposed in the preliminary theorem does not apply. It is

only necessary to take into account the finite thickness of the wire, and

therefore consider magnetic action at points at a distance of several

diameters of the wire from the boundary.

It is also clear that, provided the boundary of the shell, that is, the

circuit, be undisturbed, the meshes may be supposed to have any
positions we please, in other words the shell is defined by its boundary

alone. [See however, also, II. 21.]

Since a circuit carrying a current is equivalent to a magnetic shell of

strength equal to the current, all the theorems in Chapter IV. regarding

the energy of a magnetic distribution, hold for fields of currents, and the

whole mathematical theory can be transferred to the magnetic action

of currents, or, as we call it, electromagnetics. For example, we have

seen that the energy of a magnetic shell is equal numerically to the

product of the strength of the shell and the integral of magnetic indue*

tion enclosed by its boundary, and we shall now derive from this theorem

important results. We have therefore only to substitute in the equations

of Chapter IV. Section III., y for (p. The sketch of the subject of the

equivalence of linear currents and magnetic shells just given should be

supplemented by reference to Ampere's Memoir and to Maxwell's treatise

or other works, e.g. the author's Magnetism and Electricity, Vol. I.

3. Method of vector potential. In II. 18, we have set forth briefly

the method of expressing the magnetic induction by means of the

auxiliary function called vector potential. All the results obtained for

the vector potential of a system of magnetized bodies hold also for the

magnetic fields produced by current-carrying circuits. There has been
given {loc. cit.) a specification of the vector potential which we must
now restate so as to make it more suitable for the discussion of fields

due to linear conductors. This has practically been done in II. 23,

in an important case ; we add here some further particulars of specifica-

tion as modified for the present purpose.

The direction of the vector A as specified for the magnetic element,

of moment iSv, of the magnetized body, corresponds precisely to that

of the magnetic force at a point P, due to an element of length ds of a

current-carrying linear circuit replacing iSv, so that the direction of the

current is the same as that of magnetization. The brief discussion

rin 6 below may help to make this point and its consequences clear to

The reader.

4. Electrokinetic energy of currents. The field is the seat of magnetic
energy, which depends on the state of the field at the instant
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considered, and is not necessarily equal to the energy which has up
to that time been thrown into the field from a battery or other source.

That there is energy depending on the state of the field, as distinguished

from the total amount which has been furnished by the source, is

clear from the dissipation of energy in hysteresis, a subject to which we
shall return later. We here regard magnetic energy as kinetic, or, as

we call it, electrokinetic energy, and hence in a system not subject to

dissipative forces we must choose the sign of the energy so that the

mutual forces of the parts of the system will tend to cause the amount
of energy to increase. Thus a circuit brought into a field must tend , in

virtue of the forces exerted upon it by the field, to move so as to increase

its electrokinetic energy, that is we must choose the sign of the surface

integral of magnetic induction enclosed by the circuit so that in any
actual case the mutual forces may tend to its increase. Thus if T^f

denote the mutual energy of the circuit and field, and (Zx/y any small

change of position or configuration of the circuit, and "^ the force pro-

ducing it, due to the mutual action of the circuit and field, the work
done by this force is ^ dyfr. Thus

T-
dT„- dN ,,,

*=*F=>#'
<*'

if N denote the magnetic induction through the circuit and y be main-

tained constant in the change.

It is to be observed that we have no means of telling what are the

actions between elements of currents, or between elements of currents

and the different parts of the magnetic distribution. For example,

if we consider as fundamental the action of an element of a current-

circuit on a pole, the action of the pole on the element of circuit must
be taken as equal and opposite to that, and as existing at the pole.

Thus there arise a force on the element and a couple. It may be shown
that the resultant couple is zero for the whole circuit. This will be

referred to again below.

It is in fact to be remembered that the division of the circuit into

elements is artificial, though it can be depended on to give the forces

here discussed. For this there is sufficient experimental evidence.

The couples are here ignored.

The force "^J^ which thus tends to increase T^,- by increasing the mag-
netic induction through the circuit is called the electromagnetic force

on the circuit. If free to move as a rigid whole, the circuit will change

its position in obedience to this force so as to increase N, and if flexible,

so as to be capable of changing its form, will tend to increase its area

so as to include a larger total induction.

The resultant of electromagnetic force on each element of a circuit

can only be in the direction at right angles at once to the magnetic

force and to the element, because the element, if free to move in that
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direction, would increase the magnetic induction through the circuit

at the greatest rate. Thus there is no electromagnetic force in the

direction of the magnetic force on an element, since a displacement

in that direction would not alter the electrokinetic energy of the circuit.

In general, however, the elements of the circuit are inclined to the

direction of the magnetic induction. Let the angle between the

direction of the current in an element of the circuit and the positive

direction of the induction be 0, and let the element be displaced through

a distance cZ\/r in a direction at once normal to itself and to the direction

of the magnetic induction. The element may be supposed moved out

along guiding wires placed in this direction at its extremities. Let

(Is be its length. The change in N is the product of the induction B
at the element into the component of the length of the element in a

plane at right angles to B into the displacement ; that is,

dN = B sin ds . d\lr.

Hence dT^^yBmnOds d\p-

and the force on the element dy^r is

d^=^yBmiOds (2)

5. Currents distributed in space of three dimensions. If the direction

cosines of ds be /, »^, n, we have, using the components a, 6, c of B, the

equation
{{rnc-nbf + (na-lcf+{}b-7naf]^

sm = -—-— p
^^———— - .

r>

and therefore for (2) the alternative form

d'^=-y{{7m-nhf + {na-l€f + {lb-7Ymf'}^ds (3)

Substituting in this for the values {I, m, w)y/a-, the components w, v, w
of the current in the direction of the axes, taken per unit of the area

a of the cross-section of the conductor, we find

d'^={{vc-wbf + {toa-ucf + {uh-vaf}^ds.(r (4)

From this, supposing ds in the direction of y, so that l = n = 0, and B
in the plane of y, z, so that a = 0, we get

d<iri=={vc-tvh)(r.ds, (5)

that is vc-ivh is the electromagnetic force per unit of volume on the

conductor in the direction of x. Denoting the components per unit

volume in the directions of x, y and 2, by X, F, Z, we get

dX = {vc - ivh) crdx, dY = {wa - uc) a dy, dZ = {ub - va) crdz (6)

6. Specification of vector-potential. We now recall the specification

of vector potential in order to adapt it to the case of fields due to currents.

Consider an element, volume Sv, of the magnetized substance, at which
the intensity of magnetization is I. The magnetic moment of the

element is iSv. Then the vector-potential due to this element is
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I Sv sin 0/^2, at a point distant r from the element on a line making an
angle cj), say, with the positive direction of magnetization. The direc-

tion of this element of A is at right angles to the plane of the angle cp,

and in accordance with the direction chosen as that of integration round
a circuit or path, appears to an eye regarding the path of integration

of A in the direction opposed to that of I, to be directed round the

curve in the counter-clock direction.

The direction of A, thus specified for the element of magnetic moment
iSv, corresponds precisely to that of the direction of the magnetic force

at P, due to an element of a current-carrying circuit replacing Idv,

so that the direction of the current is the same as that of magnetization.

We verify this specification as follows. Denote the direction cosines

of I by I, m, n, the coordinates of I dv by x, y, z, and the coordinates

of the point considered by i,rj,^; then, putting / for the scalar value of

I, we have

^^«^=^[{™(^4-«('y-y))= + ..-]*. (7)

and therefore

dl''=~^{mi^-z)-n{,-y)}, dGJ-^[n(i-x)-l{^-z)},

dHJ-^{l{,,-p)-wii-x)] (8)

The values of F, G, H are to be obtained by putting A, B, G for II,

Im, In and integrating throughout the whole distribution of magnetism.

This process leads by the theory of magnetism to the equations

dH dG
A ^' 1

^^' ^^^ O A J,'
ii = ^ ^ = Mo« + ^'^^

' dt ~'d~A^ ^^^^ "^
'

^ = 3?-3^ = ^«^-^^"^' ^^^

where A', B\ C are the components of magnetization at the point

^, >/, f,
and ijlqIS the inductive capacity of the medium, with respect

to which the components of magnetization are taken. The terms

47r(^', B', C) are zero if the point considered does not fall within

the distribution of magnetism.

7. Vector potential for a magnetic shell. Mutual inductance of two

shells. Now let the distribution of magnetism producing the field be a

uniform magnetic shell produced by a current of strength y flowing in a

linear circuit, which forms by Ampere's law the edge of the shell, and

consider a second circuit carrying a current y' in the field of the first.

The magnetic induction through the second circuit is

\(l'a-\-inh-\-iic)dS',

where now V , m\ n' denote the direction cosines of the normal drawn
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outward from the positive side of the element dS' of the surface of that

shell, and we have

\{f''^^ + "'^ + H'!^<ls-^^{l'a + m'b + n'c)dS', (10)

where dx', dy', dz' are the projections on the axes of an element ds'

of the second circuit. But by (8) above, we have, since I Sv = ydS in

the present case, and ?** = (a;- f)*+(y-i;)*+(z- f)^

^-vk;-"!')"^' *">

with similar equations for G and H. The integration is taken over the

surface of the first shell, and reduces obviously for the JF'-term to

(Idx ,

y]rds'^'^

taken round the first circuit. Thus we get finally the equation

{l/dxdx dy dy dzdz'X, ,, f.„ ,, , . jcu

r [ds 5? +S i +S d?r''' =J('«
+ '»*+»^)<'«.

or, as we may write it,

y{^^dsds = {(ra + m'b + nc)dS\ (12)

where e is the angle between the two elements, ds of the first circuit and
ds' of the second, and r is the distance between the elements.

If we multiply both sides by y', we have

yy'
I

—— ds ds = y' I (I'a + m'b + n'c) dS'.

We infer from the left-hand side that

y I {la + mb' + nc) dS=y\ {I'a + m'b + ii'c) dS', (13)

that is, that the magnetic induction through the first circuit due to the

current in the second is equal to the magnetic induction through the

second circuit due to the current in the first. If both currents are

unity we get for the magnetic induction M through either the equation

M={^-^dsds' (14)

M is called the mutual inductance of the two circuits. The calculation

of M is of great importance, and the equation just found gives in certain

cases a ready means of performing it.

The magnetic induction N' through the second circuit due to current

y in the first is, as we have seen.

f f 1 /dx dx dy dy' dz dz'\ , , ,

JJ ' \ds ds ds ds ds ds J
'

'
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or, if we write y^;, y^, y, for the components of y parallel to the axes, it is

% r as r as r as

Comparing with (10) above, we see that we may write for a linear current

F^-^yfds, G = \^ds, H^^y^'ds (15)

It is to be observed that this does not give a unique determination of

F, G, H, since any terms of proper dimensions which introduced into the

line integral would give a zero result for a complete circuit may be added.

Still, for complete circuits, this specification of F, G, H is sufficient.

The components y^., y,,, y^ vary from point to point, but they give for

every point of the circuit the relation

dx dy dz ,.^.

y-y^ds-^yyts*y'ds
<^*'>

8. Second specification of magnetic induction through a circuit. We
now consider another method by which the magnetic induction through

a circuit. A, can be found, by first calculating the magnetic induction

at a specified point due to the current in the field producing circuit,

B, and then finding by integration the total induction through A.

When the current producing the field is unity the magnetic mduction

through A is called the inductance. It follows from the mutuality of the

energy of either circuit in presence of the other that the inductance

through A due to unit current in B is equal to the inductance through

B due to unit current in A. Hence we speak of the " mutual induct-

ance " of the two circuits. See also (13) above.

We have seen in 4 above that the electromagnetic force exerted

on an element of a circuit in which there is a current y, at a place where
the magnetic induction is B, is By sin^ (?s, that is, it is the vector product

of B and y, being at right angles to the plane of these two directed

quantities. Now we may suppose the induction produced by a single

unit pole properly placed. The reaction on the field exerted at the

element, is By sin ^(/s in the opposite direction, and therefore the action

on the pole is a parallel force Bysin^.</s together with a couple of

moment Byrsin^.^Zs, where r is the distance of the element from the

pole. The total couple due to the whole closed circuit is zero, as

we have seen, and so the action on the pole may be calculated by
finding the resultant of all the forces By sin 9 ds supposed acting at

the pole.

9. Magnetic field-intensity due to an element of a current-carrying

circuit. Thus we obtain as the intensity of the field produced at the

pole the value By&inO ds. But if H be the force produced at the

element by the pole, we know that B = ^uH ; and if r be the distance of

the pole from the element and the medium be isotropic, we have
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Airr^B^iTr, or J^= 1/r^ H = 1/^r^ where B and H are the scalar values

of the directed quantities B, H, so that

sin ^ 'Is

By sin 6d8 = y .(17)

Tho expression on the right-hand side is the magnetic lield intensity

produced by the element ds at the point where the pole is supposed to

be situated, and the resultant intensity is to be obtained by proper

summation of the forces produced by the several elements. The direc-

tion of this elementary force is at right angles to the plane through the

element and the ])oint considered.

The direction may be specified as follows. Let the right-hand be

held open with the palm down, and the thumb pointing downward.

Let the element be represented by the thumb, and the current be sup-

posed to flow in the direction in which the thumb points, and the point

considered be at the extremity of the forefinger, then the field-intensity

would tend to move a north pole there towards the next fmger.

The rule here stated for the specification of the amount and direction

of the field-intensity due to an element of a current-carrying circuit

is generally attributed to Laplace, but sometimes to Ami)ere. The
specification like that of vector potential is not unique, and for a similar

reason. It is however applicable to a complete circuit or to a complete

turn of a circuit.

10. Mutual inductance between two coaxial circidar conductors.

We shall now calculate as an illustration the mutual inductance M
between two coaxial circular conductors, a quantity of great importance

in electrical practice. It will be
;:^

seen that the first method explained

above gives M by one operation,

while the second proceeds by cal-

culation of the field-intensity at any
point, and then finds M by a second

integration. The second method is

necessary for galvanometry, for the

first integral gives a component of

the field which it is necessary to

know at the positions of the poles of

the suspended needle.

Let the circles be situated as in

the figure with their planes parallel

and coaxial, at distance b apart and have the radii OA=a, NP= A.

Take an element of the left-hand circle at Q subtending the angle dO

at 0, and denote the supplement of the angle AOQ by 0. By (14) the

mutual inductance between an element at P subtending an angle dcj)

at N and the element at Q is Aa cos 0d9d(l)IPQ, where PQ is given by

P(^ =.r^ =A^ + a^ + 2Aaco80 + b^.

N

'\

V

\

a »

i

>

1

O i ^ ;N 1

\
/

/q
./

Fig. 51.—Foreshortened circles repre-
sented by narrow ellipses.
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Clearly, for the mutual inductance of the two circles, we have

M= -lirAaX cos^— =-27r^a r- (l^)

Jo
^'

Jo (^2 + tt2 + 52 + 2^acos0)*

For 6> write 2ft), and put

y2 = 4^a/{(J[ +a)2 +62} = (r^^ - rg^^r^^, y'^ = \- y\

Then using the notation A^w =1 -y^sin^o), we find that

M:=27rrJ^V^
'^"''^^J^^'''^

(^a) = 27rr,{(?-ff-(iJ---y-^6^)}, ...(19)

Jo

f^'y^sin^cofZo) „ „ fi'y^cos^wf^w ^^ ,.,^

Jo

where G = F{y), H = E(y), the complete elliptic integrals of the second

and first kinds to modulus y* The reader may verify by writing

down the appropriate analysis that the radial gravitational or electric

force at a point in the circumference of one circle due to a uniform

disk of gravitating matter, or a disk uniformly charged with electricity,

filling the other circle, is, to a constant, equal to the magnetic induction

through either circle due to a current in the other. The equation

may also be written

.if= -4W:?^{|ff+(y-|)e), (20)

the form in which it is usually given.

By Landen's transformation, in which we put y = 2v/yj/(l4-yi),

this becomes /-j-

M=87r^iG,-HX (21)

where G^, H^ now denote the complete elliptic integrals to modulus

y^. This form is more advantageous when the modulus y is nearly

unity. We shall give some account of methods of calculation later.

11. Mutual inductance of circle and helix. Let us now suppose that

one of the circles, say that of radius a, is replaced by a closely and
regularly wound helix of wire, carrying a current of unit strength in

each turn. As we shall show presently, the helix may be considered

as a uniform solenoidal current round the cylinder on which it is wound,

of such strength that the current per unit length of the cylinder is n,

where n is the number of turns per unit of the axial length. The

* The use of y here for the modulus of an elliptic integral will not be confused
with its use to denote a current. The notation adopted leaves E and F free for

other purposes. [See Greenhill, "The Elliptic Integral in Electromagnetic
Theory," Trans. Amer. Math. Soc. 8, p. 447, 1907.]
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current for an axial step dz is thus ndz. Thus for a band dz at distance

z from the circle of radius A the inductance is

Mdz:=-2irAandz{"''''^-^^^,. (22)

Jo (Z^ + ^a)*

where R^ = A^ + a^-\-2Aaco&9. For limits z©, z^ of z the whole in-

ductance, 7 say, is given by

I=["Mdz= -2,r^«nrr^-^^^^ (23)

Integration with respect to z gives for the integral of inductance

/ = - A-miAa f cos d de{\og (z, + sIK" + z^') - log (z^ 4- VF+V)}.

Integrating now by parts and noticing that the integrated terms vanish,

we get

4.,....f%i„»0..{^;;7_=,J^___

4-^*1'

When the numerator and denominator of the first fraction is multiplied

by JR^-\-z^-Zi, and those of the second by JB^-\-z^-Zq, this

equation for the integral of inductance becomes

Jo \n\lH^^-z^^ R^slI^ + z^V

and, substituting 2ft) for 0, we find

j_ ^ A^a^
J

Zq ri' sin* 0) cos^ (u rfo>

'^^'{A+af l{(^ + a)2 + V}*Jo (1 -^sinaa))(l -yo^sin^o,)^

z^ ri' sin* (u cos* 0) dw
\

{(^ + a)2 + .~i*}*Jo (l-/5*sin2a))(l-yi2sin2o>)*r

where

/5* = 4.4a/(^+a)*, y^^ = iAal{{A+a)-{-z^\ yo* = 4^a/{(^+a)*-f-2o*}.

Now it is easy to show that

^^ sin* O) cos* W _ y32
^^"^ ^ ~ ^^*^* ^

l"^*"^in^r"'^^ l-^*sin2o/

^-(l-.i-) + sin*a>^(l-i,) ^_^^.^,^ ,



190 ABSOLUTE MEASUREMENTS IN ELECTRICITY chap.

so that we get, finally,

/ = 2-,rn(A + a)l3 {e„y„ [J^ (G, - //„) + ^^#'(<?o " "»)]

-%yi[^(«>-^:) + ^V,-n,)]}, (21)

where Gq, Hq, TIq, G^, H^, U^ are the complete elliptic integrals of the

second, first, and third kinds to the respective moduli y^, y^.

This result agrees with one obtained by a somewhat different process

in a paper by Dr. A. Russell " On the Magnetic Field of Circular

Currents," Phil. Mag., April, 1907.

If the circle lie in a plane bisecting the helix at right angles, we have

Zi= -Zq = z, and obtain

/=4x»(^+a)^^7[i(C?-/r) + ^(G!-n)] (25)

If instead of 27rn x 2s we write Qp, where p is the pitch of the helix,

and B the whole angle turned through by a radius the outer extremity

of which traverses the whole length of wire, we have

I^6pPy{A + a)[^,{G-H)+^(G-n)j (26)

This equation also serves for the case in which the circle coincides with

one end of the helix, provided G be the angle of the windings of wire.

It is important to observe that if the circle and coil be made of the

same radius, an arrangement which is possible if the circle (the revolving

disk of the Lorenz apparatus) is placed outside the coil, the factor

(1 - 13^)1^^ = and the formulae do not involve the elliptic integral of

the third kind, and the numerical calculations are much simplified.

We get then by (24)

I=i^nAl^(G,-H^-^{G,-HA (27)

and the calculations can be carried out very expeditiously and accurately

by means of Legendre's tables of the complete integrals G and H {F

and E). The distances Zq, z^ are those of the near and far ends of the

coil from the circle. This remark is due to Greenhill.* The formulae

have a direct application to " Current Weighers " [see below 17, et seq.],

and this remark is of importance in that connection.

12. Mutual inductance of helix and cylindrical current sheet. The
investigation may be extended to give the mutual inductance of a

helix and a cylindrical current sheet. The mutual inductance of the

helix and a coaxial circle is found, and then the calculation is extended

by integration to the current sheet. This has been done by Dr.

Russell {loc. cit. supra) for a current sheet and a helix coaxial and

concentric with it, with the following result. Let N -^
be the number

* " Electromagnetic Integrals," Phil, Trans., Dec. 15th, 1919,
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of turns of the helix, 2z, its axial length, and p its pitch, and N^, 2z,

the number of turns and axial length of the current sheet, which may be

a closely wound coil of fine wire. Also l<'t n Ix' tin* radius r>f t]\o lu'lix,

A that of the cylindrical sheet, and

Then if we write Rii = {A+af-\-{Zi-}-Z2f, R^^ = {A-^a)^-\-{z^-Zif, the

result is

- ^^.(l -^ [
-0\(^2 - "2) ^^2(^2 - ^2)}

The current sheet may be replaced by a helix if a correction be

applied. This may be determined by observing the change of / pro-

duced by turning one of the cylinders about its axis into successive

})ositions, so as to obtain the mean value of /. Two positions distant

180°, or, better, four at intervals of 90°, suffice to give the correction.

13. Computation of mutual inductances. The value of / may be

computed by means of Legendre's tables of elliptic integrals ; but Dr.

Russell has shown that the computation may be carried out very

readily by means of the power series which follow :

where q,i is given by the recurrence formula [in which a>A]
(A + aY 11.3.5 2?i-3rt ,„^,

^-^^:?^g--"7^ 2.4.6 2n~2 A ^^^^

When 5;j = 02 ( = -)> the convergence of the second line of (29) may
be slow. We can then substitute for it

in which the modulus of G and //is 2\/Aa/{A +a).

With regard to the calculation of the numerical values of elliptic

integrals which are not given in tables one or two remarks may be made
here. Legendre has given [Traite des Fonctions EUiptiques t. I.] the
following relation :
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where E, F are complete elliptic integrals of the second and first kind,

and n is a complete elliptic integral of the third kind. -E(y', a),

F{y', a) are incomplete elliptic integrals of amplitude a, and

sina = (l-/32)*/y'.

The modulus y' is v 1 - y^. This enables the tables of incomplete

integrals given in t. II. of the Fonctions ElUptiqties to be used for the

calculation of IT.

Unless however exceedingly high accuracy is required, elliptic

integrals of the third kind, whether complete or incomplete, can be

calculated by the ordinary process of computing a sufficient number of

ordinates of the curve given by successive values of the integral, and
then deducing the area. [See Gray's Gyrostatics, p. 259, et seq.]

With regard to the numerical values of the elliptic integrals, they

can be obtained with all needful accuracy from the great tables of

complete and incomplete integrals given by Legendre in his Fonctions

Elliptiques, t. II., but if, as often happens, these tables are not available,

the values may be calculated in various ways. For example M may be

found from the power series given for F and E (here G and H) in treatises

on Elliptic Integrals. Information as to such computations is given

with examples in Gray's Gyrostatics, chap, xii., which the reader may
consult. Tables of elliptic integrals will be found in Appendix IV.

14. Computation of mutual inductance of two coaxial circles by

q-series. The following method of calculating

M=^ir^0{G,-H.) (82)

[see (21) above] is due to H. Nagaoka [P^zZ. Mag. 6, 1903]. The formulae

were obtained by the theory of 1^ functions, into which we have not

space to enter ; but we shall indicate how the principal series can be

found by direct substitution. Denoting, as above, for brevity, the

complete elliptic integral F{y) to modulus y by G, and the correspond-

ing integral F(y') to the complementary modulus y' ( = >/ 1 - y^) by 6r',

we define an auxiliary function q, used first by Jacobi, by the equation

^=e-'G7G (33)

In the present connection G'jG is wholly real, so that q is less than

unity, and the series formed with it below are all convergent. Generally

it can be arranged that they are very highly convergent.

The value of q can be calculated from that of the modulus y' as

follows. It will be noticed that if we put y = sin a, we have y' = cos a.

Then, as can easily be proved [see also (40)],

l__2j + 224_2£H_



VI MAGNETIC FIELDS DUE TO CURRENTS 193

which gives

q = I tan \a -f ,V tanHa + }{.j taii'«^a + ^^^ tan'* Ju + . .
.

, (35)

by which q can be calculated. We have then, as will be proved below,

M=167rV^ag^(l+V-V+V-12^w+...) (36)

An alternative equation for M was given by Nagaoka [Tokyo Math.

Phys. Soc., 6, p. lOJ in 1911, as follows :

'^-*-^H^-'^'\i^^}^] <^^>

where the general term of the numerator is ( - l)'*~%'5'i***~^ and that of

the denominator ( - l)"»(2m4-l)^ii(<-"*+^>*-^}, and qi b calculated

from yi'% as q is by (34). In cither case the equation

r/ = }? + 2(J0' + 15(iZ)»+ (38)

may be used. The value of Z is (I - y'*)/(l 4-y'*) or (1 - yi'*)/(l +yi'*),
according as q or q^ is to be computed.

The modulus yj being that derived from y by Landen's trans-

formation [y = 2v/yi/(l+yi)], that is yi = (l -y')/(l+y'), we have

Gi'IGi = 2G'IG, so that q^ = q\
Using then the transformed integrals (zj, H^ oi (32) above, we

obtain [Gray's Gyrostatics (G.G.), xii. 16 (14) and 11 (3)] the equation

^^-^^i- 4.!?, ^
(l-4g^^ + 9y3-16./^+...) ..(39)

y-(2(?i/7r)-^

But by the values of y'* and ^Gijir [G.G., xii. 10 (3)] and the equation

this reduces to

1

""
([ +2q, + 2q,^-\-2q,^-h .,.)(l -2q, + 2q,^-2q^* + )..:

which, when the denominators are multiplied out, gives

2 //^ TJ^ A
^l-^q.^ +W- ...^{G,-H,) = i.q,^
^J^^,J^,^^

.

Thus we get finally

Expanding we may write equation (41) in the form

M=\^l^\lA~aq^{\ + ^^^-iq^^^\^q^^-\2q^^\^...) (42)

G.A.M. N
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As we have seen qi = q^, and so we have, with q as defined by (34) or (35),

TIf= 16W^2^(l + 3^4 __ 4^6 + 9^8 _ 12^10 +...),

which is (36).

When the circles are a considerable distance apart the value of M
may be taken as given by

M=Uir^sll~aq^^ or Uir^jAaq^ (42')

When the circles are not far apart it is advisable to use the value of

q derived, by (37) above, from / = (1 - y*)/(l +y^), which we denote here

by q'. We then obtain, by a process set forth in Nagaoka's paper

{loc. cit. supra),

M= i^JA^^^^ ] g^,^a{( l+Sq'- Sq'^ + .) log 1 - 4}. (43)

where € = 32q'^-4:0q'*+iSq'^ - ... . Tables have been constructed by
Nagaoka for the calculation of M by these formulae. They are given

in full in the Bulletin of the Bureau of Standards at Washington

(B.B.S.W.), 8, No. 1, 1912.

15. Relations between magnetic field-intensities and inductances.

Some remarkable relations exist between field-intensities of certain

distributions and mutual inductances. [See papers by the author in

the Phil. Mag., May and August, 1919.] For example the mutual
inductance of two concentric coplanar circles is proportional to the

electric (or gravitational) field-intensity produced by a uniformly

charged disk, the edge of which coincides with one circle, at a point on

the circumference of the other. Of course this field-intensity is in the

plane of the circles and radially directed, while the inductance is the

surface integral of the magnetic field-intensity for a point within one

circle due to a unit current in the other, and this field-intensity is axially

directed at each element of surface [see 10 above].

Another proposition follows from this for a circle and a coaxial

cylindrical current sheet. Take an axis of x along the axis of figure and
an axis of y along a radius of the circle meeting the circle in a point P.

Now imagine a uniform cylindrical volume distribution of electricity

or matter of density p, to have its surface coincident with the cylindrical

current sheet. The ^/-component of force at P due to the volume
distribution is, to a constant, identical in numerical value with the total

magnetic induction through the circle due to the current sheet. Some
other results are given in the papers referred to above.

The calculation of M may be carried out for the two coplanar coaxial

circles by finding for a point P on, say the outer circle, the electric field-

intensity due to a uniform charge of surface density unity, on the

plane surface enclosed by the inner circle. If the circles are not

coplanar, but are coaxial, the same result holds ; the radial field-

intensity at P due to the disk-distribution is, to a constant, numerically
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the total magnetic induction, through the inner circle due to a current

in the outer, or through the outer circle due to a current in the inner.

Then by integration along the axis, the result for the current sheet can

be obtained. To carry out the calculation would involve the repetition

of a considerable part of the analysis already given above.

16. Equivalence of a helical current and a current sheet. The result

stated in (24) agrees with an expression obtained by Viriamu Jones

{Proc. R.S., 1897, p. 198) for the mutual inductance of a helix of wire,

regularly laid on in a screw-thread cut on a circular cylinder, and a

coaxial circle midway between the ends of the helix. This arrange-

ment constituted the principal part of an improved apparatus for

carrying out with great accuracy a determination of the ohm by Lorenz's

method. An ingenious method of avoiding the direct calculation of

the elliptic integrals of the third kind was employed by Jones in his

final calculations, and was given in the first edition of this book, but it

will not be reproduced here, as the computations have all been carried

out with the utmost accuracy at the Bureau of Standards at Wash-
ington, and elsewhere. Further, we shall have to return to the subject

in connection with a description of a new machine installed at the

National Physical Laboratory by the Drapers' Company of London as a

Memorial after Professor Jones's death in 1900.

The mathematical analysis for the helix disclosed its equivalence to

a current sheet. The proof of this equivalence which follows was

suggested by the author to Professor Jones, about the end of 1897.

It is practically identical with one given by Lord Rayleigh in 1899

{B.A. Rep., 1899).

Let it be supposed that there is an exact whole number of turns round

the cylinder, and that the return wire is taken back to the starting

point parallel to the axis. Consider a small step ds along the conductor.

By the law of Laplace, this may be regarded as producing an element of

induction through the circle. This induction is dependent on the

position of the element on that circle of the cylinder which passes

through its centre and is at right angles to the axis. As only the

component in this circle produces the element of magnetic induction,

it is clear that this component may, without alteration of the induction

it produces, be equally distributed round the zone of the cylinder across

which (Is lies obliquely. But this converts the element ds into a band
of a current sheet, together with a component along the axis which

produces no effect on the induction through the circle.

It is important to notice that whether the wire be thin or not, and
whatever the angle of the helix, this equivalence holds, and that the sheet

will have a certain total thickness, equal to the diameter of the wire,

and varying in current density from zero at the inner surface through

a maximum to zero again at the outer surface, in a manner which it is

easy to express quantitatively if it is necessary to do so. If the insulat-

ing covering (should any be used) be uniformly laid on, and the wire
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be under constant tension while the coil is being wound, the inner surface

will be determinate with all needful accuracy. But in later coils used

for various purposes the need for a covering has been avoided by laying

the wire on a cylinder of non-conducting material, e.g. marble, found to

contain no magnetic matter.

In the discussion of determinations of the ohm given in a later

chapter all necessary particulars of the arrangement and the precautions

taken to avoid errors of measurement will be given.

17. Theory of a current weigher. The mutual energy of two current

sheets may be regarded either as potential energy or as kinetic energy

according to the point of view adopted.

The quantity - M, when M is defined by the equation

M= I I^^C?,S^rf6',

in which the integrals are taken round the two circuits, is to be regarded

as potential energy per unit of the product of the currents, or +M
may be regarded as the same measure of the kinetic energy. For if

we take the particular case in which the circuits are in parallel planes

it is necessary, in order to separate the currents still further, to apply

external force to pull them apart, that is of course in the normal case

in which they flow the same way round. In other words, when they are

left to themselves, they approach one another, and M is increased.

Thus if z be any coordinate specifying the configuration, the force

between the currents towards increasing the variable z is dM/dz.

Let Mq denote the value of M for any epoch and M^ that for any
subsequent epoch. Then, in the bringing about of the change, work

Ml - Mq has been done by the circuits on themselves. Thus, if the

symbol z represent the configuration, we have

^i-Mo = \~d^ <**)

Now let the force (as in a current-weighing apparatus) be applied

from without, and the change be M^ - Mq : we can easily find an ex-

pression for this quantity in certain practical cases, which is very

convenient. To fix the ideas, and take the most important case which
occurs, consider two solenoids in any relative positions. Each solenoid

may be regarded as consisting of two end disks covered with fictitious

magnetic matter of opposite polarities. It may or may not be of circular

cross-section, and the sections may have different forms in the two cases.

What is essential for the present purpose is that the coils should both be

cylindrical. Call then these disks a, h for one solenoid and c, d for the

other. Let Mab be the magnetic induction through the disk a due to

the disk h, or, as we say, through a due to h. Then the total induction

M between the solenoids is given by

M=Mac-\-Mi,c + Mad +MM (45)
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This may be written

Mah . e + Mah . d = Med . o + Med . h ,
.(45')

where Mab. e is the induction through the end c of the solenoid c, d^ due

to the end disks of the other, and Mnh.d is the same quantity for the end

d of c, d. Tlio (Mjuivalent form of M given in (45) is the induction through

the ends a and b of a, h due to the solenoid c, d.

Now let us sui)[)ose that the solenoid a, b is held fixed while the other

is displaced a small distance dz parallel to its axis in the direction from

c to d. Then the change in M is {M„,,.a - M„(j.c)dz, and the force F in

the direction dz applied from without is given by

F= -(Mab.d-Mab.c) (46)

For by the nature of a solenoid the change is that which would be

effected by removing a length dz from the end c of the solenoid c, d to

the end d.

Similarly the force required to move the solenoid a, b parallel to its

axis is

F=^Mcd.b~Mc,i,a (47)

18. Mutual inductance of two close nearly equal coaxial circles.

We take now some special cases of inductance which occur in practice.

Consider first the particular case of

two coaxial circles of nearly equal

radius and only a small distance

apart. First let the circles be in the

same plane, the radius of the inner

be A and that of the outer a. If a

point P be taken within the inner

circle the magnetic force dF there, at

right angles to the plane, due to unit

current in the element ds of the outer

circle at E (Fig. 52) is given by

d^
dF^cosO ', (48)

r^ Fia. 52.

where r is the distance of P from the element E, and is the angle

BEC. Multiplying by the area rdOdr, we get for M the equation

M m cos^
dr dO ds

.(49)

If we suppose to vary from 0, when EB is along EC, the upper

^—^limit is 8in-i(^/a). We call this 0^. The limits of r are the two roots

^^kof the equationH r2-2arcos6> + a2-^2=o (50)

^^Approxim;Approximately these roots are 2a cos 6^ and {a-A)lcosO; a closer
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approximation gives 2acos0 -{a- A)lcosO and {a-A)lcosO. Con-

fining ourselves in the first place to the rougher approximation, we get

J J(a-A)lcosieJo
**

or M=i7ra\og(-^^-2\ (51)

If X denote the smallest distance between the circles, we have thus

'8«
if-47r« log(^-2) (51')

The more exact value of the larger root of (50) might have been used

without much added difficulty, but a more accurate solution can easily

be derived in another way, due to Maxwell, which we shall give below.

The order of approximation so far adopted takes that part of the

induction, which does not pass through the inner coaxial circle, as equal

to that which might be computed by taking the outer circle elements

as straight. Of course if the conductor represented by the outer circle

is infinitely thin this part is infinite, but the infinity is avoided in any
actual case by taking the cross-section of the conductor as finite though

very small. This term also appears in the induction through the circle

of radius a, so that M for the smaller circle has the value stated in (51').

Now let the smaller circle be moved out of the plane of the larger

through a small distance y. If d now denote the shortest distance

between the circles, while x denotes the former shortest distance, the

additional induction which escapes passing through the circle of radius

a is 4:7rh {log d - log x) . Hence to the same order of approximation

as before

M=^7ralog(^-2\ (52)

This equation is not exact ; but by a process which will be found set

forth in the Electricity and Magnetism, Maxwell obtained a convergent

series by which the computation can be carried out to any needful

degree of accuracy. We simply quote the result, putting as above a, A
for the radii of the outer and inner circles, x for the (positive) difference

a- A, y for the small distance apart of the planes of the circles, and

r = sJx^-{-y^. Then

'V*TA-^[6W + ^^A^ -)] '^•'^>

Of course these formulae are not to be used unless xjA and yjA are

small. If yjA = 0-1 the largest term neglected in (53) is less than two
parts in a million.
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This approximation has been carried further by J. G. Coffin of the

Bureau of Standards, Washington (see B.B.S.W. 8 (1912), p. 14). The

new formula is, if A (as above) be the radius of the smaller circle and

y be the distance between the planes of the circles,

/, 8A/ 3^2 15y^ 35f 1575/ \
J/-47r^|log

,^^ V^"*'16^«~8.128^"*'*'128«^« 2.128^8^-7

(o.y . _31y^ 247.y« 7795y8 \| .

"V 16.^2 16. 128^*^6. 128M« 8. 128M«^ •'VJ
* * '^ '

An extension of Maxwell's formula is also given in the BuUelin of the

Bureau, loc. cit.

Two formulae are given by J. H. Havelock {Phil. Mag. 15, 1908).

They were derived from certain definite integrals of Bessel Functions.

We give one, as extended by a comparison with the series of Coffin just

quoted. If r^ = {a-A)^-{-y^y a = {Ala)r^lA^, the formula stands

, , rr, 3 15 2 35 , 1575 . 1, Ssfla
7»/=4W.^«|[l + pga-^^a2+^282a3--2-J28^a*+...Jlog ^.

/o 1 31 2 247 , 7795 . \) ....

-(2^lV-2M8«^6TT2P«' --871283^^*+ •••)/• -^^'^

This expression is said to give very accurate results for values of y
almost as great as the smaller radius A. A small number of terms

suffices for most practical purposes.

When the circles are coaxial and very close the following power series

in terms of y' [the complementary modulus of the elliptic integral in

(18) above] is rapidly convergent. It is due to Weinstein.

,__/-/, 3 ,„ 33 ,^ 107 ,« 5913 ,« \ / , 4 ,\

/, 15 „ 185 ,« 7465 ,„ \^

-0^T28>'' + T536^'-^6553-6>''^-)} ^''^

A selection of formulae for inductances in more general cases will be

given later [see Chapter XIII. below].

19. Total induction is stream function of magnetic potential in case of

axial symmetry. An interesting relation exists between the induction

/ through a circle in a magnetic field, and the magnetic potential 12 of

the field. Let the position of the circle be defined by the distance x

of the centre from a fixed point on the axis of the circle, and let its

radius increase from A to A-i-dA (or, as we shall write it in order to

refer to ordinary coordinates, x, y, from y to y-\-dy), while its centre, and
the circle as a whole, moves along the axis a distance dx. If Q. be the

magnetic potential at any point of the circle, the radial magnetic force

at the point is - dQJdy, while the axial component is - dQIdx. Clearly

an addition is made to / in consequence of the enlargement of the radius,

and a diminution takes place in consequence of the escape from the
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circle of the lines which formerly passed through the cylindrical strip

of length dx, and radius y. Thus we get

9/ _ p
dx Jo

which gives

or

'- m
/b^'dO,

3/

32/

rirr

Jo dx

32/
= -\fdO

^
?)X

32/
4-

32/

3172

13/
= 0.

-dx^
' (57)

This holds in the general case whether there is symmetry of the magnetic

field about the axis of the circle or not.

As to the differential equation fulfilled by Q we get, by considering

an element of volume of dimensions dx, dy,

32Q 320 13r2 1 32Q _ ,_.

3ic2 3^/2 y dy y^ W^

so that if there is symmetry of the field about the axis of the circle, such

that 320/3^2^0, we have

32^2^320 13Q
:^-o- + :^^ + -:^ =0 (58 )
3a;2 3^2 y -^y

It follows that in this case I is the stream function for the potential

Q. At a great distance from the axis, Q and I fulfil the usual relations

of conjugate functions.

If we consider any unclosed surface in the symmetrical field, and draw

through the points of its edge lines of magnetic force, we see that any

other surface with.its edge on these lines is a surface for which / has the

same value, and moreover / has the same value for any surface the edge

of which coincides with the circle.

If we put Q = / cos Ojy it will be found that the differential equation

(58) for Q. is satisfied, in virtue of that, (57), satisfied by /.

The present discussion is to some extent a digression from our subject

and we shall not pursue it further. The reader may however refer to

Greenhill's paper, loc. cit. supra.

20. Calculation by zonal harmonic series. In many cases of circular

currents and currents in coils, for example when elliptic integrals appear,

or when the axes of the circles do not coincide, we have to depend on

power series for the numerical calculation of inductances. A valuable

method is that of expression of the potential of a coil or the electro-

kinetic energy of a system in convergent series of zonal harmonics.

It is well known that the mutual electrokinetic energy of the currents

in two circular conductors can be thus expressed. But this series

when used in the ordinary way to find the energy of the currents in two
cylindrical coils (and hence also the induction coefficients of the coils),

by expansion of each term of the series and subsequent integration
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yields expressions which arc inconvenient for practical applications,

as the work of numerical calculation of their values in actual cases is

long and tedious. In a paper in the Philosaphiatl Magazine for January
1892,* it is shown that it is possible very simply to integrate each term

without expansion. The form of the result is remarkable, and enables

a pair of coils to be constructed in such a way that the zonal harmonic

ex})ression reduces to a very brief and manageable formula, from which

the energy of the currents and the mutual action of the coils can be

very readily obtained. This fonnula has been tested by its use in many
accurate numerical determinations of constants by the United States

Bureau of Standard at Washington. See the Bulletin of the Bureau
[B.B.S.W.], vols. 3 and 6, passim. The result, as we shall see, is inter-

j)retable also in power series applicable to important practical cases.

21. Integration of zonal harmonic series for two circles with inter-

secting axes. The integration of the zonal harmonic expression for the

general case of two circles with intersecting axes, so as to find the

mutual energy of two single-layer coils, can, as will be seen presently,

be carried out with great simplicity by a process of successive differentia-

tion [see 24, 25 et seq. below]. A convergent series [see (76) below]

is obtained, of which the even terms all vanish when one at least of the

coils is placed with its centre at the intersection of the axes. The third

term also vanishes if the smaller of the two coils is so placed, and has its

length and diameter in the ratio of \/3 to 2 ; and the fifth term also

disappears when the larger coil fulfils the same conditions. Further,

if both coils are thus proportioned

and placed, the even terms, so to

speak, doubly vanish, so that any in-

accuracy in the placing of the coils can
only very slightly affect the result.

Only the seventh, ninth, eleventh,

etc., terms of the series in (76) are then
left after the first. If one coil has half

the radius of the other, the error, made
by taking only the first term in

^^^ .

calculating the inductance, etc., of

the pair of coils is only about 1 in 26,000, and if the ratio of the radii

is as great as I only 1 in 4500.

The zonal harmonic expression for the mutual electrokinetic energy
of two circles, carrying unit currents, is given by the equation

im ^ =*''''''
''"'"''"'"Si(iTTj«2.''«'2/'^.G')'

{''«) -(59)

l^^where, as shown in the diagram, a, a' are the angles which the radii

^Hof the circles subtend at the intersection C of the axes, which is taken as

I

* " On the Calculation of the Induction-Coefficients of Coils and the Construction
•of Standards of Inductance, and on Absolute Electrodynamometers." By A. Gray.
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the origin of the spherical harmonics
; ^Zl is the differential coefficient

with respect to cos a of the zonal harmonic of the i'^^ order for the angle

a
; a'Zi the corresponding function for a'

;
^Z, the zonal harmonics

of the i'''' order in terms of the angle d between the axes of the circles
;

and r, / (/<r) are the distances of the circular arcs from the origin.

The derivation of (59) will be found in the Appendix in Spherical Har-

monics : assuming it here we go on to its applications.

Putting then a, a' (see Fig. 53) for the radii of the larger and smaller

circles respectively, and x^ x' for the distances of their planes from the

origin, we have
, a . , a'
sma = -, sma =-.

r r

Substituting in the zonal harmonic expressions, as given in the Appendix,

their values in terms of a, x, a', x\ we obtain

^'='^'yr'^{l-2cose+2.3^-2a;'(cos20-isin2e)

+ 3.4 t.zA^ (x'2 _ ia'2)(cos30 - | sin^O cos 0)

+ 4.5
^(-^'

-J^'^)
x' (a;'2 - |a'2) (cos^Q - 3 cos^^ sin^^ + f sin^^)

+ 5.6 ^—
;g

^— {X^ - |;«% 2 + ^j'4)

x('cos5e-5cos30sin20 + ^sin40^ + ...} (60)

The couple B due to the mutual action of the two circular circuits

tending to increase is dT/dO. Hence

e = - 7r2yy'a2 a'^ainOil .2^ + 2 . 3 ^ x'. 3 cos

+ 3 .
itzi^(^x"^ _ la"') .2.3 (cos20 - i sin^O)

^4 5^(^izi^)^'(^'2_3^'2).2.5cos0(cos20-fsin2e)+...}. (61)

The attraction between the circuits when they are coaxial, that is

when ^ = 0, may be found by putting ^ = in the value of T given in

(60), and calculating dT/dx'. We have

r-^'VY'"^' { 1 . 2 + 2 . 3 ^ a;' + 3 .

4 ^^i«' (x'-^ - >a'2)

4.5"^^2LJ^,/(3;'2_3a'2)+...}. (62)

|-':-=yy''^^i.2.3^:+2.3.4
dx ' ' r^ ^ r

+ 3.4.5?M^(^'2_.«'2)^..,.}. (63)^
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22. Discussion of two single-layer coils. We conclude the present

chapter with an investigation of the mutual energy of two cylindrical

coils, each consisting of a single layer of fine wire carrying currents

y, y and so placed that their axes intersect at an angle ^ as shown in

Fig. 54. The discussion of some more general cases will be given in

the next chapter.

Single-layer coils are capable of being constructed so that their

constants can be determined with very great accuracy, and the ex-

pression of the electrokinetic energy of the arrangement enables the

inductances to be found exactly for a number of important cases. Let

a?!, iCi', iCg, x^ be the distances of the nearer and farther ends of the coils

from the intersection of their axes, x, x' those of two circular elements

Fig. 54.

of lengths Ax, dx' . If now w, 7i' be the numbers of turns per unit length

and y, y' the currents, in the two coils, the currents in the elements

are nydx, n'y' dx'. Writing down then by (1) the expression for the

energy of the two elements, and integrating from x = Xi to a; = ajg in the

one case, and from x' = x{ to x' = x<l in the other, we get for the mutual

electrokinetic energy of the two coils of lengths a^g-ajj, x^ -x^ the

expression

T^iirHn-yy'a^a'^^j^y ^,
J'J^

*»£/"-' ..Z.'dx. ...(64)

The quantities ^2/, a'^/ can be found by differentiation with respect

to cos a, cos a' of the well-known expressions for „Z„ ^Z/, and the

integrals then got by direct integration ; but the following theorems

for zonal harmonics of even and odd orders respectively, yield at once

the integrals required. [See the paper cited on p. 201, footnote.]

{a) The solid angle subtended by one of the circles, say that of radius

a and axial distance x, at a point distant p from the origin is given if

p<r by the equation

(0- 27r 1 1 - cos a -f- sm'-a^ I ^Zl . eZ, (^Yj, (65)



204 ABSOLUTE MEASUREMENTS IN ELECTRICITY chap.

where is the angle between the axis of the circle and the line from the

origin C to the point in question.

23. Particular case of axes of coils at right angles. Method of in-

tegration. Now let the angle be 90°, and write y for p in this case,

since it is the distance of the point considered from the axis. The

integrals to be found do not depend on the value of 0, a. Then all

the harmonics e^i of odd order vanish for ^ = 90", and the general

expression for the harmonic of even order 2i is

1.3...(2i-!)
^ ' 2.4...2J

Hence <u= 2x[l -
f
-«» [I ^ . .^; -

^--^.f;-.
.2r; + ...}]. ,..(66)

But this is of the form

u> = 27r{A, + J,i/i-A,y^+...), (67)

where 2x^0 i^ *^® value of o) for y = 0, so that Aq = 1 -xjr. Now w
must satisfy Laplace's equation, which, since there is symmetry round

the axis of the circle, is for the present case

3a;2 'dy^ y 'dy
^

'

Differentiating (67) and substituting in (68), we find

?)^A. dU, „ SMo ,

+ 2^1 + 3.4^22^2 + 5 6^^^ +

+ 2^1+ ^A^y+ QA^y^+...=0.

The coefficients of the different powers of y in this series equated sepa-

rately to zero give

i~ 2* dx^'
2 " 2^ 4^* a*' ' 3 2^.i^.& d-j^'"'

sothat o>=2x(^„-|^^« + 2^^«-...) ...(69)

Comparing this with (66) we see that

Thus, neglecting constants of integration.

••j=?

'•#
OX

fir - ^^^^
(70)
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and we are able to calculate the integrals of even order required for

(64) by successive differentiation.

To find the integrals of odd orJer, let us assume that

A\'^'dx^'^, (71)

where A is a constant to be determined. Differentiating we obtain

from this equation and (70) the relation

y

and therefore also

^{(l-M2)a^.^+l-(2i + 3)yUa^W.)=(2i+l)!«^a^;+2, (72)

where /x = cos a.

The assumption made in (71) will be justified if the relation expressed

in (72) holds for a constant value of A. Now if Z, denote a zonal

harmonic of any order i, we have, by the fundamental relations of

zonal harmonics,

/xir, - z,_, = - V ( 1 - iJ.^)z;, z, - nz,_, = - 1 (i - m')^:...

By elimination of first Z;_i, and then of Z„ we find

z, =

i

{^lz; - zi,), z,_, =
I
(z; - ,ulz:_,) (73)

Differentiating these with respect to yu and eliminating Z/ , we get

{I - ^^)zi,- fji(i+i)Z',.,= -{i-i)z;,

which, with 2^^-2 written for i, agrees with (72) if we put

A= -(2z-l)!a2.

Thus the assumption is justified.

Hence neglecting as before constants of integration, we obtain

«^[# dx = - Aq,

2!a^f

f^
V.a^\^^dx= -

da^
'

.(74)

so that (70) and (74) give by the same process all the required integrals.

Taken together they give the theorem, of great importance, in this

connection at least,

(-i)'(i^^'S^" <^^>\^.'l^-
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where i is any positive integer. A similar theorem holds of course,

mutatis mutandis, that is with a' substituted for a, x' for x, and p for

r^, for the harmonics in a\ and can be used as indicated above for the

calculation of the second integrals in (74).

24. Formulae of calculation. The first seven derived functions

of ^o( = 1 - ic/r) are as follows :

?>A. ft2 32^0 ZaH d^A^ Q«^/. 2 2\

dx 0^ dx!^ r-' dx^ v ^ '

^= -32.5 4r(8a:*-12a:V + an,
OX'' r^^

^ '

W^ = 32 . 5^ (56a:4 _ 1 40i»%2 + 35^4)^

K^= - 32. 5^(448a;« - 1680.'):%2^ 840a;2a4 - 35rt6).

Substituting these values in (70), (74) or (75), we obtain, for y = y' = 1,

T^-irHn'a:'a'^{K,h, . eZ, + Koh . 0^2 + • • • }, (76)

where

K-^f^-^i) K--f---^ K---^^-^^

^4 = -
^ {
iiW - 0^') - ,A (4^1^ - «^)}'

A:^ = 2ic^' - 3xia^ - 2x^ + 3x[V,

h = 2xi - baiV + p,W' - 2x^ + 5a;;V2 - ^x,'a'\

h, = 2^« - V-.'^^a'^ + -^^4V^ - 2aH« + V-a^X^ - V-.t^V^

A;^ = 2x^ - ^-x'ia'^ + ^^xia" - ^^x^a"" - 2a;7 + ^^}x,V - -^-.^^^ft'^ + Ux^a".

If one of the coils, say that of radius a, have its centre at the origin

x^= -a?!, the terms of even order all vanish, since ^2> ^4» •••
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vanish. If, besides, the other coil have its centre at the origin,

x^= -x^', and the even terms doubly vanish.

Further, if besides being so placed, the second coil be constructed so

that its length 2x2=\l^\ the third term of the series in (76) will

vanish ; and similarly the fifth term will disappear if the first coil

fulfil the relation 2x2 = J^. Thus under these conditions all the terms

in (76) between the first and the seventh disappear.

25. Application of results to construction of absolute galvanometers

and electro-dsmamometers. The first term will give T to a sufficient

degree of approximation for all practical purposes if a' > ^a, as then the

coefficient of ^Z- does not amount to more than 1/1770 of that of ^Zp

and the terms of higher order are relatively unimportant. If a' > \a,

the seventh coefficient in (76) is at most only about 1/10000 of the

first. With the former ratio of radii, the error made in taking only

the first term of the series amounts to a quantity quite inappreciable

in experimental measurements made with standard coils, and an

important application of the result can be made in the construction of

electro-dynamometers.

If the coils be concentric and at right angles, and N^N'hQ the whole

number of turns, the couple on the suspended coil may be written

9 = ^^'"'^^y(l4--000185lf^y^>0000307f^y+...l...(76-)

which shows better that the value of the couple depends, for any
reasonable ratio a fa, almost entirely on the first term of the series

in brackets. If, for example, a'/a = ^, the correction terms following

the first amount to only about 3 parts in a million.

A single-layer coil made as here of considerable length seems very

suitable also for use as an absolute galvanometer. It has sufficient

uniformity of field to render the very exact placing of the needle at the

centre quite unessential, and it can be made sufficiently sensitive, so

that it possesses most of the advantages of the Helmholtz double-coil

arrangement, without the uncertainty which exists in the latter as to

the distribution of the different turns of wire in the two multiple-layer

bobbins, or requiring the correction terms which the bobbins involve

on account of their finite cross-section.

We may find the couple acting on the needle of such a galvanometer
as follows, provided the needle be suspended with its axis intersecting

that of the coil. The suspended coil in the above discussion may be

taken as a solenoidal magnet of magnetic moment ira'^n'y' per unit of

length, and therefore of total magnetic moment M = 7ra'hi'y'{x2 -Xi).
Hence by (76), we have, since =dTldO,

0= --Trnya^MsmO ^,^ ,{K^lc^.eZ,' ^KJc^-^.;: \- ...], ...(77)
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from which by means of the values of K^, K^y ... A^i, k^, ... given

above the value of 9 in the general case can be calculated.

If the coil and solenoidal magnet be concentric all the even terms

vanish as before, and by making the length of the coil J^ times its

radius we can cause the fifth term to disappear. The couple therefore

to the seventh term inclusive is given by

e = ~ -lirnya^M sin <^ 1

1' ^? - ^ ^ (^^^ " ^^'^) ^^s

+ ^<^a*-|a'«).^,'| (78)

With an actual magnet it is impossible to set up any definite relation

between x./ and ^2'
5 but by using a thin uniform needle it is possible

to make 2a', which is a quantity of the order of magnitude of the

thickness, small compared with Xg', and therefore practically zero.

Then by making X2, which for a thin needle of uniform thickness is

approximately its half-length, small in comparison with fg? ^^^ second

and third terms in (78) may be made quite negligible. For example,

if a needle 1 cm long be used in a coil of 20 cm radius, and therefore

of axial length 34-64 cm, and the value of be approximately 90°,

the second term in (78) is only about 1/(6500) of the first.

26. Coefficient of mutual induction of two coils: standards of in-

ductance. We may notice here (though the subject of induction

coefficients belongs to the next section of this chapter), that in (74) T/yy'
is the coefficient of mutual induction of the two coils. Thus if two coils

of considerably different radii, but each having its length v/3 times its

radius, be arranged concentrically, their mutual induction coefficient

is given for any angle between their axes with accuracy by the

first term of (74). In this way standards of mutual inductance could

be easily made with very considerable exactness.

By supposing the coils equal in every respect and coincident, we can

calculate the self-induction coefficient of each, by taking the value of

T/yy' given by (76). In this case however the first term does not

give an exact result, and it is necessary to take in at least one more
term of the series.

For two coaxial and concentric solenoids of half lengths, x and x\

and radii a and a', the mutual inductance, calculated by (76) and the

values of the Ks and ks which follow that equation, comes out

M= ^7mWft'2{ 1 - ^^ (4a;'2 _ ^a'^) _ ^^{ix^ - 3a2)(8;>/4_ 20x^a'^ + 5a'*)

^2(8^ - - 20a;V + ^a*) (64a;'6 _ s36xH'^ + 2S0x^a* - 35a^) } - ... (79)
a"

1024?
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Here r is the length of the diagonal of half the outer coil, that is,

r2 = x2+a2. [See Fig. 54.]*

With a certain amount of accuracy the single-layer coils discussed

above might be replaced by coils consisting of several layers, the ends

of the channel in each case being frustums of a cone having its vertex

at the common centre and semi-vertical angle equal to tan~^ (2/\^).

This makes each layer (unless a whole number of turns cannot be made

in each case to fulfil the relation) have its length equal to v/3 times its

radius. The mutual energy and the action of one coil on the other can

then be calculated by considering separately each pair of single-layer

coils which can be formed by taking one layer in each coil. In such

an arrangement, however, as in all multiple-layer coils, the distribution

of the wires would be to a certain extent irregular.

In the calculations of coil constants given in later chapters no

allowance is made for insulation space between the turns of wire.

This matter, however, will be found shortly dealt with in XIII. 51,

below.

* The zonal harmonic expression of the electrokinetic energy of two coils was
integrated in a very general form and all the formulae and factors, here used,

worked out in the paper by the author, loc. cit. supra. Equivalent expressions for

some of these results were given later by Searle and Airey in the Electrician^ 56, 1905.

It was observed after Chapters VI. and VII. were in type that in the discussions

in VI. 23, and VII. 1...3, which were written at different times and with
different applications in view, the symbol Aq of VI. 2.3 has the same meaning,
1 -^/r, as the -"dAo/dx of VII. 3, 17. The discussions are thus independent, and
one is to some extent a check on the other. As each chapter is complete in itself,

it has not been thought necessary to rewrite, and reprint, any of the subject

matter of either.

G.A.M.



CHAPTER VII.

CALCULATION OF CONSTANTS OF COILS AND
COEFFICIENTS OF INDUCTION.

MAGNETIC ACTION OF CIRCUITS AND COILS.

1. Solid angle subtended by circle. Potential due to circular current.

It has been proved above that the solid angle subtended by a circle at

any point is given by the equation

(1)<«)= 2'7r|l -cos a -^sm^a^-.aZi' . ^Zj- . f-j k,

where (Fig. 55) is the angle between CP and the axis, a the angle

between CA and the axis, ^Z, the zonal spherical harmonic of order i,

aZ/ the differential coefficient of ^Z,

^rv-^ .P with respect to cos a, / the distance CP,

I \ \ "~~-^>-. .-'"1 and r the distance GA. If as indicated

in the figure we take Q = 90°, then all the

zonal harmonics of odd order vanish,
^

I

^
C and the general expression of the zonal

\ / harmonic of even order 2* is

\J
,

^,,1.3...(2i-l)

Now the solid angle subtended at any point by a closed curve is

equal to the potential which a unit current flowing in the curve would
produce at that point. Hence if a current y flow in the circle, and
12 be the potential which the current produces, we have, writing y for

CP in the particular case in which it is at right angles to the axis, and
X for OC,

I2=2xy{l-f-J5a2.-|^5.M3a^-4.2)

a series which is convergent if ?/ < r.

This equation can be found as follows without the use of zonal har-

monics, and a comparison of the processes gives results which will be of

210
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<^r<*at s<?rvico in some more complex applications of zonal harmonicH

lat<!r in the present chapter.

2. Potential due to circular surface distribution of magnetism. Con-

sider the j)otential produced at any ])oint I* (Fig. 55), at a distance y
from the axis of the circle, by a circular plane distribution of magnetism.

TiCt the dimensions be as in Fig. 55^ and denote by a- the surface density

of the magnetic distribution, and by dV the potential at C produced by
a narrow concentric ring of the magnetism of radius j) and breadth dj).

\/p^ + y^

I fence integrating from p = Oto]) = a, we find

r= 27ror{s/a^Tx^ - a)

for the potential at C due to the whole distribution.

Now assume for the potential at P,

V=2ir<T{A^ + A^/^A^/^ +...), (3)

where ^q, A^, ... are functions of x. No odd powers of y can enter,

since the potential is not altered by reversing the sign of y ; and since,

when y = 0, the value of V reduces to that for C we have [see Note,

''• ^^'^1
A^ = sl^F+^-x (4)

3. Potential due to disk, and potential due to circular magnetic shell*

found by solving Laplace's equation. At all points external to the

distribution F must satisfy Laplace's equation, which, for the case of

^vmmetry round the axis of ic, takes the form

Ba;2 'dy^ y 'by
^ '

Differentiating (3) and substituting in (4) we find

+ 2/^1 + 3. 4.^2//^ + 5. 6^37/4+...

+ 2^1+ 4^2«/2^ 6^37/*+. ..=0.

The coefficients of the different powers of y in this series equated

separately to zero give

IS 22 3.?;2' ^2 22.42 9ic*' 3- 22.42.62 a»-6'
•"•

I^Bence finallyH v-^^ctIa -y'^'^o, f ^A \ ...^B A^ - .47ro-(^^o ^2-_- + _^_^_-^ _...^, (b^

where A^ = s''(^x^-x. [See footnote at end of Chap. VI.]
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From (6), of course, by differentiation with respect to x and y re-

spectively, the axial and radial component forces at the point x, i/, can

be obtained for the given distribution.

If now another circular plane distribution, of equal density but

opposite sign, be supposed placed coaxial with and at a distance -dx
from the former, its potential at the point {x, y) will be the same as that

produced at the point {x-{-dx, y) by the former distribution, except

that the sign will be changed. Thus it is - {V -\-'dVj'dx . dx) . The
potential at the point (x, y), due to the two plane distributions together,

is thus -dV/dx . dx. Calling this 12 we have

12 = 2.0. ^.(-^o^|___^o__^^_o^...| (7)

This is the potential at x,yoia magnetic shell of strength cr dx. If the

shell be replaced by a current of strength y flowing in a circle coinciding

with the edge of the shell, we have a-dx = y. Performing then the

differentiations of Aq (writing for brevity r for Ja^ + x^, and replacing

crdx by y), we find again (2).

By comparison of (1) and (7), remembering that 0' is now 90°, and
r' = y, we see that

x_ dA^
'• 3'^

I (8)I

a general result which enables \{^Z'.,ilr-'^-}dx to be calculated for any

value of i by successive differentiation of Aq. By the process of VI. 23,

it can be proved that a similar theorem is true for zonal harmonics of

odd order. The -dAJdx of (8) is the A^ of VI. 23.

4. Magnetic forces due to circular magnetic shell. The axial and
radial component forces F, R, are - dil/dx, - dQ/dy respectively. These

could be obtained directly from (2), but it is easier to differentiate (7)

with respect to x and y, and insert the differential coefficients of ^q
in the result. Thus

+ 22^^^ |^(35a«-840«^2 + 1680s)*- 448fl.'«) + ...}, (9)

+ 2^g,^(35a«-140«V + 56.'c*)+...) (10)
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The field due to a circular conductor is shown in section by Fig. 56,

which is taken from Maxwell's Electricity arid Magnetism, vol. ii.,

with an extension to show the field symmetrically about the centre

of the circular conductor.
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5. Couple on magnetic needle produced by circular current. From
these results we could calculate the couple on a thin uniformly mag-
netized needle A, B (Fig. 57) placed with its centre on the axis, and

deflected into any given position ; but the following method is pre-

ferable. Let 21 be the length of the needle, and 6^ the angle which its
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axis makes with the plane of the circuit. The coordinates of its ends

are x + l&mO, IcosO for A, and x-lBinO, -IcoaOioi B. Now if

A

B
i

Fig. 57.

Oj, O2 ^® ^^® potentials at A and B respectively, we have by Taylor's

theorem,

fill 04.7/ • zi^^ a^^\^i} = 12±Z(sm0^- + cos^^)

^i^HS^^-^^-^^l|^-«^^P^
Thus if the strength of each pole of the needle be m, the energy of

the needle in the given position is m(02 ~ ^^i)j supposing the positive end

at 5. By (11) we have, writing A/, the magnetic moment of the needle,

for 2mi, and D for the operator

smO;^ +cosO;^,
ox oy

»«(fl,-n,)=-/lf(z)+^i)» + j7>s+...)fi, (12)

where is given by (7). The expansion is a little troublesome but

not difficult, and the reader may verify that the result stated in (13)

is correct.

If instead of a single turn of wire there be N turns which may
be taken as coincident, we must write Ny instead of y in this

equation.

The couple 9 acting on the needle is thus given numerically by

e = m ^("^^" ^1^ = ^irNyM cos ^'
1
1 4- ^ ^^(a^ - 4«2)(1-5 sin^O)

+ |^T2,^K-12A2 + 8^^)(l-Usin2e + 2lsin4e) + ...|, ...(13)

a formula of great importance in galvanometry.

If the needle be not uniformly magnetized the value of I is not

definite. It is easy to see however that M, the magnetic moment
of the magnet, should be used in the first term. In the other terms
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l^, I*, etc., should be replaced by quantities depending on the distribution

of magnetism on the needle. This however it is in general impossible

to determine for a small needle.

If / be very small the expression on the right of (13) reduces to the

tirst term approximately ; and if also x = 0, that is, if the centre of the

needle is at the centre of the circle, we have

Q = 2'7rNyMcoBe/a (13')

6. Modification of formulae to allow for dimensions of coil-section.

The principal term in tlie expression on the right of (13) is the first

2'7rNyM cosOa^/r^, which, by (9) and (10), is the value of the couple

when I is so small that the component R of magnetic force is negligible,

and the value which F has at the centre of the needle is taken as the

force at each pole. Now we have for the couple in that case

e = 27r A^yAf cos Oa^i^ = FM cos 0,

so that F = 27rNya^/r^. We have to find what takes the place of

27rNya^/t^, or F, in (13) when the coil cannot be treated as a simple

circular conductor. For the other terms, unless the dimensions of the

bobbin are larger than usual, the coil may be taken as a single circular

conductor coinciding with the mean circle of the bobbin, and carrying

the whole current. The case of a long bobbin we shall consider specially.

Let the breadth in the direction of the axis of the cross-section of

the coil by a plane through the axis be 2b, and the radial depth of the

section 2d. Let BG (Fig. 58) be a radius drawn from the centre C of

the coil in that plane which cuts g
the coil into two equal and similar i::--!:

coils,andtakingZ)^( = A),Ci)(=A;) \\l^
at right angles to one another, we
have clhdk for the area of the

element E of the cross-section of

the coil by a plane passing through

the axis and through BC. Also

PE^ = {x- hf + k^. Let, further, n
be the number of turns crossing unit

of area of cross-section, and y the

current in each. The current cross-

ing the element E is nydhdk, for we here suppose the wire so fine that

we may suppose that everywhere the current crossing any area of cross-

section is proportional to that area. [When the layers of wire form each

a helix we here neglect the axial component of flow. How this may be

compensated will be explained later.] Hence by the law (p. 178 above),

which we may assume, as to the magnetic action of the elements of a

circuit, the force exerted on a unit magnetic pole at P, by an element,

of area dhdk and length ds, at right angles to the plane of the paper is

nydsdhdkl{{x-}if^-k^Y'' Hence if dF be the component in this

ii
Fig. 58.
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direction due to the whole ring, of which the element E is the cross-

section, ^ i.2cihdk
dF= zirny r,

•

[{x-hf-^k^Y

The whole magnetic force parallel to the axis is therefore

'«+^ k^dhdk

or after integration,

I = 2Trny { (x -f- o) los;
, /«

__ _ o+^W^^^^n
(14)

which reduces, when x = 0, to

^'=,j^^llog^l±|±^;^^^, (15)

and, when b and (^ are small enough, to

F='2irNyla, (16)

where N is the total number of turns in the coil.

The value of F in (14) is to be used, when required, instead of

27rNya^lr^, so far as the first term of the series for F is concerned ; the

remainder of the series is to be retained without alteration as sufficiently

accurate for practical purposes.

7. Removal of second term in series for F. Gaugain's galvanometer.

The second term of the series in (13), involving the product

(a2_4x2)(l-5sin26'),

may be made to vanish by arranging so that one or both of the factors

may vanish. The value of the second factor is 1 when ^ = 0, and

diminishes as (whether positive or negative) increases in numerical

value, until, when 0= ±sin-^(l/s/5)= ±26° 34', it is zero. Thereafter

it becomes negative, and approaches -4 as ^ approaches 90°. At
45° its value is -3/2.

The first factor may be made to vanish by placing the needle so that

x = a/2. This was done by Gaugain in his galvanometer, which con-

sisted of a vertical coil with a needle so suspended that its centre was

as nearly as possible on the axis of the coil, at a distance equal to half

its radius. The uncertainty as to the proper distance, caused by the

dimensions of the cross-section of the coil itself, was got over by winding

the wire on a conical surface of semi-vertical angle tan-^2, so that the

distance of the needle, suspended with its centre as nearly as possible

at the vertex, might be in the proper position relative to each spire.
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With })roper arrangements this winding of the coil, though more
difficult than that of an ordinary bobbin, might be carried out with

M sufficient exactness ; but any inaccuracy in the placing of the needle is

K serious. For by ( 13) the value of Z^O/dx is - 2'7rNyM cos . Sa^/t* . dr/dx,

and th<»refore ( ) requires correction for an error dx in placing the needle,

by multiplication by the factor 1 + 1/B . cG/cx .dx, or 1 - 3x dx/r^,

or since x = a/2, by the factor 1 -6dx/6a. Thus if dx is sensible, this

factor, depending as it does on l/«, seriously affects the value of B.

8. Helmholtz's arrangement of galvanometer coils. Gaugain's gal-

vanometer has been improved upon by von Helmholtz, in whose arrange-

ment two equal parallel coils are placed with their medial planes at a

distance apart equal to their mean radius. The needle is suspended

with its centre as nearly as may be on the axis, at a point about which

the arrangement of coils is symmetrical ; and the coils are so joined

that the current flows in the same direction round both. This makes
a^-ix^ = 0, very approximately, in 0, and further obviates the un-

certainty just referred to. For any displacement of the needle towards

the coil is attended by a diminution of the couple due to the other coil,

and a very nearly equal increase of the couple due to that which is

approached.

The field due to the arrangement is shown in Fig. 59, which is taken

from Maxwell's Electricity and Magnetism, vol. ii., and may be con-

trasted with that for a simple coil shown in Fig. 56. It will be seen

from the diagram of lines of force, and the same thing is obvious from

(10) (since the values of x for the two coils are equal and opposite),

that R is zero at every ^^ointJn_the plane midwax between the coils,

and passing therefore (approximately) through the centre of the needle,

and also very nearly zero at points even at some distance on either side

of this plane. Thus over quite a considerable space surrounding the

centre of the needle, the field due to the coils is practically uniform
and parallel to tho axis,'^nd the couple practically independent of 9,

and unaffected by any error in centring the needle, such as would have
a serious effect on the couple in the case of a single coil.

It is clear that the energy of the needle in the field of the double coil

is twice that given in (12). For the energy of the positive pole, supposed
nearer to the coil from which it is repelled, is wQg ^^ ^^® ^^^^ ^^ t^^* ^oil,

and - niQ^ in the field of the other coil. The energy of the other pole

has evidently the same value, so that the whole energy is 2m{i}2-Qi).
The couple is thus 29, where 9 is given by (13), subject to the condition

that d^ = ix^. It may be written therefore to terms of the fourth order

i

inclusive,

e = 4xJVy*fcose^{l-^-g?J'(l-Usin''(J + 21sin«e)|, (17)

where, since a^ = 4:X^, r^ = 5x'^ and N is the number of turns in each

coil.
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Values of which satisfy the equation 1 - 14 sin26> + 21 sin*^ = 0,

render the factor of the second term in brackets zero. These values

are 16° 34' and 49° 55'. The factor in brackets has two maximum
numerical values, viz. 8 for 6'= ±90° and -4/3 for ^= +35° 16'.
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9. Effectjof finitejcross-section of coil. To take into account the

distribution of the wire over the finite cross-section of the bobbin, we
may take the coil just considered as an elementary ring of the real coil,

and, regarding the distance x and radius a of this ring as subject to

variation, find, from each term in the expression of any effect produced

on the needle by the central ring, the corresponding term of the effect
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produced by any other parallel ring of the coil. From this we can find

an expression for the average value of the term for the whole coil.

Thus let Pq denote any term of the expression for the action, whatever

its nature, on the needle produced by the central circular filament.

If then P be the corresponding term for a filament, the coordinates

of which reckoned from the centre of the cross-section coil are A, k,

and the area of cross-section of which is dh dky P the average term for

the action of the whole coil, and 26, 2d be the axial breadth and radial

depth of the coil, we have by definition

\M.P=[ r Pdhdk (18)

But, since the value of P for this term is obtained by substituting

in the expression x-hioi x and a -I- A; for a, by Taylor's theorem,

Multiplying this value of P by dh dk, and integrating as indicated in

(18) between the limits - 6, + 6 for h, and -d, +d for k, we find

4/./ P-M y>+l^?^o,l^l^W>o

"^5!
^it-*

"^
4!3 'dxHa^^ 5! 9a*' ^ ^

since the terms of odd order vanish in the integration.

We apply this result to the correction of the values of F and 9 given

in (9) and (13) by treating the terms separately as follows. It will

suffice to take Fj^iry, as the results obtained will apply at once to also.

A first approximation to F' for the whole coil is obtained by writing

^ahny (or Ny if N is the whole number of turns) for y, since this

is the whole current flowing across each section. To correct for the

distribution of the turns, we take first the factor a^^, and call it Pq.

Differentiating, we find

-^PJ^^ = 3a2(4(c2 - a^)/r\ d^PJda^ = (2^4 - 1 Ix^a^ + 2a*)/r\

so that taking the first three terms of (19),

^ =V 6
?-(*^'-<'') +l ;t,(2.c«- lUV + 2a^), (20)

and this takes the place of a^/r^ in (9) and (13).

10. Application of corrections to Helmholtz double coil. If the coil is

a Helmholtz arrangement, in which 4:X^ = a^, the second term disappears,

and we have after reduction,

5v/5^V 15 W'
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and the first term of F takes the corrected form

327ri\^y/ J^^\
5x/5a A 15 aV

where N is the number of turns in each of the two coils.

The second term of F may be corrected in the same way by taking

a2(a2 _ 4ic2)/^7 for p^. We have d^PJdx^ = - 3 . 6a%8x^ - 12xV + a'^)/ri^

and d^Polda^= -{Sx^ -136x*a^ + Wdx^a*-l2a^)/r^\ so that to three

terms

P = ^' (a2 - 4:x^) - *^ ^^ a\8x^ - 12^2 + ^4)

/72 1

- g-^-3i(8a:6_ 136x4(12 +1 59A4-12a6), (21)

which takes the place of a\a^ - 4a;2)/r^ wherever the latter occurs.

Again, if the coil is a Helmholtz arrangement, this value of P is simpli-

fied. Its first term disappears altogether on account of the relation

4ic2 = a^, which also reduces the remaining two terms so that

^= 03^(36*^-31^ (22)

where r^ = 5/4 . a^.

Hence, taking in only second powers of b and d, and the first three

terms of (9), we have for the Helmholtz arrangement

The value of P in (22), and therefore also the second term of F for

any arrangement, can be made to vanish by constructing the coil so

that fe2 = 31/36 . (^2. If this is done for a Helmholtz galvanometer, the

value is, for that instrument, given to a very high degree of approxima-

tion by

^ 327riVy/lfcos0 f/ _ J^
d^\

^(l-14sin2e + 21sin*e)|. ...(24)
2.33 /4

53

If the half-length I of the needle is small in comparison with a, as it

ought always to be, the value of G for the Helmholtz arrangement

may, within the limits of errors of observation, be taken as given by the

formula obtained by omitting the term involving l^ja"^ on the right in (24).

11. Galvanometer with four coaxial coils. If four coaxial coils be

arranged so that the current flows through them all in the same direction,

the values of F at the same point due to the separate coils will have

the same sign. Consider then the component magnetic force at a

point symmetrically situated with reference to the coils, which are

arranged in pairs, those of each pair having equal radii, and being at
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equal diHtances along the axis on opposite sides of the point at which
/' is taken. Let a, a, be the radii of the coils, x, f, the distances

of their planes from 0, N, N', the number of turns in each, and

r2 = a;2 + a^, p^ = f
^ + «^. Then to three terms,

+ |^p>«(,Xi«V-12«*^' + »^) + ^i«''(««- 12«*^' + 8^«))} (2-')

Now we can impose the condition that r = p, that is, that the coils

should lie on a sphere having its centre at 0, and so choose a, a, x, ^,

that the coefficients of y^, y*, may vanish identically. We thus have

fulfilled by these four quantities the equations

Na\a^ - 4a;2) + i\'a^(a^ - 4^) = 0,

Na^{a* - 1 2ah'^ + 8a^) + N'a^(a^ - 1 2a2^2 ^ gf4) = o.

We may write

a2 - ix^ = 5a2 - 4r2 and «* - 12aV + Sx* = 21a4 - 28aV + 8r*,

so that calling 0, (p', the angles which the radii of the coils subtend at 0,

and putting m for N/N\ we may write the equations in the form

msin2 0(4 - 5 sin^^) + sin2</)'(4 - 5 sin^^') = 0, \

wsin2(/)(21sin40-28sin2</, + 8) r (2^)

+ siii2</,'(21 sin40'-28sin20'4-8) = O. J

12. Galvanometer with three coaxial coils. Conditions for uniformity

of field. Since sin </, sin 0' can never exceed 1 , these equations necessi-

tate the fulfilment of certain conditions by m, sin cp, sin </>', and, subject

to these, any number of arrangements can be found to carry out the

object stated. If however sin = 1, so that one pair of circles coincide

in the equatorial plane through 0, we have from (26),

21 sm*(l)' - 33 sin2 0' + 12 = 0,

which is satisfied by sin20' = 4/7, or by sin20' = L
The second solution, in which all the coils are round the equator of

the sphere, is not relevant, inasmuch as it would make 7n= -1, which

may be interpreted to mean that the number of turns on each coil should

be the same, and that the currents should flow in opposite directions,

that is, that there should be no current at all on the whole, and there-

fore no magnetic effect.

The solution sin20' = 4/7 gives m = 32/49, that is, the circles surround-

ing the centre should each contain 32 turns for every 49 turns contained

in each of the others, and the latter should be placed on the two sides

of the great circle of the sphere bisecting the axis, at a distance in each

case of n/3/7 of the radius, and have a corresponding radius of 2/v/7

of that of the sphere.
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13. Long coil of single layer of fine wire. We now consider a long right

cylindrical solenoid. Such a solenoid can be very approximately

constructed by winding a close single layer of fine wire, so that the mean
radius of the single layer may be taken with sufficient accuracy as the

radius of the wire, and the wire may be regarded as everywhere at right

angles to the axis. Such a single-layer coil is very convenient for

accurate work, since there can be no uncertainty as to the winding.

The value of F for a single turn of such a coil is given by (9), which,

taking here for convenience the origin of coordinates at the centre of

the coil, and a?, ^, as the axial distances of the point P considered, and
the turn in question, we may write

y$[i+JSK-(---m
3^5 ,v*

22
.
42 ,-8

(27)

where r'^ = a^-\-(x- ^)^.

Similarly the value of the radial component, R, may be written down.
The value of the couple G exerted on the needle could easily be found
also ; but it will be given later [see equation (54) below].

If then n be the number of turns per unit of length, we have to

replace y by ny d^. Hence if 21 be the axial length of the coil, we have
for the total force

3 ?/2
.F=2irny 1 +

22^.4 (^-m + .(27')

But clearly the expansion in (27) is - dQ/dx, if Q be given by (2)

with X replaced by a; - ^. But - dQ/dx is + dQ/d^, so that (2) gives at

once the integral + Q for (27'). Hence taking the integral between the

limits - 1 and + 1 for ^, and writing r^ = Ja^ + (x- Vfy r^= Ja^ + (a? + Vf^

we find

F=1irny
x+l x-l

+ 2^42^. 5a

22^^«|,.^5

{x^l.

R
z'\

3ft2-4(a:-f/)2)

] .(28)-^'(3a^-4(.-0^)}

which holds for all points whether inside or outside the solenoid.

If «/ = this gives

F.,.ny{^^-^-^), (28')

that is if the point at which F is taken be on the axis, and \^i, ^2 b®

the angles which r^, r^ make with the axis, as shown in Fig. 60,

i^=27rny(cosi^2-cosV^i) (28")
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[To suit Fig. 60 the symbol i/r is here used instead of a, employed
in 1...3, above.]

If the coil be very long rj, fj, approximate for an internal point P, not

near the ends, more and more nearly to x + l, l-x, so that all terms
vanisli in (28) except the first two. For such points x-l in negative,

and approximately {x + l)/ri~{x-l)/r2 = 2. Thus the field within a

long coil is uniform except near the ends, and its intensity is given by

F^iTTiiy (29)

Fig. 60.

To take into account different layers if there are more than one, the

best course in any practical case is (since only a limited number of layers

would be employed) to calculate F, by (27) above, for each, and add the

results together.

14. Direct calculation for potential and force at centre of a long coil.

The result expressed in (28") can of course be obtained at once by direct

calculation. The potential due to a circular current of strength nydx,
at a point P' (Fig. 60) on the axis at numerical distance x from the

])lane of the circle is nyco dx, where w is the solid angle subtended at

the point by the circle. But if -^ be the angle subtended by the radius

of the circle a) = 27r(l - cos xj^). Thus if Q be the potential of magnetic

iduction due to the whole solenoid,

(1 -coa xf/)dx.

Q is also the mutual energy of the solenoid and a unit pole placed

kt P'. Reckoning then x as the distance of any turn from P', the

force in the direction of x on the solenoid (that is from the pole towards

the solenoid) is - dQ/dx, and this is the force F on the pole at P' in

the opposite direction. Thus

(>/'=«/'- d
;:r;- (1 - COS xf) dx = liriiy (cos j/'o

- cos xp^).

(^=1^1 ox

Or 12 and F may be found thus. The potential produced by a circular

disk of positive magnetism of surface density wy and radius a, at a

point on the axis distant x from the disk, is 1'7rny(Ja^ + x^-x). The
repulsion due to the disk on unit pole at P' is therefore

27rny(l -xlJa^-^x^) = 27rny{l -cos i/r).
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Hence for two equal positive and negative coaxial disks subtending

angles yfr-^, \//"2 respectively at P', and at distances x^, x^, the potential

and force are

^irny{Ja'^-[-x^ -X2-{'Jaj^-\-x-^-x^} and 27rny(cos \/r2-cos \/ri).

The magnetic potential and force at a point at distance y from the

axis can also be found as follows. It has been shown in II. 22,

that the energy of a magnetic shell in a magnetic field is equal to the

total induction through the shell multiplied by the strength of the shell.

Hence in order to find the force on a pole placed in the field of the sole-

noid we have to calculate the magnetic induction at the point.

15. A solenoid regarded as a lamellar magnet. We may regard the

solenoid as a lamellar distribution of magnetism, the direction of

magnetization of which is everywhere parallel to the axis. Hence

by (69) and (70) of Chap. II. above, if Q be the potential of magnetic

induction in the interior of the solenoid,

12=F--47r(/),

where (p( = iB^/Sa; . dx) is the sum of the strengths of the shells traversed

by a point imagined to move parallel to the axis from an adopted zero,

to the point where the potential is to be found. But if we suppose x

to increase from the negative towards the positive end of the solenoid,

we have 90/dx = wy, and hence, reckoning from the zero of x,

4:7r(p = ^irnyx.

V in the present case is simply the potential due to the ends of the

solenoid, which may be regarded as two uniform parallel circular disks

of magnetism having densities a; -cr, respectively. Hence if Fj be

the potential due to the positive disk, V2 that due to the negative,

F=Fi-F2, and
^=F^- V,-47rny:r. (30)

For an external point Q = F^ - F2 simply. The values of Fj, Fg can be

found from (6) above and the value of F then found by differentiation

of (30). The result, as the reader may verify, agrees with (28).

16. Long coil of several layers. The method described above (p. 219)

may also, if desired, be employed to take into account the radial depth

of the coil. Supposing the number of layers per unit of depth to be

n', the number in unit area of cross-section is nn'. Thus, if 2d be the

depth of the coil, the number of turns in unit of length is 2nn'd, and this

must replace n in (27'). Taking then as Pq any term of the expression

for the effect of the mean coaxial current sheet, the average value, P,

of the term, for all the coaxial sheets into which the coil may be sup-

posed divided, is given by the equation

«"^ 6 2a2 5! da*
'
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Takiii«,^ lirst from (28),

225

p x+l x-l

we have

da" M ^9

Therefore to the second power of d,

Next taking the second term of (28),

P _ a^(a^ + a^{x-l)

and therefore, as far as terms involving 1//^,

73 a^(x-\-l) a^(x-l) d^ {X + Ktn i m 2/ 7x2 o/ 7va»

^{V2a^-2la^{x- 1)^ + 2i^-m]

Hence to terms in d^ and i/^, (27) becomes (Xi being put for 2nn'd,

the number of terms per unit length)

,, „ rx + l x-l ^2 // „2a2-(.c + /)2
/ = 2.n,y[_-— 4-^((.4-/) ^

(x-l)
2a^-(x-lf

)

-1 ^v {12«^ - 21a^(^ - 0^ + S^r - //}}} ...(31)

17. Potential, etc., of circular current. Expansions available for

near or distant points. Equations equivalent to (2), (9), (10), (12)

may be obtained by first expanding Aq in ascending powers of x or a

according as a; < or > a. These equations are convenient only when
the point considered is near to or far from the plane of the circular

current, as only then are the series sufficiently convergent. We have

//^ = v/rt^ ^x^ ~x

i 1 «^ Li ^^ 1.1.3 x^ \

~'*t^'^2a2~2.4a^"^2.4.6a« ••/
^

( 1 a2 1.1a* 1 . 1 . 3 rt6 )

=''[2x^-2^^^2A:6¥--] ^'^''^'

{x<a)
[ ...(32)

U.A.M.



226 ABSOLUTE MEASUREMENTS IN ELECTRICITY chap.

Calculating dAJdx, ?^AJday^, etc., from these and substituting in

(6), we find iix<^a,

i2 = 27ry{l-- + ^-^-s—. -5 + ..-
^ ^ a 2 a^ 2.4: a^

1 ^V ,
_ 1.3.5«3 1.3.5.7 x^ \

+ }.(33)

Or if a? > a,

1 a2 1
. 3 ft4 1

. 3 . 5 rtC

fl = 2.y{l|
2 2 . 4 a;4 2 . 4 . 6 a:6

1 ^2 / ^2 1.3.5 ft4 1.3.5.7 ft'

2^x^\ ""x^' 2 X* 2.4 a:« "V
1 yVg . .«^ 1.3.5.7 a« 1.3.5.7.9 a« \

+
)

(33')

Hence, since F= - dQ/dx,

„ „ If, 1.3a;2 l.3.5ic4

Lt:f) s Ll3^^ 1.3.52.7 a;^ \

-^2^aA 2 ftS"^ 2.4 c? '")

,
1 ^V, 2 ^ 1.32.52.7 a;2 1.3.52.72.9 3;^ \

"^22.42aA
"""^

ft2+ 2.4 a^ 'V

+
}

(34)

if a; < o ; or if a; > o,

„ „ «2f 1 3a2 1.3.5(i«^=2xr^|i-^-,+-2:4--4--

22a;2\ 2 a;2 2.4 ic* /

u.
1 ^Vq w A 1.3.5.7. „ft2 1.3.5.7.9^ ,_ft* \-^2^2^4(3.o.4.6--2— 6.8-2 +-2^4— 8.10-,-...)

+ •

}
(34')

18. Expansions for couple on small magnet with centre on axis. If,

instead of a single turn of wire, the circle consist of N turns, each carry-
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ing a current X, the above expressions must of course be multiplied

by A^.

Finally, multiplying these values of F by M cos 0, the second term

in each by (l-Ssin^d^), the third terms by 1 - 14 sin^ 6^ + 21 sin* ^,

and changing y into IcoaO, we get the values of 6 for the respective

cases X <a,x> a. [See 5 (13) above.]

It is to be carefully observed that in all these expressions it is necessary

for convergence that y <a when x <a, and y <x when a <,x.

It will be seen that the formulae just obtained are simply those

previously found for the different cases, with the finite expressions which

constitute the different terms in the latter replaced by infinite series.

In the majority of practical cases it is much more convenient to calculate

numerically the values of the finite expressions. The series are in fact

only useful for points very near the plane of the circle, or very far from

it. In the former case equations (33), (34) are applicable, in the latter

(33'), (34').

When the coil has a finite cross-section the last fouiid expressions may
be readily corrected by direct integration ; or the process explained in

9 above may be used. We cannot here afford space for the cor-

rected expressions, which would seldom be needed ; but the reader

will have no difficulty in writing them down for himself.

19. Mutual action of two circular conductors. It has been shown
(in 21 above) that the mutual potential energy of two circular magnetic

shells is given by the equation

E = - 47r2 ^^ sin2 ,/^ sin^ ^>2 -(-^ • ^^/ • «/'' ^/ • </>^. (~j (r > p) (35)

if xfr, xj/ (Fig. 61) denote the angles which the radii of the shells subtend

at the intersection of their axes, r, p the distances of the circular arcs

from the origin, </> the angle between ^^^
the axes of the shells (denoted by G

in Fig. 53 above), and ^Z^ the zonal

surface harmonic of the i"' order taken

for the angle </>, and similarly for the

others as explained at p. 201. This

value of E with its sign changed, and

y, y written for <|>, <!>', is the mutual \ / \ \'''^ V
electrokinetic energy T of two circular ^^ \ 'w\ /''

currents, and is at once available for xSj''
the calculation of their mutual action.

p^^ g^

The result enables the mutual action

of two coils to be found, and is therefore the foundation of the theory

of absolute electrodynamometers and current balances, which measure
currents in absolute units by the forces exerted on a movable coil by
a fixed coil, through both of which the current to be measured is

flowing, or in which the currents flowing have a certain known ratio.
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20. Electrokinetic energy of two circular currents. Extension to

two coils of finite cross-section. Putting then (Fig. 61) a, a, for the

radii of the larger and smaller circles respectively, and x, ^, for the

distances of their planes from the origin, we have sin i/r = a/r and

sin -y/r' = a/p, and substituting in the zonal harmonic expressions, as

given in the Appendix on Spherical Harmonics, their values in terms

of a, X, a, ^, we have

T= TT^yy' ^^ { 1 . 2 cos c/) + 2 . 3 I ^{co8^cf> - J 8m'-cf>)

+ 3.4
^^ ",^^'

(f - ia2)(cos3(/, - I sin2</) cos <^)

+ 4 . 5
^(^'-K)

^(^2 _ |a2)(cos4c^ - 3 cos2<^sin2<^ + |sin4</>)

_^ 5 g
x^-^ya^ + la^

^^4 _ 3 ^2^2 + a4) (cos5 (^ - 5 cos3 sin2
<f>

+ -^-^sin4<^ cos </>)+...} (36)

As explained in 21 above, the couple due to the mutual action of

the two circuits tending to increase (p is dT/d(p. Hence for this couple

we have

= - 7r2yy' sin </>{ 1 . 2 ^ a2 + 2 . 3
^2 f . 3 cos </>

+ 3.4 ^!-Zil' (^ _ ^^2) .2.3 (cos2<^ - J sin2c/>)

+ 4.5 ^(^^^- J^')
^(^2 _ 3^2) . 2 . 5 cos </> (cos2<^ - I sin2<^)

+ } (37)

The attraction between the circuits when they are coaxial, that is

when 0=0, may be found by putting ^ = in (35), and calculating

3T/9f We have

^ = -Vy'5^{l-2 + 2.3^^f+3.4^^(f2_ia2)

+ 4.5. ^'(^':^^'V(f-ja2)+...} (36')
6

3^ _0. ...-«'«'',
1 O ,^,0 Q .^'-Kry'^{l-2.3- + 2.3.4

+ 3.4.5?<^y^(f-K) + ...} (38)

We may now proceed from two simple circles to two mutually in-

fluencing cylindrical coils of finite axial breadth and radial depth of
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cross-section. This may be done either by the method, of correction

of the successive terms, exemplified above for a coil and a magnet
or by direct integration with respect to x, a, and x', a in the two cases.

Proceeding by the former method, and dealing with the terms of (36)

separately, putting for the axial breadth and radial depth 26, 2rf in the

case of the larger coil, and 26', 2c/' in the case of the smaller (both being

supposed of rectangular cross-section), while x, a, x', a' are retained for

the mean filaments in the two cases, and j)utting N, N' for the total

numbers of turns in the two coils, larger and smaller respectively,

T= NN'yy{G,g,.eZ,-^-G^,.e^2 + G:^,.e^,+ ...}, (39)

where

^i = 27rJ{l+g(4x^-a2) + g^(2.x^-llxV + 2a^) + ...},

3 . rmn
G?3 = ^ {a\ix^ - ««) + y (8x' - 1 2a;2a2 4- a')

+ ^(8x^ -V36x^a^ + \bdx^L^ - \2a^) + ...}

f7i
= 7r(a'2 + i6'2+...),

g^ = 27rx {a ^ + }jb'^ +...),

g^ = 7r{i3rt'2(4a;'2 - a'2) + \d'^{2x^ - 3a'2) + h'hi^ + . .
.

}

21. Couple on suspended double coil of electrodynamometer. Hence
we obtain from (39),

e = - NN'yy sin
{
G,g, . eZ; -f- G.^^

.
eZ: + G.£, .gZ,' + ...}, ... (40)

which is the corrected form of (37). Similarly we could write down
from (38) the corrected value of the attraction between the two coils.

22. Turning couple of coil on magnetic needle galvanometers.

Equation (37) is applicable to the determination of the couple due to

the action of a coil on a uniformly magnetized thin magnet the centre

of which is at the origin. We have only to suppose another coil equal

in all respects to the smaller placed coaxial with the latter on the other

side of the origin at a mean distance x' from that point, and further

suppose a current of the same strength to flow in like directions round
both. The couple acting on the second coil will be got from that on
the first by merely supposing the angle to be increased by 180°, and the

current in the coil to be reversed. But changing into ^ + 180°

changes the signs of eZ.>\ gZ./, etc., and taking into account the change
of sign of the current and of sin 0, we have for the couple, 9' say, on the

second coil,

9' = - NN'yy' sin 6 {G,g, . eZ,' - G^, . eZ,' + G^^, . eZ; - etc.}.
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Hence for the total couple we get

0' + e'= - 2NN'yy sin <j>{G,g,.eZ, + G,g,.eZ,' + etc.} (41)

But the double coil here supposed to exist is equivalent to a needle

with its centre at the origin, and of moment M = 27ra^N'y'. Also if we
make the section of each coil very small, and the radius a' very small,

but preserve 27ra'^N'y' a finite quantity, we pay regard the pair of coils

as equivalent to a uniformly magnetized magnet of moment 27ra'^N'y\

and of length 2x', and put, in the values of g^, g^^ etc., 6' = 0, d' = 0,

Ma'^ = 0, etc. In this way we shall obtain from (41) a formula equivalent

to that given in VI. (78) when the latter is corrected for the finite cross-

section of the large coil. \N' is the tofcal number of turns in the coil.]

23. Electrodynamometer with double-coil arrangement. If instead

of two single coils, one fixed and the other movable, the Helmholtz

double arrangement is adopted for both the fixed and movable parts

of the dynamometer, so that the centres of both are made coincident

with the origin,* the expressions for their mutual action are much
simplified.

Let A, B (Fig. 62) denote the large coils, A',B' the small coils. Then

Fig. 62.

the mutual energy of A and A', and the couple on A' due to the action

of Ay are equal in numerical amount and similar in sign to those of

B and B' . These are given by (39) and (40). Hence for these two
pairs of coils the energy is

2r=: 2NN'yy'{G,g, . eZ, + G^, . eZ, + G,g,. eZ,-v ...}, .(42)

* This was the arrangement adopted for the Absolute Electrodynamometer made
by Mr. Latimer Clark for the British Association Committee on Electrical Standards.
See Chapter XII. below.
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where is the angle ACA' indicated in Fig. 62, and a* = 4x^ a'^ = ix'^.

Now the mutual energy of the coils B\ A, is that which the value of

T would become for A' and ^ if ^ were increased by 180° and the current

in A' were then reversed. The mutual electrokinetic energy of B and

A' has evidently the same value. But cos (6* + 180°)= -cos ^, so

that the zonal harmonics of odd order change sign. Hence taking into

account the change of sign of current, we have for the electrokinetic

energy of the other two pairs of coils A^ B' and A\ B the value

21\ = 2NN'yy' { G,ij, . eZ, - (/.^, . eZ, + (l^i, .eZ.-ctc.}, (43)

where all the quantities have the same values as before. Hence for

the total energy of the arrangement, we have

2{T+7\) = iNN'yy{G,g,.eZ, + G.^,.eZ, + G,fj,.eZs + etc.}, ...(44)

and the turning couple on the pair of small coils is

6= - iNN'yY sin <f>{G,g,. eZ,' {•G.g,. eZ; + G^,. eZ,'}, (45)

The values of G^ G^, (ts, ...
, gi, Qz, g^i ••• are given in 20 above,

and it is to be noticed that in these 4a;-a2 = 0, 4ic'^-o'2 = 0, for the

double-coil galvanometer constructed according to Helmholtz's speci-

fication, so that, to a considerable degree of approximation, 6^3 and g^
vanish, and the couple reduces to

e= -4:NN'yyG,gism0.eZi', (46)

or, neglecting the correction terms in 6^, d^j etc., to

e= -647ViV'yy' -7^sin6' (46')

Considering the movable-coil system as equivalent to a needle of

moment 2N'y7ra'^t we see that this agrees with (24) above.

In the same manner as in 22 we could deduce the action of a

Helmholtz double coil on a magnetic needle, with its centre at the

centre of symmetry, from the theory of the double electrodynamo-

meter just given.



CHAPTER VIII.

DYNAMICAL THEORY OF MUTUALLY INFLUENCING
CIRCUITS.

Measurements in Alternating-Current Circuits.

1. Electrokinetic energy of a system of circuits. The facts and theories

are dealt with at some length in the author's Treatise on Magnetism

and Electricity, vol. i. chap. ix. It is there shown that the electro-

kinetic energy of any system of circuits carrying currents can be

written in the form

T = i^iy ^2 + Migyly 2 + M^^y.y^ + . . . + ^L^y^^ + M^gy^y 3

+ ...+iL„y„2, (1)

where, if dsj, ds/ denote two different elements of the circuit, which

is distinguished by the suffix j, dSj, dSj elements of the different circuits

marked by i and j, e the angle, and r the distance between the elements

in each case, Lj, M^p have the values indicated by the equations

.(2)

The integrals, which are typical, are taken round the circuits, the first

by keeping first dsj fixed and integrating for every ds/, then integrating

the result for every dSj. The second integral deals with every element

of the integrand which can be made up of an element ds^ in one circuit,

and an element dSj in the other. The quantities Lj are the self-

inductances, and the quantities M^-j the mutual inductances. Ljj is

the total magnetic induction through circuit j produced by each unit

of its own current, while Mij is the total magnetic induction through
the circuit j due to unit current in the circuit i, or, which is the same
thing, the induction through the circuit i, due to unit current in the

circuit j.

2. Components of electrokinetic momentum. Differentiation of T,

as expressed in (1), gives the total inductions through the different

circuits. Calling these inductions N^, N^^ ... , Nj,, ... , we obtain

232



CHAP. VIII THEORY OF MUTUALLY INFLUENCING CIRCUITS 233

>

with Mik = Mi^i. The quantities A^,, iV._„ ... correspond to the generalized

momenta in the dynamical analogue, and we may call them the

eleclrokinelic momenta.

3. Dissipation function and electrostatic energy. We notice next

that the rate of dissipation, 2F say, of energy in heat in conductors of

resistances R^, R.,, ... , R^, in which flow currents y,, y.,, ...
, y^, is

given by

j=j(i2,v.' + A.v./+-- + «»y/) (•*)

If now we denote the total electric energy by E, not including in that

electrokinetic energy, T, as expressed in (I), but energy of charged

conductors, as potential energy (electrostatic energy), and regard, as

we do when we give the name electrokinetic energy to the quantity T
in (1), the currents y,, ya, ...

, y^, ••• , as speeds y,, ;'/,„ ... , /jf^, ... of

coordinates
^/i, 2/2» ••• > 2//i>

••• » ^^^ equation for the k^^^ circuit are

dN.dEdF
Wd^.^wr^' ^^^

where E^ is the proper impressed electromotive force. We may write

(5) also in the form

t-|=^'-^* («)

It follows from electrostatic theory that E is a homogeneous quadratic

function of t/i, y.,, ...
, y^., ... , the charges of the conductors, quantities

of electricity which are usually denoted by Q,, Qo, ...
, Q^., ... . We

have in fact (with the condition j)kh = Vhk)i

^-HPnQr' + ^Pvm2 + - +P,J^2' + ^P-.sQJ}3 + -} (7)

If we write

K = ^=2hlQl+PK-2Q2+--' +PKkQ>. + --- +P,nQ,n (8)

we can express E as a homogeneous quadratic function of Fi, V.,, ...»

F^., ... , F„. For of course from the equations of the form (8) we can

derive expressions for the charges Qi, Q.,, ... , in terms of the values

of the F's, the potentials of the conductors. These are equations of

the form

g,= c,,F, +c,2F, + ...+c,,F, + ...+c,,F,, (9)
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4. Coefficients of potential, coefficients of induction, and capacities.

The quantities p^^, p^zy ••• ^^® called coefficients of potential, the

quantities Cj^, c^aj ••• j coefficients of induction. There are, if n be the

number of conductors, n coefficients of the form p^^, p^^, ••., Puk^ •••5

and the same number of the form c,i, C22, ... , Cj,j., ... , in each of which

both the suffixes are the same. A coefficient pj^j. is the potential of

the conductor marked by the suffix h produced by unit charge on the

conductor k, when all other conductors except the conductor h are with-

out charge, and P},k=Phk- Thus pJ^J^ is the potential of the conductor

h produced by unit charge on the conductor itself.

Again C/^j^ is the charge on the conductor h produced (or as it is called

'* induced ") when the conductor k is at unit potential while all the

other conductors are at potential zero, and Cf^^ = C},,^. A coefficient

of the form c,^J^ is the charge on the conductor h, when it is at potential

unity, and all other conductors are at potential zero. Hence c,^,^ has

been called the electrostatic capacity of the conductor.

It can be shown that

Phh>Pkh(=Phlc)>0, Pkk>Phk>^-

The capacities are all positive, and the coefficients of induction c^,^

all negative. Also ^ > v^ *
Chh=i ~ ^^kk-

5. Dynamical theory of mutually influencing circuits. We now take

some particular cases in which the dynamical equations find application.

First we consider two circuits in which the currents are y^, yo, the

inductances L^, L^, M, the electromotive forces E-^, E^, and the resist-

ances R^, jRg- For the present we suppose E to be zero. The equations

of currents are at once derived from the energy equation

T= i{L,yi^-\-2My,y, + L,y^^)+il{mJ.^), (10)

where x denotes a typical coordinate fixing the configuration of the

system. If no change of configuration is proceeding the term JS {mx^)

is zero.

From this we obtain for the equations of currents

jf{L,Y, + My,) + Il,y,^E„ (11)

l^(L,y,+ My,) + n,y, = E, (12)

Here the components of electrokinetic momentum are

^1 = ^171+^72' iV2 = ^272+^7i (13)

In the general case we have also equations of the form

1/ ^dL.^ dM ,dL,\ „

* See Gray, Magnetism and Electricity, pp. 126, 127.

mx
2
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where m is a mass coefficient corresponding to the coordinate x, and

Fx is the external force. The internal electromagnetic force is

1/ „9/>. „ "dM

that is, this expression is due to internal action, and measures the

rate of change of momentum which the action of the circuits on one

another brings about. To balance this a force of equal amount and of

opposite sign would have to be applied, and this is sometimes referred

to as the '* applied electromagnetic force." If such a force were really

applied of course both forces would go out of the account, so that

the phrase " applied force " in this particular connection is somewhat
misleading.

6. Rails and slider magneto. We may take here, as an illustration,

the case treated in I. 50 of the sliding conductor connecting two equi-

distant rails laid in a magnetic field of uniform intensity H, so that the

bar moving with speed v in a direction at right angles to its length cuts

perpendicularly across the lines of force of the impressed field. The
rails are connected by a wire, so that the total resistance of the circuit

is Ry and for simplicity the rails and sliding bar are regarded as being of

negligible electrical resistance, so that R may be taken as practically all

contained in the wire.

The energy changes are discussed in the section cited, and it is found
that half the amount of electrical work done per unit of time, over and
above that dissipated in heat in the resistance R, goes to increase the

molar kinetic energy of the sliding bar, and the other half to augment
the electrokinetic energy of the system. Other examples of this mode
of distribution of the electrical work done present themselves in electro-

magnetic theory.

A difficulty arises here, and in some other cases in which the magnetic
field is due to permanent magnets, as to the mutual electrokinetic

energy of the circuit considered and the magnets. If the magnets,

as seems required by the unity of electrical action, be due to currents

in circuits of a molecular character, there ought to be such mutual
energy, depending on the position of the circuit in the field. This subject

does not concern us here ; an attempt is made to discuss it in a paper
by the author [Phil. Mag. March, 1914].

7. General theorem regarding mutually influencing circuits. Now
returning to the case of two mutually influencing circuits, and the

equations of currents (11), let the circuits be rigid in form, so that

ij, Lg do not change, while M changes in consequence of displacement

produced by the mutual action of the circuits. Let rfT be the change
of T which takes place in a small interval of time dt ; then

dT = L^y^dy^-\-L2y2dy2+M{y2dy-^^ + y^dy2) + yiy2dM. ...(15)
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As it is supposed that L^, L^ do not vary, the only function of the

coordinates which expresses the configuration of the system is M. Thus

^^dx = y^y^dM =dW (16)

The quantity on the left is the work done by mutual electromagnetic

forces. It is spent in producing molar kinetic energy in the conductors,

or in moving the circuits against external forces, or in both ways.

The work done by the electromotive forces, over and above that

dissipated, is

(^1 - R^y^) yJt + (E^- R^y.,) y^dt,

and this by (11) and (12) has the value

Liyidyi + L^yzdyz +M {y^dy^ + yzdyi) +2yiy2dM =dT +dW . {11)

This accounts for dT and the work yjygfZAf required for the displace-

ment dM. It is remarkable that the electromotive forces furnish,

in consequence of configurational change, an amount of work 2y-^y2dM,
half of which goes to increase the electrokinetic energy, and the other

half to do work against external forces, either applied by external

bodies, or arising from the inertia of the circuits.

When the circuits move from rest to rest again, then both before and
after the displacement, E^ = Riyi, E^ = -^272' ^^^ ^^

dT +dW = 2yiy2dM = 2dW (18)

Thus the batteries furnish energy 2yiy2dM, of which one half is

accounted for in dT, and the other in dW.
If the work done by electromagnetic forces is spent against friction,

it appears from the result just obtained that the batteries furnish the

energy dissipated, and exactly just as much more to increase the electro-

kinetic energy.

A more general theorem can be established in which 2^{yjyf.dMjf^)

replaces 2y^y2dM.
8. Two circuits, a primary and a secondary. Theorem : LJj2>M'^,

We now consider two mutually influencing circuits invariable in form
and position, and shall suppose that E^ and E2 are constants. The
equations can be written, by separating the symbols and grouping into

one operator all that act on one quantity, in the form

(L,| + J?,)y.+ ^l^|r.-i\ = 0, (19)

^S'>'i + (^2S+^0^2--E, = O (20)

Hence we operate on the first of these by L2d/dt + R2, and on the second

by Md/dt, and subtract. The result is



I

VIII THEORY OF MUTUALLY INFLUENCING CIRCUITS 237

The complete solution of this equation is

Riyi-Ei^A^e^' + Bie^, (22)

where A^, B^ are constants, and a, /8 the roots of the quadratic

(LiLa - ilf2)a;2 + {LJi, + L^B^)x + R.H^ = 0, (23)

that is a, ^ are given by

-4R,Ii,(L,L^-M^)}^]. ...(24)

Similarly, by eliminating yj, we get

^272 -^2=^2^' + ^2^^'. (25)

where a, ^ have the same values as before, and -^g, B2 are other

constants.

The values of yj, yg, given by these equations for any time f, depend

on the constants A^, B^, A 2, -Bg, which must be determined to suit

the given circumstances of the case.

The quantities a, ^8 depend on the form and dimensions of the circuits.

They are real, for the roots of the quadratic (23) are real if

{LJt, + L,R,f> {{L,R, + L,R,y - i{L,L, - M^)R,R,},

which is true if LJj^M'^. This is obvious from the energy equation,

or from the lines of induction of a unit current flowing in either circuit.

These lines all pass through the circuit from which they originate, but

do not all pass through the other. The other circuit may, however,

consist of w turns, and hence M<,nL^. Again a unit current flowing

in the second circuit gives a total induction through it of value L^,

and all these do not pass through the first. We shall suppose that the

second circuit has the greater effective area. Thus M<L2. But if

L'2 be the average inductance of a single turn of the second coil,

L2 = n^L'2, since the lines due to each turn give an induction nL'g,

and these are n turns. But clearly also M<nL' 2y that is M<L2ln.
Hence M^KnL^LJn, or M'^<LJj2.

9. March of the currents in the primary and secondary. Let both

circuits be closed at the zero of reckoning of t. Then for ^ = 0, yi = 0,

72 = 0, and we get from (22) and (25),

-E^ = A^ + B^, -E2 = A2 + B2 (26)

Hence (22) and (25) become

Riyi = Ei{l-eP')+Ai{e-'-e^% (27)

R2y2 = E2(i-en+A2{e-'-eP^) (28)

Of course A^, A2 could be determined from the initial values of

yi» 72 ; but as a rule it will be more convenient to determine the con-
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stants to suit the particular circumstances of the actual cases to which

the equations are applied. An important case which we shall consider

is that of a secondary circuit for which E^^-O. We shall suppose the

secondary circuit to be kept closed, while the primary circuit is made

or broken. Then differentiating (27) and (28), putting t = 0, and

substituting in (11), we get

R^M
(29)

The march of the primary and secondary currents is shown in the

figure for the case of ^ = 100 volts, applied to a primary of resist-

ance 10 ohms and self in-

ductance 0-05 henry, between

which and a secondary re-

sistance 5 ohms and self in-

ductance04 henry, the mutual

inductance is 0-02 henry.

The upper curve in Fig. 63 *

shows the rise of the primary

current from zero to its steady

value, while the lower shows

the march of the secondary

current, which is in the op-

posite direction. The dotted

Secondary

Fig. 63.

curve shows the rise of the primary current for the case of no secondary
;

and it appears that the effect of the mutual inductance is, as we should

expect, to make the rise more rapid at first, and afterwards to retard

it ; as will be seen, the dotted line continued would cross the full curve.

The secondary current rises to its maximum in time t given by

,(30)^=;7r]3'"«a

as may be shown by finding dyjdt from (28), and then equating

the value to zero. This value of t is least (it is, in fact, zero) when
M'^ = LJj^. This condition is never fulfilled, but it is most nearly

fulfilled when the primary and secondary coils are equal and as nearly

as possible coincident. If they were absolutely coincident, we should

have L^^L2=M. In point of fact ikf^ is always less than L^L^- The

ratio M/VL^L^ has been called the coefficient of coupling of the

circuits. The coupling of an induction coil is somewhat different.

[See Appendix on the action of the Induction Coil.]

10. Total flow at " make " and at " break." Current in the secondary

at break of the primary. The reader may easily verify the well-known

* From Alternate-Current Working, by Alfred Hay, London, Biggs and Co.
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result that the quantities of electricity which flow in the secondary at

make and at break of the primary are the same in amount and opposite

in sign, being in the former case - y^MIR^ and in the latter yjAf/Z^g,

where y^ is the primary steady current. This result has been verified

experimentally, and affords evidence of the correctness of the theory

from which the result has been derived. The ratio MjR^ is of course

capable of being regarded as an interval of time.

It is interesting to study the march of the current in the secondary,

at break of the primary. We suppose as before that the secondary is

kept closed. Let the variable stage of the primary current extend over

a time r, then r is the duration of the break. Integrating over this

interval, we get from the differential equation of the secondary

-My^+L.^y^-[-RX y^dt = 0, (31)

where, in the integrated terms, yi is the steady value of the primary

current at the commencement of the break, and yg is the value of the

secondary current at the end of the time r, while in the third term yg
is the value of the secondary current at the passing of the element dt

of the interval of break.

We may suppose the break to be made by a very sudden rise of the

resistance in the primary from i^^ to infinity. During this change the

differential equation of the primary circuit no longer holds, but that of

the secondary is ^v^ ^v

If we integrate this from the beginning of the break to any time t, at

which it is yet incomplete, we have, since y^ is initially zero, and y^
has the steady value of the primary current,

L^y2-^M{y-y^) + RS y^di = 0, (33)

where y is the value of the primary current at time t, and yg that of the

secondary current at the same instant, except, of course, in the integral,

where y^ is the value of the secondary current at the passing of the

element of time dt. It is clear that y^ is finite, and therefore, if we sup-

pose the break effected in an extremely short interval, we may neglect

the time integral of y^ over that interval, and write

L^y,-My, = (34)

Here yg is the secondary current at the close of the break of the primary,

and yi the steady current which initially flowed in the primary. Thus

y2=fri (34')

Up to the end of the break

^272 = ^^ (y 1
- y) - ttSy^dt (35)
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so that until then y^ continually increases. The graph of y^ is therefore
that here shown in Fig. 64. The duration of the break is OM and the
ordinate MF is approximately MyJL^.

Fl«. 64.

The energy of the secondary current during the dying-away stage,

that is after the lapse of the time OM, is ^L^y^y and at the beginning
of that stage is ^L^M^y^^L^^ or iM^yZ/L^. The rate at which the
energy is dissipated in heat is i?2y2^> and so we have

jf{iL,y,^) + B,y,^=-0,

that is ^ +
dt

B,y, = 0.

Integrating we obtain, reckoning t from the end of the break.

E M -hi
.(36)

which shows how the current dies away in the secondary.

It is to be understood that if the primary or secondary circuit consist

of coils surrounding iron cores, the march of the induced current is very
different from that discussed here. The inductances are no longer

constant, but functions of the current. For results in such cases, the
reader may consult a paper by the late Professor T. Gray, Phil. Trans.

R.S. 184 (1893), A. Much information will also be found in various

treatises, e.g. Russell's Treatise on Alternating Currents.

11. Theory of a single circuit with self inductance. The theory of a

single circuit with resistance and self inductance can be written down at

once. The differential equation is

^l-^v E, .(37)

which gives, if the integral is taken from the instant at which y = 0,

E/ -^t\

y iv-' 0' ^^^^
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of which the graph is shown in Fi^. 65. The current divides into two

parts, the final steady current EjR, and - Ee-'""iR. The whole

quantity of electricity which may be regarded as passing in this second

part is
j^Y" -?, ,. ELEr

e-l'dt W (39)

This is the deficiency in the quantity of electricity carried in the time

of rise of the current to its steady value, caused by induction.

If, while the current is flowing steadily, the electromotive force is

removed at a given instant, taken as ^ = 0, the current after any interval

t has elapsed is p n

y=R' '

which is illustrated by Fig. 66. OM is the interval t = L/Ry in which the

current falls to 1/e of its initial value. This is called the time-constant

of the circuit. The curves in Figs. 65 and 66 are the same, but are

differently placed with respect to the axes.

12. Equations for the circuits of a network of conductors. We have
in many examples of measurements considered below to deal with a set

of conductors which are joined so as to form a network. The dynamical

equations are at once applicable to such a system, in the same way
as to a system of complete circuits, provided we use instead of resist-

ances, inductances, and electromotive forces in circuits, the resistances,

inductances (self and mutual) of the conductors, and the impressed

differences of potential between their terminals.

The two fundamental principles from which the results for steady

flow in a network are obtained in IV. 6 and 7 above, are here also

applicable. The principle of continuity requires no modification ; the

statement of the second principle requires to be changed in the maimer
indicated below.

Adifficulty exists in deciding what is the self-inductance of a conductor
joining two points in a circuit or the mutual inductance of two con-
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ductors in the same circuit or in different circuits. There is no real

practical difficulty except in a few special cases, for example in Hertzian

vibrators of different forms : in most cases the conductors are coils,

which may be regarded as each so many complete circuits given in

position and dimensions by the turns of wire. The magnetic induction

through each turn is quite definite and can be calculated.

. This difficulty is at first sight in a manner avoided by the use of

Maxwell's cycle method of dealing with a network, that is of regarding

it as made up of a series of meshes or cells, as in Fig. 67, which consists

of three distinct meshes ADCA, ABDA,
ODBC. Each individual conductor is common
to two meshes, except those conductors which
form the outer edge of the network. Suppose
a current to circulate round each mesh in the

same direction, so that the actual current in

pj^ gy
each conductor is made up of the currents in

two adjoining meshes. Each mesh is from
this point of view a complete circuit with its own current flowing

round it, and the inductances appear quite definite, being those of

the distinct circuits. Each conductor, however, forms part of each of

two adjacent circuits, and the determination of the inductances is not

an easy matter.

On the whole the usual method is the more convenient, and we shall

adhere to it, as we avoid various perplexing questions which arise in

complicated systems as to expressions for the energy. We denote

by Z/j, L2, ..., Mi2y M22, ..., the self-inductances of the conductors

1, 2, ..., and the mutual inductances of the pairs of conductors 12, 23,....

The electrokinetic energy has the value

'l'=i(L,Yi^ + ^M,,y,y,+ ... +L.,y,' + m,,y,y,+ ...), (41)

and the dissipation function is

F=i{^,y,^ + R2y2'+-) (42)

If there is electric energy E of condensers situated in the conductors

and carrying charges y^, y^, ..., the equations of the circuits are of the

type

d dT dF dE ^, ^^

ssf.+37.^^r'--^- <^^>

where Ej. is the internal electromotive force in the conductor, and Vj.

is the difference of potential between its terminals, taken with the
negative sign, since we shall suppose E^. to act with the current, and
F;,. to oppose it.

Adding these equations for all the conductors forming a circuit, we get

df^T dT \ dE dE oF dF ,, ,,,,
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where E is the total electromotive force in the circuit. The sum of the

differences of potential between the terminals of the conductors is of

course zero for every complete circuit.

If Cp (7/n, ... be the capacities in the successive conductors of the

circuit, and yj, yj^.i, ... denote as above the corresponding chacges,

we have /.u ,/j \

^<uyt^-) (*^)

Hence the last equation of currents may be written

s{J(^-^'>'-'+^*y*)+'^>v>+i} =^' <**')

in which form we shall generally use it. This may be taken as the

generalized form of the so-called second law of Kirchhoff for a

system of linear conductors.

13. Battery with induction coil and cross-connection. As an example
we take the case of a battery and coil in circuit, with a cross-connection

between them as shown in Fig. 68. If yj, y^ be

the currents in the coil and the cross-connection, i—li|i

respectively, and y the current through the battery,

rj, rg, r the resistances of the coil, cross-connection

and battery with its connecting wires to AB, we have
B

Coil

FlO. 68.

and on the supposition that the only inductance to

be considered is L, that of the coil,

r.ry, + ry = E, L'-^-\- r,y, + ry = E,

for the two circuits EABE, EAODBE. The first of these equations

used in the second two gives

'272 + ^71 + 72) = ^,
I

i>^ + 0- + '-.)7i + '-72-^.J

^'"'^

Eliminating y^ between the two last equations, we obtain for y^ the

equation

7i = ,r -I- ?2 " r -H r^

Writing IVrj for rr^ + r^r^ + r^r, and integrating, we get

7i J?_(,.,-x&.).

and hence, for yg.

v.-.^.{'-|^('--'))

.(46)

.(47)

.(48)
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The reader may now prove that the quantity, q, of electricity which

flows through the coil in any interval r, reckoned from the closing of

the circuit, is given by

• ^=fV=S|t-^{^-'^'^'}] <*«)

If when the interval r has elapsed the circuit of the battery be broken,

the quantity of electricity which flows through the coil after the instant

of break is „. t rt . z(»+ra)

9
= LE

{l-e" ^-' y (48")

as the reader may prove by writing down the differential equation for

the current in the coil after the break, and then integrating from the

instant (the end point of r) for which (47), with t = T, gives the current.

14. Electrical oscillations. Theory. A condenser, of capacity C, is

charged to a difference of potential Vq, and its plates are then con-

nected by a coil of self-inductance L and resistance R. The condenser

begins to discharge by a current in the wire. Let the difference of

potential between the plates be F at any time t, and the current y.

The energy stored at the moment in the condenser is JOF^, and the dis-

charging current has electrokinetic energy \Ly^. Hence the total

electric energy is ^(CF^ + Ly^). The total time rate of diminution of

this energy must be equal to the rate at which energy is being trans-

formed into heat in the circuit, jplus that at which energy is being radiated

from the varying current system.

If radiation is neglected we have, by what has been stated,

l|(Cr2 + iy2) + 7V = (49)

with y= -CdV/dt. Thus the equation just written becomes

d^V dV
CL'LL + BC''-£+F=0, (50)

(51)

of which the complete solution is

where „ =^ (^^2 _ 4 §)'•

We may write the solution in the form

V=e~^,' D cosh {at -^), (51')

where A and B, or D and f are constants to be determined from the

initial circumstances for any particular case.

If a is real this represents an ordinary discharge, that is a progressive

non- oscillatory subsidence of the difference of potential between the
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plates, in which, theoretically, complete equalization of the potentials

is only reached in an infinite time.

If (( is imaginary the solution may be obtained in a realised form by

writing cos for cosh, and iu for a, in the last equation. Thus we obtain

V=e-"^'Dco,[^{i'^-R^)\-e\ (52)

where D and are constants. This represents an oscillatory discharge,

with gradually diminishing range of difference of potential. The period

of oscillation is given by

r—^^^; (53)

Ci-")
and the logarithmic decrement of the difference of potential is RT/iL.
The discharging current - {dV/dt)C/R is obtained from (52) or from

(51), according as the discharge is oscillatory or non-oscillatory.

Thus the existence of an oscillatory discharge depends on the relation

of L to R and G. If the inductance is great enough, electrical oscil-

lations will take place, and there is no doubt that many discharges which

appear to be single sparks are successions of backward and forward

discharges caused by successive oscillations.

15. Dynamical analogies in electrical oscillations. The discharge of

a condenser is thus similar to the motion of a deflected spring when
resisted by a frictional force proportional to the speed of displacement.

For we may write the equation of discharge as

4f+<4^='^ • (^*)

which shows that L corresponds to the inertia of the matter moved,

V to the displacement, 1/(7 to the return force of the spring per unit of

displacement (that is C may be regarded as the modulus of yielding,

or fermittance as Heaviside calls it), and R to the resisting force per unit

of the speed. In such a case we know that, if the inertia is small and the

resisting force is large enough, the spring will simply slip back to its

equilibrium position without oscillation about it, just as does a pendulum
bob, of small inertia, deflected in a highly viscous fluid {e.g. treacle)

and then left to itself. If however the spring has a certain inertia it

will get into motion, and, as it nears the equilibrium position,

move more and more quickly, will overshoot that position, and end by
oscillating about it with diminishing range. When the inertia is such

that the spring is just brought to rest without passing the equilibrium

I)osition, and the slightest addition of mass would cause it to pass that

position without coming to rest, the motion is " dead beat," and the

relation R^C^iL is fulfilled. Up to this limit the addition of inertia

diminishes (see below) the time of return, that is the time of ''discharge."
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Thus the addition of the analogous quantity, self-inductance, to the

discharging conductor increases the rapidity of discharge of a condenser.

For example the self-inductance of a lightning conductor may facilitate

the discharge of a thunder cloud.

When the problem of the discharge of a condenser through a coil

was first discussed mathematically [by Lord Kelvin, Phil. Mag. June,

1853] and the conditions of oscillatory discharge were set forth, the

existence of radiation of energy from the system was not suspected.

If it had been, perhaps a more complete theory might have been worked
out, and the history of the electromagnetic theory of light been different

from what it is. As a matter of fact the discovery of the electromagnetic

theory was not very long delayed, as Clerk Maxwell's famous memoir
was given to the Royal Society in 1864.* The possibility of oscillatory

discharge had however been suggested by Helmholtzf in 1847, from
certain unexplained phenomena of magnetization produced by passing

Leyden jar discharges through a coil surrounding a bar of steel.

Charge in

Condenser

\
Discharging
Current

Vo
R

1 (l^s\(2)

^=«»^

2T,

Fig. 69.

3T, Time T, 1-26T, 2T, Timt

Fig. 70.

The rate of discharge and amount of charge left in the condenser

are shown in Figs. 69 and 70 [from a paper by Lodge, Electrician, May
18, 1888] for the cases of (1) zero self-inductance, (2) just as much self-

inductance as can exist without oscillatory discharge. If the coil

possesses no inductance the equation is reduced to

F=F,e-^c. (55)

which gives the potential at time t in terms of the initial potential V^

and the time interval t. It is clear that t/RG is a mere number, that is

to say RG is a time, and is the interval in which the potential is dimin-

ished from any value Vq to VJe, and is called the time constant. VJe
is the common ratio of the geometrical progression the terms of which

are the values of V after successive intervals each equal to RG. Since

e = 2-71828..., e^^ is about 20000, and so in an interval 10 times RG,
the potential has fallen to about 1/20000 of what it was at the beginning

of the interval.

* Phil. Trans. 165 (1865). t Die Erhaltung der Kraft, 1847.
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16. Time constants in oscillatory discharge of a condenser. Writing

the first of cMjuations (51) in tho form

V=Ae-iu"'y + Be-i2L+'')\ (56)

we see that in the general case there are two time constants, {/{Rj^L - a)

and IHR/2L + a). If the roots a - R/2L, - (a 4- i?/2L)] of the auxiliary

quadratic are real, both of these time constants are positive, since in

that case a = {R/2L){1 - iL/CR^)K and is real and less than R/2L.

The time of discharge depends mainly on the first of these time

constants, which is the larger, since the term depending upon it remains

still sensible after the other term has practically been wiped out.

Full particulars with graphs of the oscillatory and non- oscillatory

discharge will be found in the author's Treatise on Magnetism and
Electricity, i. p. 360 et seq.

17. Harmonic electromotive forces. Rule for solution of differential

equations for forced oscillations. We now consider, as a preliminary

to the discussion of the measurement of power, etc., in circuits carrying

alternating currents, some examples of the action of harmonic electro-

Fio. 71.

motive forces. We take first a simple circuit containing self-inductance

Zy, resistance R, a condenser of capacity 0, and an electromotive force

represented by Eq sin nt. The arrangement is that of the diagram
with the coil jp, shown in parallel with the condenser, removed. The
alternating machine indicated on the left is supposed to produce the

harmonic electromotive force in the circuit of the coil and condenser

joined in series. Reckoning from any epoch of time for which the charge

of the condenser may be taken as zero, we have as the equation of

current
^ f<Ly^Ry+^\ ydt = EQamnt, (57)
^ }o

which is equivalent to the equation

Ly + Ry + -y= uEq cos nt (57')

The following theorem of differential equations will be of much use

!

in what follows. If we put D for d/dt, the equation just written takes

the form , |.

(LD^ + RD +^jy ^nE^cosnt (57")
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Now in order to find y we notice that we may interpret the equation

as a statement that y is that function of ty which, by the operation

LD'^-^RD + ljC performed upon it, generates uEq cos nt. But if

we perform the operation on uEq cos {nt + a), the result is

nE^ U-Ln'' + ^Y + n^R^Vcos I nt + a + tan"! ^**

The effect of the operation is thus to multiply the operand by the factor

and to advance the phase of the harmonic factor by the angle

t&n-^{Rn/{-Ln^ + l/G)}.

Hence if we had taken as the operand

y = ^^o_ cosfnt - tan-i—^^\ (^8)

U^Ln^ +
^J

+ n2RA' \
-^^' + ^/

we should have obtained as the result of the operation nE^cosnt.

Thus (58) is a particular solution of the differential equation (57').

The performance of the inverse operation {AD'^ + ND-{^M)~^ on the

function C cos {nt + a) divides the function operated on by

{(-An^ +Mf + NV)^,

and turns the phase hack through the angle td^rr^{Nnj{- An^ + M)}.
This gives an easily remembered rule for applying the symbolical

method of treatment, which we shall find very useful in what follows.

Of course this process gives the particular solution required to express

what is called the forced vibration brought about by the harmonically

varying force nE^ cos nt. The complete solution requires the addition

of the so-called complementary function which is the complete solution

of the differential equation when the right-hand side is zero. For
forced oscillation proceeding in steady regime this addition to the

solution is not required.

It may be added here for reference that the simpler inverse opera-

tion {AD + N)-'^ performed on Ccos(n^ + a) turns the phase back
through the angle tan-i(w^/iV) and divides the operand by the factor

{A^D^ + N^)^- Thus if we are given the differential equation

(L
j^
+ R\y^C cos {nt-\-a\ (59)

we see at once that the particular solution for forced oscillation is

^ = 7-cos \nt + a- tdiir^-^] (60)
{R^ + n'^D'y-



VIII THEORY OF MUTUALLY INFLUENCING CIRCUITS 249

Wc now return to the problem of the alternating current in a con-

denser circuit, as stated above. By the method just explained we obtain

the solution in (58). We omit the complementary function Ae^ + Be^',

since, whether the roots of the auxiliary quadratic be real or complex,

that part of the solution will ultimately, if the flow is continued in steady

regime, be extinguished by frictional dissipation of the corresponding

energy. The externally applied force will maintain the vibrational

part of the flow ; the non-vibrational part is not aided by any force,

receives no energy unless a disturbance (a variation of the speed of run-

ning or some other irregularity) calls it into existence, when it immediately

begins again to die away.

18. Impedance in an electric circuit. Influence of capacity. We
may write the solution (58) in the form

A'
y=

(--(»^4)1

cos{nt-e) (61)

The quantity represented by the denominator of the expression for

the amplitude on the right is called the impedance of the circuit. If

C is zero the impedance is {R^ + 7i^L^y; so that it is clear that the

effect of the capacity is to counteract the influence of the self-inductance.

For a given resistance in circuit and a given self-inductance the current

is a maximum when 7i^LC = 1, that is when capacity C = l/ri^L is inserted

in the circuit.

-o»

8 r-2 1-6 2 2-4

Inductance (henrys)

Fig. 72.

so a

ioo°

The relation between the current and the inductance for a given

condenser is shown in Fig. 72, which illustrates the foregoing theory.

Equation (61) gives the interesting result that when the circuit

contains a given condenser and a given resistance, the addition of self-

inductance, up to a certain point, increases the current, and that the

maximum is obtained when CLn^^l. This is of importance in the

theory of signalling through a cable. There however the capacity is

distributed along the cable, and the theory is more complicated, but
the general result is the same.
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19. Influence of inductance in telephony. The inductance appears

in (61) multiplied by w, so that the effect of inductance becomes much
greater when the frequency is high. For slow signalling through a

submarine cable the inductance may be neglected, but it is a mistake

to suppose, as is sometimes done, that it is necessarily deleterious,

and that it should always be made as small as possible. In very rapid

ordinary working, especially in telephony, the presence of a certain

amount of self-inductance improves the clearness of the signals. To
see how clearness is brought about the reader has only to observe that

for zero inductance the retardation of phase is tan~^(w(7J?) which depends

on the frequency. In telephony this retardation must produce con-

fusion of the signals, inasmuch as, in a composite sound, vibrations of

one pitch have a different retardation from those of another pitch.

But with self-inductance L of even moderate amount, and high fre-

quency, such as we have in telephonic sounds, the retardation becomes

tan-^{w(7i?/(l -n^Oi)}, that is, approximately, -nCR/n^CL, or zero,

so that the retardation is nearly zero for all the actual values of n, and

distortion does not occur. Excessive self-inductance however pro-

duces attenuation of the signals.

20. Electric resonance. The difference of potential V between the

plates of the condenser is, according to (57), given by

V=E,sm 111-1"^ -By,

or by (61), r= l^o^^n(nt-e)

The maximum value of V is obtained when the denominator of the

quantity on the right has its smallest value. For this n^ has the special

value

2L-Cli^
2CZ2 •

If R is very small in comparison with L this becomes 1/CL, so that

n is then 27r times the natural frequency of electrical oscillation of the

condenser and coil as arranged. Then

amplitude of F
E, wi <«^>

which will be much greater than unity, since GR^ has been supposed

to be small compared with 2L. This is the case of what is called electri-

cal resonance, in which the amplitude of the difference of potential

between the terminals of the condenser is greater than E^, the

electromotive force of the alternating machine.

This curious result was first observed in practice in observations by
Mr. Ferranti on mains carrying alternating currents between London
and a generating station at Deptford. It was found that the square root
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of the mean of V^ on the terminals of the alternator, working at its

normal speed with a certain exciting current, was increased by con-

necting the machines to the mains. This result was no doubt due to a

partial fulfilment of the conditions necessary for a small value of the

denominator of the right-hand side of (02).

21. Primary circuit with a condenser, and a secondary which contains

no electromotive force. We now consider a primary circuit arranged

as in the case just considered, but with a secondary circuit containing

no electromotive force. The equation of the primary is evidently

L/-^^ -^-M'-^ +Ji,y, + ^,^y,dt = E^ cos id, (64)

while that of the secondary is

'''^^^^^^^'^y^-='' (65)

Since we propose to consider only the forced electrical oscillations, and
these will be simple harmonic and of period 27r/n, we see that

Hence if we write L\y for L^ - l/Gn^ the first of the above equations

will be

L\'^ + M'^y^ + Ii,y, = E,cosnf,
dt

'^'^ df
•-'1/1---0—

.
(6^')

and we have for the primary and secondary circuits the equations

(64') and (65).

The problem is therefore that of a primary without condenser and with

self-inductance L\ = L^ - 1/Gfi^, and a secondary without condenser and
without electromotive force. If however the secondary contained a

condenser of capacity Og, we should only have to put for Lg the ex-

pression L'^^L^-ljG^n^, in order to take the condenser into account.

If we operate on (64') by R^ + L^djdt and on (65) by Md/dt, we obtain

+ RiR^yi=EQ(I^+n^L^^)^ COS {nt + G), (66)

where = ta,n~^ {nLJR 2). By the rule given above the solution of

this differential equation is, for forced oscillations,

V.= W±!fl^ ^eo.(,.-^,), ...(67)

where

' R2{RiR2-n^L\L2-M^)} + n^L2{L\R2 + L2Ri)

'
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Similarly for forced oscillations in the secondary we obtain the

differential equation

(L\L, - il/^)5^ + {R,L, + B,L\)
^-Jf

+ ^1^272 = ^^^^0 COS (lit - J) (68)

The solution of this equation for forced oscillations only is

MnEf^co?,{nt-Q^)
72

[{i^l^2 - ^'(^'l^2 - ^^')Y + ^'(^1^2 + R2^\f]^
.(69)

where ^2 = tan ^ /pV , p r/ x

Equation (67) can be written in the form

EQ cos (nt- 0,)
71 .(70)

which shows that the effect of the secondary has been virtually to

increase the resistance of the primary by »i^M^J?2/(^2^ + ^^-^2^)' ^^^

to diminish the inductance by n^M'^L^jiR^ '^'*^^^^)-

The current in the secondary is the same as it would be if the circuit

were independent, and contained a harmonic electromotive force of

amplitude MuEq /{R^^ + n^L^y , and had a resistance

Rj^ + nm^RJiRi^ + n^Li^)

and a self-inductance L2-n^M'^L\l(R-^ + n^L^).

22. Conductors in parallel, containing resistance, inductance and

capacity. This discussion may be concluded with a short treatment

of the case in which we have conductors in parallel (Fig. 73) which

Fig. 73.

contain resistance, inductance, and capacity without mutual inductance.

If LjL, Lg, ... , include the capacity terms, as in (70), the equations are

L^ J^-h i^jYi -= Vq cos nt,

J-
dy,

,, ,^
A (71)

L2-^ + Roy2 = ^0 cos fii,
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TIk' ty|ti(al solution for forced oscillations is

y=-
(/j? + «Vv2)*

COS (lit - 0),

'here = tan->'^.

.(72)

This solution aj)plied to each of equations (72) gives the currents in

the different parallel conductors. Adding these together, we find

for the total current, T, at any instant entering at one point, A say,

and leaving at B,

r = 2:y = Fo2 ( ^
1 cos {nt -d>)]

or

with

and

r = Vo

(R2+w2L2)
^coa {nt-ij)),

R =

(j) = tan-

A

wL

R

L=
B

A^ + n^B^' A^ + n^B^

(73)

where A denotes 2 {72/(7^2 + ^^22^2)}^ ^ denotes I,{L/{R^ + n^L^)}.

The total current is thus the same as if the points A, Bin the diagram

were connected by a single conductor of resistance R and inductance

L. These may be called respectively the effective resistance and

inductance of the system of parallel conductors. The angle (p is the lag

in phase of the total current, entering or leaving the parallel system at

any instant, behind that of the impressed difference of potential.

The effective capacity of the system of parallels is in general inde-

terminate, and of no practical importance.

Let us suppose the circuit between the two points AB to be com-
pleted by a single conductor of resistance Ry inductance L, and con-

taining an electromotive force ^ocos(w^ + f),
so that f is the lag of the

difference of potential FqCost*^ behind the electromotive force. The
solution for the case in which this conductor contains a condenser

C will be obtained by putting L - XjCn^ for L. The current in this

conductor is F, so that the differential equation is

Z^ + /2r + FoCos??/=^oCOs(n«+f) (74)

Substituting the value of F already found, and remembering that the

identity thereby obtained must hold for all values of t, we see that it

t

gives the two equations

Fo_ (R2 + n2L2)^

^0 {(R + i?)2 + w2(L + Z)2}*'

C+ = tan-i-J;— /.

(75)
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Instead of the first of (73) we therefore have

p
Y= jcos(w^ + f-0) (76)

{{R + Ef + n'iL + LfY
23. Alternator with electromotive force any periodic function of t.

It is only in exceptional cases that the difference of potential produced

between the terminals of an alternator is a simple harmonic function

of the time. It is however a periodic function f(t) of the time with a

definite period T, such that

f{t)=f(t+T)=f{t + 2T) = (77)

But alternators, since the poles of the field magnets are alternately

+ and -
,
give also the equation

f{t)= -f(i + iT)=f{t+T)= -f{t + ^T) = (78)

In this case Fourier's theorem enables us to write

f{t) = A-i^8m(nt + a-i) + AQsm{3nt + aQ) + ...
,

where w = 27r/T = 27rx frequency of alternation. The differential

equation for the machine has the form

L ^"^ + Ry = Ai8m{ni + a^) + A^sm(3ni + a^) + ... , (79)

on the supposition, it is to be observed, that L is a constant. But the

magnetic induction through the circuit when the current is y is Ly,
and it is often the case that L is a function of the time, which of course

the current always is. Thus the complete equation for this more
general case is

j(Ly) + Ry = AiSm{nt + a^) + A^sm{3nt-\-a^) }-... .

Thus there appears in this case the term y dL/dt, which cannot be esti-

mated, except as a rough approximation, without exact knowledge of

the function which L is of the time. In the present work L is in most
cases treated as a constant ; and further information must be sought
in treatises on Alternate Current Machines and Transformers. We
have seen that L is analogous to inertia, so that Ly is the analogue
of the usual term mv in the equation of motion of a particle of mass m,

while yL is the analogue of the term mv which appears when the mass of

the particle considered undergoes variation, as for example when a
growing raindrop falls through a rain cloud, or evaporates as it falls

through a stratum of unsaturated air.

Regarding then X as a constant, and applying the rule of 17

above to each term on the right of (79), we get

A A
y= rsin(^^ + ai-^i) + rsin(3w« + a^-6?o) + ... ,
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or, as wo may write this solution,

V ^" ,s\n{{2k + l)nt + a^^,-9.^,,l (80)

^{/? + (2Jk + l)2/r/;-i]-

where the summation is taken for as many of the successive values

0, 1, 2, 3, ... of A; as may be required to express f{t) with sufficient

accuracy. The retardations of phase are given by the equation

ft,.^,=ta„-.<?*±ll^ (81)

24. Rate of working in the circuit of an alternator. Mean current and

mean square of current. We now consider the activity, or power, in

an alternating circuit. We shall denote this for a circuit or conductor,

according to the case considered, by ^. If F be the difference of poten-

tial at a given instant between the extremities or terminals of the con-

ductor, or system of conductors in question (which we shall suppose

for the present to be a single linear conductor, or a set of linear con-

ductors arranged in series), and y be the current flowing between the

terminals, the rate at which work is being done by the current is Vy.
Thus the instantaneous value of A is Fy, but in the case of an alternating

current what we have to reckon with in practice is the mean value,

^^ of Fy taken over a period T, that is with

A = yVycZ« (82)

It is important to express A^ in terms of the quantities determined

by a voltmeter placed across the terminals, and an amperemeter placed

so as to carry the current y. Let us consider what these instruments

give. The dynamically effective action on the indicator of the volt-

meter may be taken as proportional to the mean square of F, that is to

Similarly the dynamical action in the current-meter is proportional to

Now we have for the mean square of F and the mean square of y,

80 that the square roots of these mean squares are

2 /•'/

rT791 ''
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The mean value, A^, of the activity is given by

^m= 4
f
' Vy dt =^^ [

cos nt cos {nt - G) dt^^V^y^ cos 0^,

that is, by (83), A^=V'y'GO^0 (84)

y, y are read off from the voltmeter and amperemeter, so that A^
is the product of these readings by the cosine of the difference of phase

angle between the difference of potential and the current. The multi-

plier cos Q is called the power factor.

It is usual to regard F', the effective electromotive force, given by
the voltmeter, as made up of two components, Fi' = 7'cosO and

F2' = F' sin G. Since the unit of power used in practice is the waity

and

^„^=yrcos 6> = yF/, (85)

YI is called the " watt electromotive force " and Y^ the " wattless

electromotive force."

25. Power factor in an alternating circuit. A more general specifica-

tion of the power factor which suits other cases in which the wave
forms of the current and electromotive force are merely specified as

periodic may be given as follows. Of course both have the same period

T. As it will be shown that the power factor cannot exceed unity in

numerical value, we shall denote it by cos 0. Then we have

A Vydt

cos</>= ^'
. , (86)Fy

with [F^]„,= Ltn (F,2 + F^^ + . . . + F,2)},

[y2]„^=Lt 1^(71^ + 7,2 + ... +y,2)},

where Fj, Fg, ..., V^, 71, 72? •••> Vfc are the lengths of successively

equidistant ordinates of a single wave of the potential and current

respectively. Thus, clearly, with k = oo
,

{Y,y,+ Y,y, + ... + Y,y,y

-(Fi2+F22+...+F,2)(yi2 + y,2+...+^^2)eos2<^ = 0,

that is

{V,y,-V,y,r + (Y,y,-Y,y,r + ...

+ {Y,^ + Y^^+...+Y,^){y,^+y'' + ...+y,^)Bm^cf> = (87)

The expression on the left-hand side of the last equation is least when

sin </> = 0, that is when cos </> = ± 1. We have then for cos <^ = + 1,

^ = ^=...=^ (88)
ri 72 7/.-
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We see thus that the power factor as defined by (86) has the maximum
value unity, and that then the wave form of the potential curve is the

same as that for the current curve, and by (88) that the two curves have

no difference of phase, and have simultaneous zeroes and maxima
and minima.

The interpretation of cos <f>= -I is, by (86), that the potential and

current curves are, as in the last case, similar, but have the ordinates

turned in opposite directions, that is the curves drawn for the same

time axis lie on opposite sides of the axis.

It is usual to call the angle cos-^^, the phase difference of the waves

of potential and current. We can define in a similar way the phase

difference between any two waves of the same period.

For two simple harmonic functions of the same period

cos. . . cos. . ^.

the phase difference is the angle a- /3. The time-value of this phase

difference is (« - P)/n.

We have not space in which to dwell on this affair of phase difference

and its treatment by a species of vector analysis. The reader is referred

to special treatises, such as Russell's on Alternating CurrentSj in which a

full analytical treatment, illustrated by graphs, is to be found. But
we take as an illustration a single case in which this angle of lag is not

equal to the phase difference as defined by equation (86). The angle

of lag gives the time interval between the instants at which the values

of the ordinates for the two curves pass in the positive direction through

zero.

26. Phase difference and time-lag. We consider a periodic curve

(not simple harmonic) the ordinate of which for any value of t isf{t),

with /(f) = 0, for t = 0. Since the curve is supposed to alternate, that is

to have its alternate halves on opposite sides of the time-axis, and we
here suppose further that each half is symmetrical about a middle

ordinate, we have

y=/W=/(ir-0= -AiT+i) (89)

The angle of lag between this curve and a simple harmonic curve, of

whicli the equation is

tj = a sin {nt - a)

and period is T, is a. Now

/(/) sin (nt -a)dt = cos a I f{t) sin nt dt - sin a I f{t) cos nt dt.

It is easy to show that by the conditions (89) the second integral is zero.

[Hence

f(t) sin (nt -a)dt = cos a I /(/) sin nt dt.

O.A.M. R
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The interpretation of this result is

cos = cos (pQ cos a, (90)

where </> is the phase difference between the two curves and <f)Q is the

phase difference, as defined by (86), which would exist if the time-lag

were zero.

It is to be remarked that if one of the curves is given by a constant

ordinate while the other is periodic, fulfilling the condition

f(t)=-MT+ t),

the cosine of the phase difference is zero, since the numerator on the

right of (86) is then zero. Thus the phase difference of a constant and an
alternating periodic quantity is 90.



CHAPTER IX.

THE DISTRIBUTION OF ALTERNATING CURRENTS
IN PARALLEL CONDUCTORS.

1. Flow of alternating currents in a coaxial main. Differential

equation. We consider first the flow of an alternating current in the

inner conductor of a main consisting of a long right cylindrical conductor

surrounded by a coaxial tube of given external and internal radius,

which forms the return conductor. We have three regions to consider,

hat within the surface of the inner conductor, the tubular insulating

.-ipace between the two conductors, and the return tube of conducting

material. We shall suppose that the magnetic permeability of the

insulator is yu', and that the radii of the cylindrical surfaces, taken in

the outward order, are a, h, c. We shall neglect the capacity current

and suppose that there is no leakage current. A stricter discussion

will be found in Bessel Functions by Gray and Mathews.

In the first instance we shall suppose the conductivity of the inner

conductor to be k, and that the outer conductor is a shell of infinite

conductivity, so that it may be taken as exceedingly thin.

Take a coaxial tubular part of the inner conductor. Let the radii

of this tube be r and r + dr and the current in it 27rr dr . q. The con-

ductivity of a length dx of this tube is 2'7rkr drjdx, and therefore the

electromotive force on the element is 27rqrdrdx/27rkrdr = qdxjk.

This is equal to the difference of potential -dV/dx .dx between the

extremities of the element minus the time rate of increase of the

magnetic induction which surrounds the element. If N dx be this

induction, we have (writing P for dV/dx, as we shall require the symbol
x for another purpose)

^=f+l (1)

l^f We assume that there is no flow across the surface of the conductor,

and therefore no radial flow anywhere, so that the equipotential sur-

faces in each of the conductors are planes perpendicular to the axis.

Hence (1) gives
3 aiV 1 ^ , ,,,

259
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Now consider the lines of magnetic force round a core of the con-

ductor of radius r. Let the field intensity at distance r from the axis

be H. As we pass from radius r to radius r + dr, the induction ij.H dr

is lost from N, since we are here considering N as furnished by the

magnetic field outside the circle of radius r, and so we have

^'^=-mH, ....(3)

and (2) becomes
du

f^-^^" ,(2')
Idq

dt ~kdr

The line integral of magnetic force round the conducting cylinder

of radius r which we are here considering is 27rrH, and this is, by the

remark made above as to the meaning of N, may be taken as +47r

times the flow through the circle of radius r. Hence we get

'dN iTTjuC'- , .„,.

-^\ r^^' (3)
^ Jo

and

or

dt

4r7r/uL f
*

—Jo'
^7",

1 9£^47rMp-3^^.
Jc 'dr r Jq dt

i'^)

Eliminating H between (2')

equation of flow

and (4), we

dq

obtain the differential

dr^-^rdr~^'^^''dt
,(5)

2. Integration of the differential equation. This is an equation of

diffusion of electric current. The complete equation is one of wave
propagation along the conductor as well as of diffusion in the radial

direction, but as the speed of wave propagation is very great any
ordinary length of conductor may be regarded as characterised at any
one instant by the same state at all points on a line parallel to the axis.

The currents diffuse into the conductors just as heat would, if the

surfaces of the conductors were subjected to variations of temperature.

We now suppose that q is a simple harmonic function of the time.

Hence we may write

q= Aue"", (6)

where n is 27r times the frequency of alternation, i = J-l, and u is

a function of r only. The value of q can be replaced when desired

by a real value by means of the theorem e"^^ = cos nt -]- i sin nt. The
differential equation now becomes

dH 1 du

di'' r dr
iirifjinku = 0, (7)

or
dht i du 2.
;^-g +~ ^— mhu = 0,
or^ r ov'

(7-)

i
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where m^ = 4'7r/uw^. If for mr we write sc, this equation becomes

^« + -.2S-"' =
« (^>

The complete solution of the last equation is

u = AI^(xJi) + BK^{xJi), (8)

where Iq, Kq are the Bessel functions* defined by the series

22 . 42 2* . 4* .
6*

A^o(^) = (log 2 - 6Vo(^) - log a: . /o(^) (9)

22.42.6*

C is what is known as Euler's constant, and has the numerical value

0-57721 56649 01.... Hence

log 2 - = 0-11593 15156 58... .

This value of the multiplier of Iq{^) is required to ensure that the second

function Kq{^) shall vanish for large values of the argument ^. The
value of KqQ) becomes very great for small values of ^, and therefore

in applying the solution (8) to the inner conductor we must take B = 0.

We shall return to the second solution presently.

We consider here first the distribution of current in the inner cylindri-

cal solid conductor. For this then the solution is

w=^/oKA') (10)

It is to be observed that this solution holds for every case in which the

outer conductor surrounds the inner symmetrically as a sheath, with

the insulating coaxial tubular space between. For the only link of

connection between the current in the outer conductor and current

elsewhere is the magnetic field of the former, and in the present case

the outer current produces no magnetic field in the inner space.

The case is different if the return conductor is not a coaxial tube.

If it is a wire the return current will affect the distribution of current

in the inner conductor, unless the wire is at a very great distance from
the latter, when again the solution (10) may be applied.

It is clear that lQ{xJi) is complex. We have in fact

x^ 3^
/o(-'vO = 1 - 22 42 + 22 . 42 . 6* .

82 ~ " *

+ *1^22 22.42.62'^22.42.62.82.102 '") ^ ^

>rd Kelvin wrote this in the form

Ifjixji) = ber x + iheix, (12)

* See Gray and Mathews' Besael Functions, chap. vii.
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where ber denotes the real part and bei the imaginary part of the Bessel

function. This notation is now in common use. On it has been founded

a notation for the other function KQ{xJi),

KQ{xJi) = kerx + i'keix, (13)

where again ker denotes the real part and kei the imaginary part.

When X is small the forms used for the Bessel functions are those

given in (9) ; when x is large the forms employed are*

ex ( 1-2 12 32 12.32.52

M^)
r, V 1

{'^Sx-'V, {8xy
(Ittx)^

^^^""^"[^x/^ \ 8a- 2!(8a:)2

3\{8xf

12.32.52

'd\{SxY

..}.

\.

Thus when x is small, we have

x^
ber x=l -

22 .
42 ' 22 . 42 . 62 .

82

x^
f^ei ^ - 22

" 22 . 42 .
62 ' 22 . 42 . 62 . 82 . 102
+ ^.>

ker X = (log 2 - C - log x) ber a^ + Jtt bei x

_A iV_^ f^ ^ I 1\ x^

V 2/ 22 .
42

"^
\

"^ 2
"^

3
"^
4/ 22 . 42 . 62

.

kei X = (log 2- C- log x) bei x-^tt ber x

82

X' /, 1 ]1 1

2
"^

3 / 22 . 42 .
62
+ ....

Lastly, when x is large, the formulae are

ber X = -^ cos a,

where

v/27r«

kera; = (— j e^'cosa

1

bei ic = 7^^— sin a,

sf27rx

keix-©> sin a

25 13

v/2
~

8N/2a; 384v/2a;3 1 28a;*

:] s/2

x_ 1

8"*'8v/2a;

25

163;2
"^

384v/2^3 J

.(U)

,(15)

...(16)

,(17)

.(18)

The upper signs are to be taken for /3 and a, and the lower signs for

/3' and a in the series last written. To pass from /3 or a to /3' or a

it is only necessary to change the sign of x.

3. Solution for outer return as highly conducting thin tube. Returning

now to the solution (10) for the inner coaxial conductor, and putting

* See Gray and Mathews' Bessel Functions, second edition.
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qr for the current per unit area of cross section at distance r from the

axis, we have

y;.= ^(bermr + ibeimr)e*'" (19)

This solution splits into a real part and an imaginary part, and a little

consideration shows that each part must satisfy the differential equation.

Thus we have the two solutions, with two constants A and B.

i4(ber mr . cos nt - bei mr . sin nt), B(ber mr . sin n< + bei mr cos nt).

These two particular solutions taken together are the complete

solution, so that

q^ = (A ber mr + B bei mr) cos nt + {B ber mr-A bei mr) sin n<, . .
.
(20)

or q^ = (^-^ + B'^)^{her^mr + bei^ mr)^ cos (nt - e), '\

.. ^ , B her vir - A hei mr c ("v
with €=- tan~^ -.-y

7,^i—

r

A ber mr + B bei mr J

We may simplify this by supposing that the current density along

the axis is qQ cos nt. This gives, since ber = 1, bei = 0, A = qQ, 5 = 0.

Hence we obtain

Vr = %{her^mr + bei^m?-)^ cos (nt - e),
]

. , ^ , -heimr c
(^•')

with e = tan~i ,

ber mr j

The value of ber^ mr + bei^ mr increases rapidly with mr, and all the

more rapidly the greater w, that is the greater the frequency. Thus
the current density along the axis and near the axis is very small in

comparison with the density near the surface of the conductor. The
current is therefore confined mainly to the outer part of the conductor,

or in the ordinary phrase to the " skin " of the conductor.

The angle e in (21) is the difference of phase between the current at

distance r from the axis and the axial current. A comparison of the

values of the ber and bei functions as given in the table at the end of this

chapter shows that this phase difference changes with r in a very remark-

able manner, for which it is difficult to suggest any adequate physical

reason.

4. Effective resistance and effective conductance of inner conductor.

We now calculate the value, iVj, say, of N external to the surface of the

inner conductor. It is to be observed that we are building up here the

whole value of iV at a surface at a given distance from the axis, not

passing, as when N was calculated above, from its value at distance r

to its value at distance r + dr, within the conductor. If we suppose that

the outer conductor is a thin coaxial shell of infinite conductivity, there

will be no induction external to the surface of radius h to be taken into

account. The current crossing the annular area between the circles

of radii a and 6 is - y if y be the whole current. We have then

N,=A^ Hdr,
'^=^i
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But if a-<r <6, we have, from the value of the current crossing the area

considered, ^irrH = iiry, where y is the whole current. Thus

^i = 2y/x'log-

and -T^ = 2yu log- • ^.

Thus we obtain from (1), putting P for dV/dx, the space-rate of

variation of potential V,

^=^''''«44M (^^>

Now we have seen that

qa = qo (ber ma cos nt - hei mu sin nt) (24)

Also, since I xher mx.dx= -bei'?m-,
{o

.

""'

\ (25)

X bei mx .dx= — ber'??M*,
wi

we get for the whole current y in the internal conductor

qr dr = 27r— (a bei' ma . cos nt + a ber' ma . sin nt), . . . (26)
^^*

and therefore

7^ = 27r^n— (^ber'TWft. cos ?i/ - a bei' ma .sin?i/) (27)

We solve (26) and (27) for q^^Q^ni and g'^sinn^, and substitute the

values in (24), and thence in (23) we get

. m 1 / ' ., 1 9y, ., \ ^

go cos ni = -^r— .r--m .
. ./.,
— y bei ma -\--~r bei ma ,^"

27rfl ber ^ ma + bei ^ ma \
' n ?it J

Qa sin nt = ^r— r—7s r-^T^— ( y ber' ??ia ^ ber' wia ),^" 27ra ber^ma + bei^^waV'^ n dt J J

...(28)

+

and from (23), noticing that m^^^irimnh,

r, m ber ma bei' ma - bei ma ber' ma
J-' ::= . <y

27ra^ ber'2ma + bei'^77ia
''

r^ ,, ft 2u bei ?/ia bei'ma -I- ber ?wa ber' ?«a^9y .op^x
i2yu'log- +— ^—72 r--7o \^ 29)
I

'^ °a ?7ia ber ^ma- bei 2ma / 9^

5. Special notation for functions. The following notation for the

functions which appear in (29), and some others, is employed by writers

on this subject [see Russell's Alternating Currents, vol. i. 2nd edition] :,

X{x) = ber^ ic + bei^ a;. F(a;) = ber'^ a; + bei'^ ic.

Z{x) =berajber'ic + beia;bei'a?. W{x) = ber a; bei' a?- bei a; ber' ic.

X-^{x)= ker^ x + kei^ x. ^i (^) = ker'? x + kei'^ x.

S(x) =ber'ajker'a; + bei'a;kei'a;. T{x) =bei'a;ker'a;-ber'a;kei'a;.
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The last four have been tabulated for values of the argument x from

to 30, by Mr. Harold G. Savidge \FM. Mag. 19, 1916], the functions

z W{x) 4 Z{p^

2 'V(x) ' X V{xy

have been computed by the Bureau of Standards, at Washington, for

values of x proceeding by steps of 0-1 from to 5, and then by increasing

steps from 5 to 100. An abridgment of the tables of the latter functions

is given at the end of this chapter.

Using the functions Z, F, IT, we write (29) in the form

or P =% +L^ (30)

„„ r, mW{m.a) , ^ ,, ft '2/jiZ(ma) .^^\Thus Ii = ^
—

;
jr^. V , L = 2/uL log-+ '^„, ', (31)

lirakV^nm) ^ a 7naV{ina) '

are the virtual resistance and self-inductance of the inner conductor

per unit length in both cases. The special values of ^N{'>na)\Y{ma) and

Z{ma)lY{ma), for a small and for a large, are given by Russell ; but the

table in the appendix enables R and L to be calculated with extremely

little trouble for a large range of cases.

6. General case of coaxial main. Outside conductor of finite thickness.

We now consider the more general case in which the external conductor

is not of infinite conductivity, and therefore is not infinitely thin.

Putting (( for the current density in the outer conductor at distance r

from the axis, and using iV', F' instead of iV, P, we get the equation

^=¥-1- (3^)

which corresponds to (1) above. Also we obtain an equation

;i^- 1=^-4- (^^)

which, if 5'' = M'e"*', can be written

a^+,7 3;r-«A«,' = (33')

Proceeding as before we get as a solution of (33),

qr = {A (ber mr + i bei mr) +B (ker mr + i kei mr)
}
(cos nt + i sin nt).

This resolves itself into a real part and an imaginary part which satisfy

(33) separately, and therefore yield two real solutions. The sum of

these two solutions, each multiplied by a constant, is the complete
solution. Thus if, without regard to the use already made of the
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letters A, B, we take four independent constants A, B, C, D, we can

write the complete solution in the form

q' = (A ber mr + B bei mr + Ckevmr +D kei mr) qQ cos nt

+ (
- ^ bei rrw + B ber mr -Ckeimr +D ker mr) q^smntj ... (34)

where as before qQ denotes the current density at the axis of the inner

conductor.

By the same reasoning as before we have for a point at distance r

from the axis

r^=-^rH, (35)

where N is the magnetic induction (per unit length) external to the

cylinder of radius r and H is the magnetic field-intensity at distance r

from the axis. But if y.,.' be the part of the return current external to

this cylinder, and y, as before, be the whole current in the inner con-

ductor, we have

and therefore r-^ = 2fi(y-yr')= -i-jr^Xn/dr (35')

(36)

Henceby(33) i|=-^J>|c.. ]

also ^^ = -2iuL^\ ^ ^'^
dr.

dt otjr r

7. Determination of constants in the general solution. Similar rela-

tions to those expressed in (25) above hold for the ker and kei functions :

these may be written

r kermr dr = — kei' mr,m

kei mr dr= — ker' mr.m

.(37)

The value of q' given by (34), used in (36), gives by (37) the equations

for the constants

A bei' nic - B hev'mc + G kei' mc - D ker'mc = 0,

A ber'mc + B bei' mc + kermc + D kei' mcll) <^«>

which enable us to express A and B each in terms of C and D. We
get, writing V„,c for ber'^mc + bei'^mc and using also the functions S
and r of 5 above,

A F{mc) = - CS{mc) + DT(mc), BF{mc) = - CT{mc) + I)S{mc). . . .(39)

For the complete determination of the constants two more relations

are required. These are supplied by the condition that the return
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current must be equal to the total outward current. For the latter we
have by (27)

y = 27r
I

(p' dr = 2ira - (bei' nia cos nt + ber'ma sin w/),

and for the former = 2^1 rq'dvy

where q' has the value stated in (34). Performing the integration and
using (37) and (38), we obtain

- A bei' mb-{-B her'mb - C kei' mb + D ker' nib = r bei' ma,

A ber'/ni - B bei' mb - Vex'mh - DVeK mh = T ber' ma.

. .. (40)

Substituting in (40) the values of A, B from (39), we find

C{ V{fnc) S{mb) - V{mb) S{mc)) + 1){ F{mb) T{mc) - V{mc) T{mb)}

= - r V{'nic) (ber ma ber' mb + bei'ma bei' mb), (41)

- C[ V{mb) T(me) - V{mc) T(mb)} + D{ V{mc) S(mb) - F(mb) S(vw)}

= -r V{rtic) (ber' ma bei' mb - bei' ma ber' mh) (42)

These equations give G and D, and then (39) give A and B.

8. Final result in the general case. By the second of (36) and (32),

we have

P'=-2MSr^->^r +
^^'

'dt]h r ^
'

.(43)and as before,

Hence, by subtraction,

i>-i" =*^.2.'log^.|f iU)

and using the values of cos nt, sin nt, found in (28), we get

with

P-F = A-,y +A|,

m
111 = -^ + 2'7rakF(7na)

^^®^' ^^ ^^ ^®^ ^*^ "^^ ^®^ ^^^ + C ker wi5 + /> kei mb)

I-

heTma(A bei mb -B her mb + Ckeimb-D ker mft)}, ...(44')

ma I

^'^^^—
V(ma)

^^®^' ^*^(^ ^®^' "^^ i-Bheimb-\-C ker mb + D kei mb)

+ bei' ma{A bei mi - Z? ber inb + C\ie\mb-D ker /??i)}, . . .(45)

where R, L are the virtual resistance and self-inductance found for the
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inner conductor alone [(31) above]. Equations (44) and (45) show the

terms contributed by the outside conductor.

Russell [Kelvin Lecture, 1916] has determined the constants A, B,G, D,

and has put (44'), (45) in the form

B. = K

—

r -ttt—V + » 17 A /L—^
{2S(mc) (ber mb kei'mJ - kei mb her'mb)

^ lirak V{ma) 2'n-bk/l{b, c) ^ ^ ^^

+ 2T{mc){her 7nb ker'??ii - ker mb hevmb)

Time)

mb
V^{mc) W{mb) - V{mc) W^{mb)], (44")

^ y^ ^ ,, b 2aZ(ma)
and L, = 2u loar - H ^^;—

,

2a
{2S{mc) (ker mb ber'mb + bei mh kei'mh)

mbA{b, c)

+ 2r(mc)(ker mb hei'mb - ber mb kei'mi)

-^S~- ^,W -?('«*)- ^(«)^.('«*)}. (45')

where

^(b, c) = F^{mc) V{mb) + F{mc) F,{mb) - 2S{mb) S{mc) - 2T{mb) T{mc),

9. Special cases : low frequency and high frequency. We shall

consider the relative values of these terms for the two cases, (1) that in

which m is small, that is the case of low frequency
; (2) that in which m

is great, the case of high frequency. The calculations have been made
by Russell [loc. cit. above], and the results are given in his treatise on

Alternating Currents, vol. i., and also more fully in his paper, Phil.

Mag., April 1909. We quote here the most important. Their veri-

fication by the reader will be a somewhat long, but not difficult exercise.

Taking then (1), that is m small, we obtain by (34) and the values of

the constants for the approximate value of the ratio of the current

density in the outer conductor, at distance r from the axis, to the axial

current density,

|- = g23p ( ^
- i^^^^^ log ^^**') cos f^f-

Thus, as r is increased the current density is diminished.

For case (2), that is m great.

q' e'''"
'^'^

% ij2irmf

/ft\^rcosh{ v/2m(c - r)} + co^[j2m(c - r)]
'f^,^^ ^.

\b) Lcosh{v/2m(c - r)} - cos{v/'2m(c - r)]\ ^ ''

-1 si"
'Ai • e-"""-'"*/^' + sin i/'2

. e'^^'-''^'^^~
cos

j/'i
. e— ^^-'•"v^ + cos ^2 . e"**"-^'/^'

(46)

where ^i = t*"~'3 "
Vl ^ 8' '^^ = *''" C + ^2 "^ » ^ ^
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The quantity

(,')'[cosh {/«(<; - »)v^} +cog{m(c - i)s/2}]*

..(50)

diminishes as r increases, and so when the frequency is very high the

current is almost entirely confined to a thin layer on the outside of the

inner conductor and a thin layer on the inside of the outer conductor.

10. Case o! mc not greater than 2. When mc is not greater than 2 the

value of 7^1 is given by the following approximate formula. Writing

"""
192 ' "^''Hic^-b^y

"^2-
4(c2_/,2)«»

^ = log^, (48)

we have in this case

Again, if we write

,_ l9c^+\03c*b^-iWc^ + Sb^ ,_ Ubh*(2c^-h^)
"^
~

22. 42. 62(C2 - ft2)
• "^1 " 22. 42. 3(r!2 - ^,2)2'

b*(^ b*c^ c

"^2 -
4(C2 -. />2)3' ^3 -

2(c2 - bY ^ ~ ^^ ?>'

we have L^ = L,i-ifij^ _ ^ („-' + o-/g + o-,'^ _ 0-3'f3), (51)

where L,, is the value of L for steady currents in the two conductors.

For steady (" direct ") currents

^"^^r^+xC.^-//^)*'
[

[See Chap. XIII. below.]

In cables for power transmission the section of the inner conductor
is made equal to that of the outer, that is a^ = c^- h^. In this case an
increase in the value of h means a diminution of o- + <Ti^+o-2^, in fact

the return current is on the whole removed to a greater distance from
the direct current, and if the frequency is not too high, say less than 50,

the increase in the resistance of unit length of the outer conductor,

represented by m'^{<T + (r^^+(r^^)l'7ra^k is negligibly small. It will be
noticed however that the term in m^ has disappeared from the first

part of 7? J.

11. " Skin effect " in practical cases. Using this formula we can find

the magnitude of the so-called " skin effect " in a practical case. For
simplicity we take the radius of the inner conductor as 1 centimetre,
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„ 1 /, m^^ 1 /, 0-0072m4\ ,__.
7>._,fl +_U_^l+___j (53)

and if the cable be worked at high " pressure," b may be taken as 2*4

and c as 2-6. This gives for unit length of the cable

]^ / m4\ ± /. .
0-0072m4\

^A 192;'^7r/

A frequency of 20 gives with high conductivity copper, for which we
take />i = l, m = l very approximately. Then

^ =i(l + i) + i(l+0-0<^««37) (54)

Thus the increase of resistance is 0*5 p.c. in the inner conductor com-

bined with an increase of about '0037 p.c. in that of the outer conductor.

For a low voltage cable h and c might be 4/3 and 5/3 respectively.

The first part of R would be the same as here given, the percentage

increase in the second part would be raised to about 0*03.

12. Case of ma greater than 5. When ma is greater than 5, the

formulae are

m /_i 1 3 \
1

" 27raJc \J2
"^
~2ma

"^
8v/2mV,

m sinh{\/277i(c - b)} + sm{s/2m{c - b)} /^^x

2s/27rhk cosh{^/2?7^(c -b)} - cos{j2m{c - b)]

L =2 'lo - ^-^(— A ^\

2yu sinh {'>j2m{c -b)} -sin {s/2m{c -b)} .^q.

mbj2 cosh{v/2?«.(c -b)} - cos{\/2m(c - b)}

For ma very great and /= frequency these formulae may be replaced by

B = ^^ /I i\ _ wy 1 1\
' 2J2k7^Wb)~^| ic W bj'

,(57)

Thus, as / increases, R^ increases but L^ diminishes towards the value

2/>i'log(6/a), which is continually approached without limit of closeness

as / is increased without limit. The state thus approached is one of

concentration of the currents in the surface strata, on the outside of the
inner and the inside of the outer conductor.

13. Inner conductor a hollow tube. The case in which the inner

conductor is a hollow tube is interesting, but its complete solution is

somewhat complicated. Let ^2 ^^ ^^^ outer radius of the inner con-

ductor and flj its inner radius ; we get easily the differential equation

14^'- (5«)

If we suppose that q = qQ cos nt is the current density at the inner surface

OQ '"^^

'

dr
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of the tube, we have for the density at distance r {a^<r<a^ from the

axis,

q = {A ber mr + B bei mr-i-C ker mr + D kei mr)^^ cos nt,

+ ( - ^ bei mr + B ber ?>ir

-

C kei mr + D ker mr)q^y Hint, .... (59)

with the conditions

A ber ma^ + 5 bei rmii + (7 ker mflj + Z) kei mai = 1,1 .^.

A bei ma^ - B ber mai + C kei maj - Z) ker nuii = 0. j

From these we obtain

i4 ber'ma^ + 5 bei' mttj + (7 ker'maj + Z) kei'ma1=0, "i .„^

A bei'ma^ - B ber'maj + C kei'ma^ - D ker'maj =0. J

Equations (60) and (61) determine the constants A, B, C, D. Their

values are found [Russell, Eighth Kelvin Lecture, 1916] to be

^= -maj ker'maj, 5 = mai kei'maj, C' = mai ber'maj,

D= -mttj bei'ma^ (62)

Thus q can be found at once from (59).

The following result may be verified : when {r-ai)/ai is not greater

than J, and mr is not greater than 2, the density q^ of the current at

distance r from the axis may be taken as given by

?. = ?.(l+'-!^V^^} (63)

SO that qr increases as r increases.

Russell has also found that if R denote effective resistance of a

length I of the hollow conductor, we have

^ ~ o TTT \
[^'^ (wwij) (ber mu^ kei'ma^ - kei rna^ hev'mao)

+ 2T (maj) (ber ma^ ker' mag - ker ma^ hev'ma^)

+ ^^^^ - r^(wiai) W{ma,) - F{ma,)lF,(ma.^l (64)

where S, T, V, Fj, W, W^ (and Z, Z^ below) are the functions defined

in 5 above, and

- 2S{ma{)S{im^) - 2T{ma,) T{ma.^ (65)

He has likewise given, for the part of the effective inductance for a
length I of this conductor due to magnetic induction in the inner con-

ductor, the equation

Zj = ~
. \^8ma^ (ker ma<^ ber'wag + bei ma.y kei'^wa.,)

+ 2T{ma^) (ker mu^ bei' ma^ - ber ma^ kei' ??««.>)

~~^-f'M«^)^(«^«,)-n^»»l)^,{m«2)] (66)
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If mc is not greater than 2 and {a^-a-^ja^ is not greater than J,

the effective resistance of a length I of the double conductor is given by

14. Two parallel wires. The case of two parallel wires, an outward

and a return conductor, is important, but its exact solution is a matter

of considerable difficulty.* But for a considerable range of practical

cases the following approximate solution is sufficient. Let first the

wires be of equal radius a, and their axes be at a distance c apart ; then

if c/a be great enough the current in each conductor may be regarded

as symmetrically distributed about the axis of the conductor according

to the law expressed in (24) above. In what follows the capacity

current is neglected. To find the self-inductance of the circuit per

unit length we have only to add to the magnetic induction through

the circuit the correction given by th« second term of the value of L
set forth in (31). The magnetic induction through the circuit is shown

by XIII. 16 below to be 4/x y^ log (c/a). Thus

Zi=4yU'l0g-+ "T/T— ( {^^)^ ^ a ma F{ma) ^ '

The resistance per unit length, for the two wires, is given by

«ar(m«)
^ 7rakF{ma) ^ '

For solid wires of radii a, 6, at distance c measured between their

axes, the formulae are

J ^ ,. c2 2juLZ(ma) 'I/ul Zmb
L,=2yu'l0g-y +— f^, (+-T-77-T^ "^ °ab ma V(ma) mh Vmh

(70)

1 p _ ^^^^0"^) mJF{mh)
'
~ 27rakF(m.a)

"^
2irhkV{mh)'

Formulae of correction given in the paper of Nicholson, cited above,

have been used at the Bureau of Standards at Washington for the

computation of the error involved in using these approximate formulae

for Z/j and R^. It was found that for two equal wires of radius 0"1 cm,
and a distance of 1 cm between the axes, the change of inductance

produced by a frequency of 10® was - 8-5 per cent., and that Nicholson's

correction reduced this by only 9 parts in 10000. t

In the same case the ratio of the virtual resistance to the steady

current resistance, which by the formula was 7 "56, was reduced to 7*55.

For very high frequencies and equal radii the formula

i: = jM'log^±^^^* (71)

* See a paper by Professor J. W. Nicholson, Phil. Maq. 19 (1909), also Note,

p. 284.

t Rosa and G rover, B.B.S. W. Vol. 8, No. 1.
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may be regarded as exact. It will be observed that when c = 2a, that is

when the wires are in contact, L^ is zero. The currents are now col-

lected in two infinitely thin filaments along the line of contact, so that

there is no magnetic induction enclosed by them.

16. A ring conductor of circular section. For the case of a ring

conductor of circular section we can only give results for the extreme

cases of very low and very high frequency. If the ring (of mean radius

a) be a tube bent into a circle, that is if the cross section is an annulus

of inner radius yo^ and outer radius p2, the self-inductance of the con-

ductor for uniformly distributed current (which can be found by

i!itegration of Maxwell's formula, VI. 18 (53)) is

+ P^Jl + gL) log "' - ''\ '[/':/ + ff
l

(72)

if terms of higher order than (pjaf and (pjaf are rejected.

This gives for a tube with infinitely thin walls

^=M0+S)'°g7-2} <^3>

For a solid ring of radius p in which an alternating current of infinite

frequency is flowing, and in which therefore the current is confined to

an infinitely thin stratum of the surface, L is approximately the self-

inductance. The value of ajp must however be so great that the differ-

ence of current densities between the maximum and minimum circles

may be neglected. [For steady currents, see XV. 22 (30).]

If such a ring conductor revolve uniformly about a diameter in a

uniform magnetic field, alternating currents following the simple

harmonic law of variation will be produced in it. If it revolve with

extremely great rapidity L will be given by (73). If there is no flow of

current from one coaxial filament to another, and the ring revolve very

slowly, the current will be distributed over the whole cross section so

that the current density is proportional to the distance of the filament

considered from the axis. In this case we have

X = 4«{(l4^:).og5-0.092g-J} (74)

16. Main consisting of two flat conducting strips with insulating

separator. We now consider the case of two coaxial cylindrical con-

ductors of equal thickness and of radii differing by a small fraction of

either radius, and so large that the influence of the curvature on the

current, etc., at any point may be neglected. This is the case of two
parallel infinitely long, infinitely broad, and equally thick plane strips

of conducting material, facing one another and containing between
them a stratum of uniform dielectric. We suppose one to carry the

outward current, the other to be the return conductor.

O.A.M, s
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If we neglect, as we have done hitherto, all condenser action, we get at

once the differential equation which holds in each strip by putting in

the seco'nd term on the left of (5) yo = co , so that we obtain

iS=*'^''^l (^^)

We must now regard any small step dr along r as a space step at right

angles to the plane faces of the strips, and so we may take r as the

distance of the point considered from a chosen plane of reference taken

parallel to these faces. We shall take as this plane of reference the

plane midway between the opposed faces of the two slabs.

If we write q = tie"'', where w is a function of r only, we have

so that (65) becomes ^ = i-Trjuikiriq = m-^^q,
|

if m^ = iirliikm. ]

It will be observed that m^^mH,
It will be convenient to take as the solution of (76)

^ = ^gm,(r-a)_^^g-m,(.-«)^
(77)

where A and B are constants to be determined by the conditions of the

problem.

We consider two points on one of the slabs, a point on the face opposed
to the other slab, and a point on the back of the slab. At the latter

point the magnetic field-intensity H, which, in the slab, is everywhere
parallel to the slab faces, and at right angles to the current, is zero,

while at the former point we have the condition

^-dF = J' (^^)

where P is, as before, the electromotive intensity at the point.

Differentiating with respect to r we get

But, if y as usual denote the total current,

Ha = 4:'7rfiy, (79)

and therefore __^ = 4^^|^^4^^^-^^^ ^gQ^

since everywhere the current is a simple harmonic function of the time.

Hence 47r;u g^ =^ (^ - ^) (81)
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Now at the point on the back of the slab we have, since there and at

all other outside points H = 0,

f=il=1'(-^«""-^-"'*)=« («2)

17. The complete solution and its realization. Equations (81) and

(82) give for the constants the values

J.
_4'7rfik e*'* dy .

Now, returning to the other face of the slab, we have for N at the

point the equation

Hdr+\ Hdr= S7riJ.'ay-f\ Hdr.
+a J -a J -a

(83)

Thus f=s.^'a^+l^ f d. (84)

and P„ =8xM'«^+f"""^f ir+?-«. (85)
01 J -a ot r

With this we get for the corresponding point on the face of the opposite

slab
f -(''+«)3^ a „

^-«=1.„ ^i'^^'-f'
<««)

and therefore P„-P_„ = 87r/>t'a^+ ?^-^^^, (87)
at fC

But, clearly P_a = -Pa and q_a = -
qa, so that we obtain

^«=*-'''«w+l
^««>

Now, from (77), ^ = \(Ai-B).

Using the values of A, B, from (83), we get instead of (88)

The quantity in brackets on the right is partly real, partly imaginary,

since m^ is complex. The equation may of course be written

J^
^" = ^%^"^^+-^?^^^i:^0^ ^^^^

But mi = mv/i = m(l +t)/\/2. Using this value of ^Wj and reducing,

we get

1 e'»'^ + e-'»'^ ^ sinh(v/2m/)) - sin {JJDib) - i {sinh (n/2w/>) + sin(v/2ffl6)}

Wj e""* - er^^"
~

v/2m(cosh v/2/»6 - cos v/2wi/>)
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and therefore

""I ^^''"^V nk cosh (v/2m&)- cos (^/2m^^)^a/

r- -— sinh (sl2mh) + sin lj2mh) ,(.i \

cosh (\/2??iO) - cos (\/2wz6)

The effective resistance and inductance per unit length for each slab

are therefore

, sinh {s]%nh) + sin {J^mh)
n, = s/2^^nk

eosh(s/2m/>)-cos(v/2m5)

'

r , , I^TTu , sinh (J2mh) - sin (sf2mb)
L, = 4.7ru a -f a /

—

f-k ^-—^^ —^— .

V nk cosh(j2mb)- cos (s/2mb) J

(92)

18. Particular cases : high frequency and low frequency. The chief

interest of the problem lies in the comparison of the values of R^, L^
for very slow and very rapid alternations. Taking jul' = 1 we find by
expansion of the exponentials in (80) that when n is small, the resistance

and inductance for a length I of the slab are given by

^hy + L,-:^ =^y + ml(^A'7ra + ^7ruli^y, (93)

so that
^^i^M' LL = lU7ra + '^7rjixh\ (94)

If the strips be very close so that a= 0, we have

P = TT y + ^iniriuLhly, (95)

and the resistance is the same as before. The self-inductance is ^Tr/mbl

for a strip of unit breadth, so that for a strip of breadth 27rr it is

A = |M^ (96)

which is half the result obtainable by direct calculation, as in XIII. 7

below, for steady currents in two close coaxial cylinders at a distance

apart small in comparison with their radii. This is as it should be,

since there the self-inductance would be found for what in the present

reckoning is a length 21, viz., a length I in the outgoing, and an equal

length in the return strip.

Now let n be very great. Then

(e'".6 + e-'«.^)/(e"'.* _ e'""''') = (1 + e-2'"'')/(l - e'^""^^) = 1,

so that for this case

^'ly+^-i ^ = 1 >j2ir^nky + in](i7ra +^^)

V

(97)
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Thus ll^^iJ2'7rfjLnk, I

^'

' (98)

L,=/ (--/-S^)

i

We conclude that as n is increased the resistance is increased without

limit, while L^ diminishes towards the limit 4x0^. The result shows

moreover that the thickness of the strip which would give the same

resistance is l/j27r/uLnk, which agrees with the result obtained at p. 270

above. This may be taken as the effective thickness of the conductor.

It diminishes as Jn increases.

When the thickness is great so that b may be regarded as infinite,

we have by (77), since -47rg = 9H/dr,

= a(l + Oe-»<'+'>('-"\

if we denote J2'7rixnk by a. This may be written

q = v/2ayc -«('-«) [cos {ix - a (r - «)} + i sin
{ Jtt

- (((/• - a)}]. (99)

19. General dynamical theory of effects of constraints. Lord Rayleigh*

showed that the restriction of a rapidly varying current to the outer

strata of the conductor is a consequence of a general dynamical principle

which regulates the effects of constraints on the motion of a material

system. This principle is embodied in two general theorems due to

Thomson and Bertrand respectively. Thomson's theorem asserts

that if any material system given at rest be suddenly set in motion

with any specified velocities (possible under the kinematical conditions

of the system) imposed on certain parts of the system, the other parts

being left free to take such velocities as result from the connections,

the resulting motion is that for which the kinetic energy has the smallest

possible value consistent with fulfilment of the prescribed velocity

conditions. Bertrand's theorem, on the other hand, asserts that if the

impulses applied to certain parts of the system be specified, the resulting

motion is that for which the kinetic energy has the greatest value con-

sistent with the prescribed condition as to impulses.

Taking any case in which we consider a system impulsively set into

motion with a single specified velocity, or with a specified impulse of

the same type. Let $ denote the impulsive force, then the impulse is

the time-integral

j:
^dt = ^

and the corresponding velocity generated is (p. The resulting kinetic

energy T is ^0^.

* Phil. Mag. May 1886.
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According to Thomson's theorem the introduction of any constraint

limiting the freedom of the- system causes an increase of T if be given.

On the other hand, according to Bertrand's theorem, if $i be given, the

effect of the constraint will be to diminish T, In both cases the ratio

2 Tl(p^, or $/0, is increased, for in the former case ^ is increased, and in

the latter (p is diminished. Thus the effect of constraint is in each

case to increase the generalized inertia-coefhcient corresponding to the

coordinate in question.

Consider now. a system in which a force $i of type corresponding to

the coordinate 0^, and varying according to a simple harmonic function

of the time, is applied to the system. Suppose the system to have no

potential energy, and to be subject to dissipative forces given (according

to the rule in VIII. 3 above) by a dissipation function F, which is a

homogeneous quadratic function of the generalized velocities of the

system. Let, further, the remaining coordinates Kp^, (ps, ••• (pm of the

system be so chosen that no product of them enters into the expressions

of T and F,

:;:l

^= iKi0i^ + «229^2^ + ---+2ai20i02 + 2«i30i02 + ---)

F = i (&n01^ + ^2202^ + • • • + 2fei20i02 + 26i301^2 +

But by Lagrange's equations

and hence by (91)

«1101 + ^1202 + ^13^3 + • • • + ^1101 + &12V^2 + • • • = ^v]

^12"^1 + ^2202 + ^12^1 + ^2202 = ^'

^1301 + ^33^3 + ^1301 + ^3303= ^•

(100)

(101)

Let now the whole motion be simple harmonic in the period of the

force $1. Representing the latter by e'"' we get instead of (92)

(mai2 + ^12)01 + (^*^22 + ^22)9^2 = 0,

(inaiQ + hiQ)(l>i + {ina^Q + 633)03 = 0-

,.(102)

The second and following equations of (102) give (p2, ^3, etc., in terms

of 01' ^^^ these values substituted in the first equation of (102) yield

^1

01 ma„, + 600 inaoo + boo
,..(103)

20. Effective "resistance," and "inertia" (or "inductance") of

system. Since to a constant factor ^^ is represented by e"*' it is clear

that {dF/d(j))/(j) is the real part of $/0i, and therefore corresponds to the
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diHsipative force. Calling this quantity R' and the other inU y we have
instead of (103)

^i = (R' +inL')<Pi (104)

R' may be called the resistance of the system, and L' the generalized

inertia-coefficient, or what corresponds to the self-inductance in the

electrical theory.

To calculate R' we have to find the real parts of the successive terms

in (94). Now

real part of <?^^1^±^' = real part ot^^2^fib,,-irui^

^ ^12* _ ,^2 («A- ^22^12)'^

^22 ^22(^22^ + »i^«22^)
'

and similarly the real parts of the other terms may be found. Hence

^ ^'^-hK^'' hhJ^TTi^- ^'^'^

It is clear that each term of the second series in this expression

increases as n increases, that is, as the frequency increases. It follows

that the value of R' increases with the frequency. When n is very

great R' approaches the limiting value

When n is small R' is approximately equal to the first two terms in

(105), and is an absolute minimum for steady and for continuous

non-periodic motions.

The imaginary part of (103) is easily found to be

m
r"~6'«</"'6'%(6„^+nV)r

i

^'=«..-|g.|5|v:^ (106)

Each term of the second series in (106) is positive, and continually

diminishes as w increases. Hence as n increases L' approaches more
and more nearly the value

which is independent of dissipative terms.

In these results we have, as Lord Rayleigh pointed out, an analogue
to Thomson's theorem. In the absence of constraints, R^ is great and L^
a minimum when the vibrations are very rapid, and on the other hand
Li is great and Rj^ a minimum when the vibrations are very slow.

21. Electrical problems. Primary and secondary circuits. The
application of these results to electrical problems is obvious. Let us
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take the case, already treated in VIII. 8 above, of a primary and secon-

dary circuit. If Ri, L^ be the resistance and self-induction of the

primary, Lg, R2 those of the secondary, and M the mutual inductance,

we have

Then, for the resultant resistance and self-inductance of the primary,

"2 ^ '" -^2
(107)

It follows that if the alternations be very slow, the secondary has no

effect on the primary. On the other hand, if they are very rapid, R'

approaches the limit R^ + M^RJLJ^, and L' the limit L^ - M'^JL^.

The resultant resistance and self-inductance of the secondary will be

given in the same way. An inductive electromotive force of frequency

w/27r acts in the secondary. The reaction of the primary will therefore

give for the secondary

R^=Ro+ ^

R^^ + n^L,^'
I

^^~^i R,^ + n%^' )

as given in VIII. 21 above.

22. System of primary, secondary, tertiary, etc., circuits. Another

interesting application given by Lord Rayleigh is to a series of con-

ductors forming primary, secondary, tertiary, etc., circuits, but such

that no mutual induction exists except between the primary and the

secondary, the secondary and the tertiary, etc. Taking, for example,

four circuits in the series, the current in the fourth is due to the inductive

action of the third. The reaction on the third causes the latter to have

a resultant resistance R'^ and self-inductance L'.^, at once calculable

from (108) by substituting for Rj^, L^, R^, L^, M, the quantities R^,

Xg, R^, Z4, M34. If i^'g, Z'g arc used as the resistance and self-induct-

ance of the third circuit, the fourth circuit may be ignored. Then the

resultant resistance and self-inductance of the second circuit due to

the action of the third can be found in the same way, and (the third

then being also ignored) used to obtain those of the primary circuit.

The effect on the primary is to increase its effective resistance and

diminish its effective self-inductance in a degree which is greater the

greater the frequency of alternation.

It can be shown that the phases of the currents in the different circuits

of the series depend in the case of very rapid alternation on the induction

coefficients only, and differ successively by half a period.
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A very important example, which will be given later in connection

with the measurement of activity in alternating circuits, is that of two

conductors in parallel, and a related one, which may be worked

out easily by the reader from the general formulae given above, is the

case already treated, VIII. 22, of a number of conductors joining two

points in parallel, but so arranged as not to exert on one another any
mutual induction.

23. Numerical example of use of tables. Three numerical tables of

the values of certain functions are here appended. Tables of ber x,

bei Xy ker x, kei x, have been compiled by Mr. Harold G. Savidge, and
will be found in Russell's Alternating Currents, vol. i. chap. vii.

Tables of bera?, bei a:, ber'a; and bei'x have been computed to nine

sijrnificant figures, and are given in the British Association Report, 1912.

The following numerical example of the utility of the tables here

appended is given by Russell. Two parallel cylindrical wires of radius

0' 125 cm at a distance (between the axes) apart 15 cm are used as

leads; The material is high conductivity annealed copper for which

/; = 5-811 X 10"^. For this case at a frequency of 1000 m = 6*774 and
wia = 0-8'168. The table on p. 283 gives

'^W^
1.003, ±« = 0-9987.

2 F{7na) maV{ma)

Hence for unit length

R^ = 1 -OOSi^; Li = 9-9396 + 0-9987,

where R is the resistance of unit length for a steady current.

For a frequency of 500,000, ma = 18*93 and

R^ = 6-950i?, Zi = 9-9396 + 0- 1 492.

The results for this case, but with wires of different materials, are as

given in the following table

:

RJR[^f

r^t

Copper. Manganin. Iron (/Lt=100),

= 1000 1-003 1-000 1-385

= 500,000 6-950 1-476 25-55

= 1000 0-9987 1-0000 81-39

'=500,000 0-1492 0-7726 3-593
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TABLES OF THE FUNCTIONS
X,(x), V,{x), 8{x), T{x).

[Computed by Harold G. Savidge.]

X^{x) = ker^x 4- kei%, V^{x) = ker'^a; + keV^x,

S{x) = ber'a; ker'ic + bei'x kei'a:, T{x) = hei'x ker'x - ber'a; kei'a;.

a: A'i(x) V,{x) Six) T{x)

o 00 00 -0-5
I 3-272 X IQ-l 6-066 X lo-i 2-186 X lo-i -3-235x10-1
2 4-270 X IO~2 5-968 X 10-2 2-541 X lo-i 1-063 X 10-2

3 7-106 X IO"3 8-933 X io~^ 4-733 XIO-2 1-634 X lo-i

4 1-314 X 10-3 1-563 X 10-3 -1-104 X lo-i 5-949 X 10-2

5 2-577 X lo"* 2-962 X IO-* -6-254 X 10-2 -7-801 X 10-2

6 5-250 X lO"^ 5-901 X 10-^ 5-501 X 10-2
.

-6-263 X IO"2

7 1-099 X 10-5 1-214 X 10-5 6-o86 X 10-2 3-741 X 10-2

8 2-344 X IO~^ 2-560 X IO-* -2-347 X 10-2 5-793 X 10-2

9 5-078 X IO-' 4-491 X IO-' -5-421 X 10-2 - 1-217 X 10-2

ID 1-113 X IO-' 1-195 X io~' 2-910 X IO-' -4-992 X 10-2

II 2-464 X IO-* 2-628 X IO-* 4-521 X 10-2 -4-684 X 10-3

12 5-500 X 10-9 5-833 xio-» 1-087 X 10-2 4-022 X 10-2

13 1-236 X 10-8 1-305 X 10-9 -3-506 X 10-2 1-582 X 10-2

14 2-792 X lo-i" 2-936 X 10-1° -1-967 X 10-2 -2-981 X 10-2

15 6-341 X 10-11 6-646 X 10-11 2-456 X 10-2 -2-254 X 10-2

i6 1-446 X 10-11 1-512 X 10-11 2-451 X 10-2 1-939 XIO-2
17 3-311 X 10-12 3-452 X 10-12 - 1-438 X 10-2 2-566 X 10-2

i8 7-608 X IO-13 7-912 X lo-i^ -2-607 X 10-2 -9-593x10-3
19 1-753 XIO-13 1-820 XIO-13 5-085 X 10-3 -2-582 X 10-2

20 4-051 X lo-i* 4-J97 X lo-i* 2-498 X 10-2 9-118 X IO-*

21 9-383 XIO-15 9-704 X IO-15 2-883 X IO-' 2-363 XIO-2
22 2-178 X lo-i* 2-250 X lo-i^ -2-185 X 10-2 6-261 X 10-3

23 5-068 X IO-16 5-226 X lo-i* -9-195 XIO-3 - 1-970 X 10-2

24 1-181 X lo-i^' 1-216 X lo-i* 1-726 X 10-2 -1-166 X 10-2

25 2-757 X lo-i' 2-836 X lo-i' 1-366 X 10-2 1-461 X 10-2

26 6-447 X IO-18 6-625 X lo-i^ - 1-182 X 10-2 1-517 X 10-2

27 1-510 X IO-18 1-550 X lo-i® -1-621 X 10-2 -8-948 X IO-'

28 3-540 X IO-19 3-631 X IO-19 6-073 X 10-3 - 1-679 X IO~2

29 8-312 X 10-2° 8-517 X IO-2® 1-693 X 10-2 3-253 X 10-3

30 1-954 X lo"^" 2-000 X IO-20 -3-196 X IO-* 1-666 X 10-2

00
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TABLES OF FUNCTIONS USED IN CALCULATING RESISTANCES
AND INDUCTANCES OF CONDUCTORS CARRYING RAPIDLY
ALTERNATING CURRENTS.

[Computed by Bureau of Standards, Washington.]

X
X W{:x

2 V(x)

4 W{x)

X V{x)
X

X W{x)
2 V{x)

4 W(x)

X V(x)
X

xW(x)
2 V{X)

4 W{x)
X V{x)

CO
•I

•1

•3

•4

I 00000
I 00000
I -oooo I

1-00004
1-00013

I -00000
I -00000
I -00000

0-99998
0-99993

4-0

41
4-2

4-3

4-4

1-67787
1-71516
1-75233
1-78933
1-82614

0-68632
0-67135
0-65677
0-64262
0-62890

12-5

130
13-5
14-0

14-5

467993
4-85631
5-03272
520915
538560

0-22567
0-21703
0-20903
0-20160
0-19468

0-5
•6

•7

•8

•9

1-00032
1-00067
1-00124
I -002 1

2

1.00340

0-99984
0-99966
0-99937
0-99894
0-99830

4-5
4-6

4-7
4-8

4-9

1-86275
I -899 1

4

1-93533
1-97131
2-00710

0-61563
0-60281

059044
0-57852
056703

150
16-0

17-0
18-0

190

5-56208
5-91509
6-26817
6-62129
6-97446

0-18822
0-17649
0-16614
0-15694
0-14870

lO
II
1-2

1-3

1-4

I 005 19
1-00758
IOIO7I
1-01470
I -01 969

0-99741
0-99621
0-99465
0-99266
0-99017

50
5-2

5-4

5-8

2-04272
2-II353
2-18389
2-25393
2-32380

0-55597
053506
0-51566
0-49764
0-48086

20-0
21-0

220
230
24-0

7-32767
7-68091
8-03418
8-38748

874079

0-14128
0-13456
0-12846
0-12288

011777

1-5

1-6

\l
1-9

1-02582
1-03323
1-04205
1-05240
1-06440

0-9871

1

0-98342
0-97904
0-97390
096795

6-0

6-2

6-4
6-6

6-8

2-39359
2-46338
2-53321
2-60313
2-67312

0-46521
0-45056
0-43682
0-42389
0-41171

25-0
260
28-0

300
320

909412
9-44748
10-15422
IO-86IOI
11-56785

011307
0-10872
0-10096
009424
0-08835

2-0

2-1

2-2

2-3

2-4

1-07816
I -09375
I-III26
1-13069
1-15207

0-96113
0-95343
0-94482
0-93527
0-92482

70
7-2

7-4
7-6

7-8

2-74319
2-81334
2-88355
2-95380
3-02411

0-40021
0-38933
0-37902
036923
0-35992

34-0
36-0
38-0

400
42-0

12-27471
12-98160
13-68852

1439545
15-10240

0-08316
007854
0-07441
0-07069
0-06733

2-5

2-6

\l
2-9

1-17538
1-20056
1-22753
1-25620
1-28644

0-91347
0-90126
0-88825
0-87451
0-86012

8-0

8-2

8-4
8-6

8-8

309445
3-16480
3-23518
3-30557
3-37597

0-35107
0-34263
0-33460
0-32692
0-31958

44-0
460
48-0
50-0
60-0

15-80936
16-51634
17-22333
17-93032
21-46541

0-06427
0-06148
0-05892
0-05656
0-04713

30
31
3-2

3-3

3-4

I -3 1809
1-35102
1-38504
I -41999
1-45570

0-84517
0-82975
0-81397
0-79794
0-78x75

90
9-2

9-4
9-6
9-8

3-44638
3-51680
3-58723
3-65766
3-72812

0-31257
0-305.85
0-29941
0-29324
0-28731

70-0
8o-o
90-0
loo-o

00

25 00063
28-53593
32-07127
3560666

00

0-04040
0-03535
0-03142
0-02828

3-5
3-6

37
3-8

3-9

1-49202
1-52879
1-56587
I -603 1

4

1-64051

0-76550
0-74929
0-73320
0-71729
0-70165

100
10-5

II-O

II-5

I2-0

3-79857
3-97477
4-15100
4-32727
450358

0-28162
0-26832
0-25622
0-24516
0-23501
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VALUE OF THE ARGUMENT m FOR COPPER WIRES OF
CONDUCTIVITY 5-811 x lo"^ e.g.s. UNITS.

[Bureau of Standards, Washington.]

(' High conductivity annealed copper' at 20° C.)

m^— ^irfxnk - 87ryx 5 '8 1 1 x 1o~ ^. /= frequency.

./ m / in / m

25 i-oyi 6,000 16-59 200,000 95-79
50 1-515 7,000 17-92 250,000 107-1

100 2-142 8,000 19-16 300,000 117-3

200 3.029 9,000 20-32 333.333 123-7

300 3710 10,000 21-42 375.000 131-2

400 4-284 15,000 26-23 428,570 140-2

500 4-790 20,000 30-29 500,000 151-5

600 5-247 30,000 37-10 600,000 165.9

700 5.667 40,000 42-84 700,000 179-2
800 6-058 50,000 47-90 750,000 185-5

900 6.426 60,000 52-47 800,000 191-6

1,000 6-774 70,000 56-67 900,000 203-2

2,000 9-579 80,000 60-58 1,000,000 214-2

3,000 11-73 90,000 64-26 1,500,000 262-3

4,000 13-55 100,000 67-74 3,000,000 37I-0

5,000 15-15 150,000 82-96 6,000,000 524-7

Note.—A new discussion of the derivation of the alternating-current resistance

and inductance of conductors has been given by Mr. Harvey L. Curtis, of the

Bureau of Standards, Washington (B.B.S.W. No. 374, April 7, 1920). This

includes a special treatment of parallel conductors at different distances apart.



CHAPTER X.

THE MEASUREMENT OF ACTIVITY IN ELECTRIC CIRCUITS.

1. Activity in circuit of generator and motor. When a circuit in

which a current of electricity is flowing contains a motor, or machine

by which work is done in virtue of electromagnetic action, the whole

electrical work done in the circuit consists, as was first shown by Joule,

of two parts, work spent in heat in the generator and motor and in the

conductors connecting them, and work done in moving the motor

against external resistance. We consider here in the first place a system

in which the current, y, is constant and neglect loss of energy due to

local currents, etc., in the motor. Information regarding practical

motors and their action must be sought in the treatises on Dynamo-
electric Machinery and on Transmission of Power hy Electricity.

The total rate at which electrical energy is given out in the circuit is

Ey watts, where E is the total electromotive force of the generator

in volts, and y is the number of amperes of current flowing. The rate

at which work is spent in heat is in watts, by Joule's law, y^R, where

R is the total resistance in circuit in ohms ; hence, if we call W the rate

at which work is done in the motor, we have,

Ey=^y^R + W (1)

We may write this equation in the form,

.-"--f
;

«
which shows that the current flowing is equal to that which would flow

in the circuit if, the resistance remaining the same, the motor were held

at rest, and the electromotive force diminished by an amount equal to

Wjy. This is what is called the haxik electromotive force of the motor,

and is due to the action of the motor in setting up an electromotive

force tending to send a current through the circuit in the opposite direc-

tion to that of the current by which the motor is driven. We shall

denote the back electromotive force by E^. Hence equation (2)

becomes, -n jp

r=^> (3)

and the rate at which work is spent in driving the motor is E^y.

285
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To determine E we have simply to measure with a potential galvano-

meter or voltmeter, the difference of potential between the two terminals

of the generator. Calling this F, and R^ the effective resistance of the

generator, we have plainly,

E=V + yR, (4)

Again, since y and also the total resistance R in the circuit can be

found by measurement, we find by (93)

Ei=E-yR, (5)

where all the quantities on the right-hand side are known.

2. Electrical efficiency of arrangement of generator and motor.

The ratio or E^y, the electrical energy spent per unit of time in the

circuit otherwise than in heating the conductors, to the whole electrical

energy Ey spent in the circuit per unit of time, that is the ratio of E^

to E, we may call the electrical efficiency of the arrangement. Denoting

this efficiency by e, we find, by equation (4),

e=5=l-5j =i_^i (6)

Hence the smaller y is made, that is, the slower the energy is given out,

the value of the efficiency of the arrangement is the more nearly equal

to unity, the value of the efficiency of an arrangement in which the work
is done in the motor against external resistance is exactly equal to the

whole electrical energy given out in the circuit.

When energy is spent at the maximum rate in working the motor,

J^yj has its greatest value. But by (5)

E^y=Ey-y^R=W,

from which it will be seen that the activity E^y in the motor does not

include the activity spent in heating its coils. This equation may be

written,

ym-Ey + W = 0,

a quadratic of which the solution is.

y
E±{E^-iRW^

(7)
2R

Now in order that these values of y may be real, 4:RW cannot be greater

than E^. Hence the greatest value W can have is E^/iR. When W
has this maximum value, y is equal to E/2R, and therefore E^ equal to

E/2. Hence the electrical efficiency is ^. It is to be very carefully

observed that although in this case the arrangement is that of greatest

electrical activity, it is not that of greatest electrical efficiency, as it has

only about one-half the efficiency of one in which energy is given out

at a very slow rate. The case is exactly analogous to that of a battery

arranged so as to give maximum current through a given external

resistance, which is far from being an economical or efficient arrangement.
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All that has been stated above is applicable to the case of a motor

fed by any kind of generator whatever. The generator employed

however is generally some form of dynamo- or magneto-electric machine

driven by an external motor, such as a steam- or gas-engine or a water-

wliecl, and a few of the results obtained below apply only to such cases,

whicli will be indicated as they occur. It must be carefully observed

that the efficiency considered above is only the efTiciency of the arrange-

ment of generator and motor. It is not at all the absolute efficiency

of j)roduction of the electrical power. For that we shall have to con-

sider a series of other efficiencies and combine them to obtain the

final result. There is the efficiency which involves the ratio of the

power production in the prime mover to the rate of consumption of

the energy value of the fuel, whatever it may be, spent in driving the

engine, the efficiency of the utilization of this power in driving the

electrical generator, and so on.

3. Case when generator and motor are similar machines. When the

generator and motor are exactly similar machines, and the same current

passes through both, we shall assume that the ratio of Ei to E is that of

nAfiy) to n'Af(y),

where n and n' are the speeds of the machines, A a constant depending

on the form and disposition of the magnets, and/(y) a function of the

current. Hence in this case the efficiency is measured simply by the

ratio of the speed of the motor to that of the dynamo. The more nearly

therefore the speed of the motor approaches to that of the generator,

the greater is the efficiency. It is to be observed however that two
machines identically alike will not in practice be perfectly similar in

their action, even with the same currents flowing in their armatures

and field-magnet coils. The armature currents tend to weaken the

tield in the generator, and to strengthen the field in the motor. There
is also alternation of currents in sections of the armatures, which, going

on at different rates, must make/(y) different for the two machines.

In general, the higher the speed at which the motor is run, the greater

is the electrical efficiency of any arrangement, for it is obvious that the

liigher the speed the more nearly does E^ approach to E, and therefore

the values of EJE, the measure of efficiency, to unity.

4. Electrical efficiency increased by increasing e.m.f. in circuit.

For a constant difference E - E^, the ratio of the energy spent in heating

the conductors by the current to the whole energy expended in the

circuit, may be reduced by increasing the electromotive force E of the
ircuit. If E be increased to nE while E^ is changed to E\, so that

E -E\ = E - E-^, the electrical efficiency, as will be shown immediately,

raised to {n -l)/n + EJnE, or {n - l)/n + 1/n^'' of the former efficiency.

early, as n is increased this approaches more and more nearly to unity.

The energy spent in heat is y^R, ot {E - Ei)^/Rj and the ratio of this

to Ey is yR/E. But yR is equal to the constant difference E-E^,
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hence the ratio is (^ - E-^)/E, and this becomes smaller as E is increased.

A greater efficiency is therefore obtained by using high j^otentials

than by using low potentials. Hence a greater electrical efficiency

is realized, with a given magneto- or dynamo-electric machine used

as generator and a given motor, when both generator and motor are

run at higher speeds. Consequently the generator should be run as

fast as possible, and the motor loaded lightly, or the speed with which

the working resistance is overcome reduced by gearing between it and

the motor.

When high potentials are obtained by the use of machines wound with

fine wire, or by using as generator a battery of a large number of cells

joined in series to drive a high potential motor, the gain of electro-

motive force is accompanied by an increase of resistance in the circuit.

But if we suppose the speed of the motor to be so regulated that the

difference between the total electromotive force in the circuit and the

back electromotive force of the motor remains the same in the different

cases, it is easy to show that the electrical efficiency of the arrangement

is greater for high electromotive forces than for low. If, as supposed,

E - El remains constant, while E is changed to nE, we have for the total

activity of the motor nEy- [E - E-j)y. Dividing this by nEy we get

for the electrical efficiency,

-'*-l+l|>
(6')

n n E

As n is made greater and greater, the first term on the right becomes

more and more nearly equal to unity, and the last term to zero. Hence,

on the supposition made, the efficiency is increased by increasing the

working electromotive forces. Taking as a particular case w = 2, we
see that the efficiency is \ together with one-half of the former efficiency

;

if n = 4, the efficiency is | together with one-fourth of the former effici-

ency, and so on for other values of n. This result holds for any case

whatever in which the condition that E-E^ should remain constant

is fulfilled ; and hence it is independent of any change that may have

been made in the resistance of the* generator or motor in order to

obtain the higher electromotive force nE. For example, it is plain

that no sensible change in the actual rate of loss by heating of the con-

ductors by the current will be produced by increasing the resistances

of the generator and motor, if these be very small in comparison with the

remainder of the resistance in circuit ; as, since E - E^ remains constant

and the resistance is practically the same as before, the current strength

will not be perceptibly altered. The ratio, however, of the activity

wasted in heating to the total activity will be only 1/w^^'' of what it was
before. In the opposite extreme case, in which the generator and motor

have practically all the resistance in circuit, the current, y{ = {E - Ej)/R),

is diminished in the ratio in which the resistance is increased ; and the

actual rate of loss by heat according to Joule's law, {E - E^^jR, is
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diminished in the same ratio, so that, as in the former case, its ratio

to the total activity nEy is I/m*^'' of what it was for the electromotive

force E. We see, therefore, that hero also the efficiency must be the

same in both cases.

We liave called E^jE the electrical efficiency of the arrangement, but

this is not to be confounded with the efficiency of the motor itself.

The activity Eiy includes the wasted activity, or rate at which work is

done against frictional resistances in the motor itself, and in the gearing

which connects it with its load, as well as the useful activity or rate at

which it performs useful work. Hence, although the electrical efficiency

of the arrangement bo very great, it does not follow that a com-
paratively large amount of the energy given to the motor is usefully

expended ; that will depend on circumstances. Hence we define

the efficiency of a motor at any given speed as the ratio of the useful

activity to the whole activity, taking as the latter the total rate at

which electrical energy is expended in the motor ; that is, E^y + y^Ri,
or, which is the same, Vy, where V is the difference of potential between

the terminals of the motor. Accordingly, if A be the useful activity,

we have for the efficiency of the motor the ratio A/Vy. We may call

this the working efficiency of the motor.

5. Measurement of working efficiency of motor. To determine this

ratio in any particular case the motor is run at the required speed, V
is measured with a potential galvanometer, and y with a current galvano-

meter, and their product taken, or Vy is determined with some form of

electrical activity-meter, while A is determined by means of a suitable

ergometer. A very convenient and accurate friction ergometer may be

formed by passing a cord once completely round the pulley of the motor,

and hanging a weight on the downward end, while the other is made to

pull on a spiral spring fixed at its upper end and provided with an index

to show its extension. The weight is adjusted so that the motor runs

at the required speed, while wasting all its work in overcoming the

friction of the cord, and the extension of the spring is noted, and the

corresponding pull found in the same units of force as those used in

estimating the downward pull due to the weight. Let the weight

used in any experiment be taken in grammes, and be denoted by w,

and let w' be the number of grammes required to stretch the spring by
gravity to the same amount, then the total force overcome is in dynes
{w-w')g, where g is the acceleration, in centimetres per second per

second, produced by gravity at the place of experiment (at London
<7 = 981-17 nearly). If n be the number of revolutions per second, and

^e the circumference in cm of the pulley at the part touched by the rope,

I^Jftie speed with which this force is overcome is nc, and therefore the

activity in ergs per second is nc{w-w')g. If A is reckoned in watts,

we have the equation,

A=^^nc{w-w)g (8)
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If w-w' be taken in pounds, and c in feet, and n be the number of

revolutions per minute, the activity in horse-power is given by

^ = 33Joo'^('*'-'"'>'
(^'

and in watts approximately by

A = '022Qnc{w-w') (10)

6. Generator charging storage battery. We have now considered

cases in which electrical energy is transformed into mechanical work

by means of motors working by electromagnetic action, and have seen

that the whole electrical activity Ey in the circuit is equal to the useful

activity of the motor together with the unavailable part spent in heating

the conductors in circuit, and in overcoming the frictional resistances

opposing the motion of the motor. Part of the electrical energy

developed by a generator may however be spent in effecting chemical

decompositions in electrolytic cells placed in the circuit, as, for example,

in charging a secondary battery or " accumulator." Each cell in which

electrolytic action takes place, so that the result is chemical separation

at the plates of the constituents of the solution acted on, opposes a

counter electromotive force to that causing the current, and the work
done per second in each cell, over and above that spent in heat according

to Joule's law, is equal to the product of this counter electromotive

force into the strength of the current. In most cases the counter

electromotive force exceeds the electromotive force required to effect

the chemical decompositions, and the energy corresponding to the

difference of electromotive force appears in the form of what has been

called local heat in the electrolytic cells.

In the case of a secondary battery charged by the current from an

electrical generator, which is the only case we shall here consider, the

activity spent in the battery while it is being charged is equal to the

product of the difference of potential existing between the terminals

of the- battery while the current is flowing, multiplied by the strength

of the current. Let V be this difference of potential in volts, and y
the current strength in amperes, then Vy joules is the whole work per

unit of time spent in the battery. The whole activity spent in the

circuit is Ey, or Vy + y^R, where E is the total electromotive force of

the generator, and R is the resistance of the generator and the wires

connecting it with the secondary. Again, if E^ volts be the electro-

motive force of the secondary battery, which may be measured by
removing the charging battery for an instant and applying a potential

galvanometer to the terminals of the secondary, the activity actually

spent in charging the battery may be taken as E^y watts. Hence the

ratio of the activity spent in charging the battery to the whole activity

in the circuit is EJ{V + Ry) or E-^^jE, and the activity wasted in heating

the conductors in circuit is {E - E-^y. This ratio EJE is the same as
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tliat found above in the case of a generator and a motor, and may be

called as before the electrical efficiency of the arrangement.

7. Arrangement of maximum electrical efficiency. Effect of increased

e.m.f. in circuit. Hence, in order that as nearly as j>ossible the whole

electrical energy given out in the circuit may be spent in charging the

battery, as many cells should be placed in circuit as suffice nearly to

balance tlie electromotive force E of the generator, that is, the charging

should be made to proceed as slowly as possible. In practice, however,

a very slow rate of charging is not economical, as the work spent in

driving the generator, if a dynamo- or magneto-electric machine, against

frictional resistances might be comparable with or even greater than

the useful work done in the circuit ; and if the speed of the generator

slackened for a little the battery would tend to discharge through it.

As in the case of the motor the electrical efficiency of the arrangement

can be increased l)y increasing E and Ei, so that E - E^'m maintained

constant. E may, in the present case, be increased by running the

generator faster, or by using a machine adapted to give higher potentials.

As before, if E be increased to nE, while E^ is changed to E' so that

nE - E' = E - E^, the electrical efficiency becomes {n -l)/n + EJnE
as in (7) above.

8. Measurement of energy spent in charging. The electromotive

force of a Faure or storage cell is rather over 2 volts when fully charged,

but is considerably less when nearly discharged. When the cell is

placed in the charging circuit, the counter electromotive force which it

gives rises quickly to a little less than the full value, and thereafter

gradually increases, while the charging current falls in strength. In

order to measure, therefore, the whole energy spent in charging a

secondary battery, we must either use some form of integrating energy-

meter which gives accurate results, or measure, at short intervals of

time, V with a potential galvanometer, and y with a current galvano-

meter })laced permanently in the circuit. After the battery has been

charged, the total number of joules spent is obtained by multiplying

each value of Vy by the number of seconds between the instant at which

the corresponding readings were taken and that at which the next pair

of readings were taken, and adding all the results. Or, more exactly,

values V and y are obtained for each interval by finding the arithmetic

means of the values of V and of y at the beginning and end of each

interval, and taking the product of these two means as the value of the

activity for that interval. Each product is multiplied by the number
of seconds in the corresponding interval, and the sum of the products

,is the whole energy spent. The integral work in joules having been thus

estimated, the efficiency of the battery may be obtained by finding in

he same manner the total number of joules given out in the external

orking circuit while the battery is discharging. The ratio of the

useful work thus obtained to the whole work spent in charging is the

efficiency of the battery. In discharging in an electric light circuit.
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the greatest economy is obtained when the resistance of the working part

of the circuit is very great in comparison with that of the battery and
main conductors. Neglecting the latter part of the resistance, we see

that, if a large number of lamps are arranged in parallel, a large

number of cells should also be joined in parallel, so that, while the

requisite difference of potential is obtained, the resistance of the battery

is still small in comparison with that of the external circuit.

As regards the measurement of energy spent in electric light circuits,

in which direct currents are flowing, we have already sufficiently indi-

cated above how this may be done. To find the activity, or work
spent per unit of time, in any part of a circuit, we have only to find the

difference of potential, F, in volts between its extremities with a

potential galvanometer, and' the current, y, in amperes flowing through

it with a current instrument. If the activity be constant, we have

simply to multiply Yy by the number of seconds in any interval of time

to find the number of joules spent in that time in the part of the circuit

in question. If the activity is variable, the whole energy spent in any
time may be estimated by finding Yy at short intervals of time, and
calculating the integral as just explained.

9. Electrical activity in alternating current circuits. Activity-meters.

So far we have been considering only measurements made in the

circuits of batteries or of direct-current generators. Alternating

machines in which the direction of the current is reversed two or three

hundred times a second are, however, frequently employed, especially

in electric-light circuits, and it is necessary therefore to consider

the methods of electrical measurement available in such cases.

The only electromagnetic instruments which can be used in alternating

circuits are such as depend on the mutual force between two current-

carrying conductors. Electrodynamometers generally, and current

weighers such as those described in Chap. XII., are instruments which

act on this principle, and can be used both in alternating and in con-

tinuous-current circuits. We have only to indicate here how they can

be applied to measure currents, differences of potential, and activity

in constant or alternating-current circuits.

In practical work the instruments on this principle usually employed
are such as require to have their constants determined by comparison

with standard instruments, such as a standard tangent galvanometer,

or a standard dynamometer. An early form was Siemens' electro

-

dynamometer, in which a suspended coil is acted on by a fixed coil,

and the strength of the current deduced by means of a table of values

for different angles, from the torsion which must be given to a spiral

spring to bring the coil back to the zero position.

When an instrument on this principle is arranged for use as an

activity-meter, one set of coils, the fixed or the movable, is made of

thick wire so as to carry the whole current in the circuit, while the

other set is made of high resistance and is connected to the two ends
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of the part of the circuit in which the electrical activity is to be

measured. In this case the force or couple required to restore the

movable coils to the zero position is proportional to the product Fy
of tlie difference of potential and current, that is to the activity, for

that part of the circuit ; and if the instrument has been properly

graduated this can be at once read off in watts, or in any other chosen

units of activity. Many j^ractical commercial instruments of this kind

have been invented and made, and will be found described in books on

Electrical Engineering.

10. Differences of potential and currents in alternating current circuits.

We shall now consider the measurement of current and differences of

potential, and therefore also of electrical energy in the circuits of alter-

nating machines or of transformers. Some account of the theory of

alternating currents is given in Chapter VIII. In all such circuits

the march of the current in each complete alternation may be stated

roughly as a rise from zero to maximum in one direction, then a diminu-

tion to zero, then a change of sign and a rise to maximum in the opposite

direction followed by a diminution again to zero. The law according

to which these changes take place is more or less complex in the various

cases, and the complete mathematical representation of the current

strength at any time would require an application of Fourier's method
of representing any arbitrary periodic function by means of an infinite

series of simj^le harmonic terms of the form A ^ sin {knt-e^.), where n
is 27r divided by the maximum period T of alternation. A,, and e^. are

constants and k is any integer. It has been found experimentally that

the variation of electromotive force in some alternating machines can

be expressed with a fair degree of approximation by the single harmonic
term E sin nt, where we reckon t from the instant at which the electro-

motive force was zero when changing from the direction reckoned as

negative to that reckoned as positive. The values of E sin nt are

shown graphically by the ordinates of the curve in Fig. 74, t being

measi

FlO. 74.

sured from A along AB. The maximum and minimum ordinates

CE, DF are in length numerically equal to the electromotive force E.
We shall assume the truth of this law in most of what follows, and shall

thereby obtain results which will help in the tracing out of what happens
in more complicated cases. Information regarding such cases will be
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found in special treatises on Electrical Engineering. By means of a

proper contact arrangement, which makes connection with an electro-

meter at different instants during an alternation, the values of the

difference of potential between the terminals at these instants can be

obtained. If the difference of potential does not follow the simple

law of signs, the simple harmonic constituents can be deduced by

some satisfactory method of combining the results of observations.

[See Appendix.]

The current strength is affected by the action of self-induction to a

greater or less extent in all such machines independently of the disposi-

tion of the external circuit, especially if the revolving armature contains

iron ; but, as shown below, it follows, with a difference in phase, the

same law as does the electromotive force. The effect of variations in

the field-magnets produced by the rotating armature has also in a

rigorous theory to be taken into account, but this effect in well-designed

machines without iron in their armatures is not great, and where

experiments have been made to detect it, has been found to be slight,

and we shall therefore neglect it.

11. Mean current and square root of mean square [R.M.S.] of current.

Writing then y for the current, at a time t, reckoned from the instant

at which the current was zero, we have

y — A^mnt (11)

The whole quantity of electricity generated in a half period T/2 is

therefore y^g pTI-i j^j>
ydt= A\ &mntdt = (12)

Jo Jo -^

Hence if y,„ denote the mean current in that time, we have

y™=" (13)

Here we have used y^ to denote the mean current, which is not the

same thing as the square root of the mean square of the current for

which the symbol y' was used in VIII. 24 above. We denoted the mean
square of the current by [y^]m, and used y' for the positive square root

of this. Hence we may legitimately write y'^ instead of [y^]m> and

similarly V'^ for [F^J^. The reader must observe that y' is not

identical with y^ nor V with F„,. The relation between them is

given in the next paragraph.

Now if an electrodynamometer be placed in the circuit so that the

same current passes through both its fixed and movable coils, the current

in both will be reversed at the same instant, and their mutual action will

be the same for the same current strength, and will be instantaneously

proportional to y^, that is to A^ sin^nt. If the period of the alternation

be small in comparison with the period of free oscillation of the movable

coil system of the dynamometer, the mutual action of the fixed and
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movable coil will be the same as if a continuous current y given by the

equation , ^r /2 r

r

y'» = y-.j^y«'// = ^j^8in«/i/rf/ ..(14)

wore kept flowing through them. But by integration

y- =f (IS)

^nd substituting from (13) in this equation, we get

ym =^y' = -9003y' (IG)

In order therefore to find the actual mean current strength in the

circuit of an alternating machine from the value of y (the r.m.s. of

the current) given by a current dynamometer we must multiply the

latter by -9
; in other words the mean current strength is 9/10 of the

strength of the continuous current which would give the same deflection.

The product, if y has been taken in amperes, multiplied by the number
of seconds in any interval of time during which the machine has been

working uniformly on the same circuit, will give the number of coulombs

of electricity which that continuous current would have carried in

that time.

12. Measurement of difference of potential by idiostatic electrometer.

The measurement of differences of potential is however attended with

more difficulty on account of the effect of the self-induction of any
electromagnetic instrument which can be applied to the circuit for this

purpose. The following method of employing a quadrant electrometer

for this purpose was used in the early days of the testing of electrical

generators by M. Joubert* and by the author in various trials of Ferranti

alternating machines. The needle of the instrument is left uncharged,

and the charging rod connected with it and used as a third electrode.

If the needle be connected to a point in the circuit at which the potential

is F relatively to the outside case, one pair of quadrants at a point at

which the potential is F^, and the other pair at a third point where the

potential is Fg, and if T) be the deflection of the spot of light correspond-

ing to the angle (supposed small) through which the needle has been
turned against the bifilar suspension, then, subject to the caution below,

we have F + F \
^ =M^i-^2)(^-^^)' (»')

where A: is a constant. The needle (and case) is connected to the pair

pf quadrants at potential Fj, so that

^ = a(K,-F,)2 (18)
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This equation is applicable, whatever the law of the electrometer,

provided h be determined by a process of calibration with known
differences of potential.

It was found by Ayrton and Perry and Sumpner* that when a

quadrant electrometer is used idiostatically the metallic cheeks left where

the guard-tube is cut away for the needle exert an influence on the needle

in its unsymmetrical position when deflected, which renders the formula

(17) seriously inaccurate. It may be used however without correction

for values of V up to about 100 volts. In quadrant electrometers

manufactured since 1892, the guard-tube is dispensed with.f

Any carefully graduated electrostatic voltmeterJ may (preferably)

be used instead of the quadrant electrometer, except when three points

at different potentials are to be connected to the electrometer at the

same time. Any doubt as to the applicability of the expression on the

right of (18), with k a constant, is avoided, for in these instruments

the values of different deflections on the scale have been fixed by
experiment.

If the terminals of the electrometer employed be connected to any
two points in the circuit of a machine in which the period of alternation

is short in comparison with the free period of the needle, the couple

acting on the needle will be at each instant proportional to the second

power of the difference V^ - V^ oi potential existing between these two
points at that instant. Also, as in the similar case of the dynamometer
above, the deflection of the needle will be the same as that which would
be produced by a constant difference of potential F' given by the

equation , -t-

[V%^V'-^=)^^(V,-V,fdt (19)

If we denote the actual mean difference of potential by F^,, for

F positive, in the half period from F = to F = again, then, since

the difference of potential follows the same law of variation as the

current, we get also

r,„=-9003r' (20)

18. Enhanced resistance due to alternation : distinguished from
impedance. It is to be noticed that the resistance of the conductors

in circuit is greater the greater the frequency of alternation. This

variation, as explained in Chap. IX. above, is due to the fact that as the

alternation increases in rapidity the current is more and more confined

by inductive action to the outer strata of the conductor, which is there-

fore virtually reduced in section. This is not to be confounded with the

fictitious increase of resistance seen in the expression {R^ + n^U'Y

* Phil Trans. R.S., A. 1891.

f The distance, if any, of the quadrants apart for which the formula is correct
should be found by experiment for each electrometer used in this manner.

X See Chapter XVII. below.
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(sec 15 below), whicli arises directly from the electromotive force of

self-induction ; but is a real increase of the value of R for the current

in question. (See Chapter IX. and Appendix for resistances and self-

inductances of conductors at different frequencies of alternation.)

14. Measurement of activity. We shall find that the true mean
value of the electrical activity is equal to the product of the square root

of the mean square of the difference of potential, by the square root of

the mean square of the current strength. ["The square root" in all

such cases means the positive square root.] It can, as we shall see,

be determined by means of an electrometer and an electrodynamo-

meter or alternate-current ammeter without its being necessary to know
the resistance.

Let R be the total resistance in the circuit, y the current flowing

in it at the time t, E the total electromotive force of the machine, and
L the inductance for the whole circuit, that is, the number which

multiplied into dyldt gives the electromotive force opposing the increase

or diminution of the current. We shall suppose L a constant, although

there can be no doubt that in some alternating machines its value is

different in different positions of the armature. The iron cores of the

field magnets act to a greater or less extent as cores for the armature

coils, and as the magnetic susceptibility of iron is a function of the

strength of the magnetizing current, L, which is the magnetic induction

through the armature produced per unit of its own current, must vary

accordingly.

15. Circuit containing simple hannonic e.m.f. Still for certain alter-

nators the variation of L with the position of the armature is not very

great. It will also be assumed that there are no masses of metal in

which local currents can be generated moving in the field. On these

assumptions the equation of the current is

%=^^-4l <-•>

But by the law which we have assumed for the machine,

E = lit] sin nt = E^ sin nt, (22)

where >; is a constant such that E^^ is the maximum value of E for the

given speed. Substituting in (21) we get

L-^ + By^E^,m\nt, (23)

which integrated becomes

y = Ae~^' + '-^
. sin (??./- c), (24)

(ll^ + n^L^)^

_ r r>

where sin€ = ,, cose =
, (25)

{R'^ + n^I^f (A'2 + 7*27.2)*
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The term Ae ^ is only important immediately after the circuit is

closed, and when any notable variation of speed takes place, and will

therefore be neglected.

We may remark that if L were equal to zero (24) would reduce

to y = EJR . sin nt.

From (24) we get for the true mean current

ym= ^1 sm(nt-€)dt=^ ^ (26)

Also for the mean square of the current strength as given directly

by an electrodynamometer we have by (24) the equation

r; 2 f
r

1 /? 2

JT .(27)

and we have therefore, as before, the relation

y„, = -9003y'.

The current in, and the difference of potential between the terminals

of, a conductor may also be the subjects of measurement. The same
results follow, mutatis mutandis, that is to say the equations already

found, and those which follow, may be applied to this case if Vq be

the amplitude of the applied difference of potentials, and L and R be

the self-inductance and resistance of the conductor.

16. Difference of phase of current and e.m.f. We see that the effect

of self-induction is to diminish every value of the current in the ratio

of EJ{R^ + n-L^)^ to EJR [or, for a conductor of VJ{R^ + n^L^)^-,

to VJR], and to produce a retardation of phase which measured in time

is e/n seconds ; that is, the resistance is virtually increased in the ratio

{R^ + n^L^y/R, and the current in following the law of sines passes

through any value e/n seconds after it would have passed through the

corresponding value if there had been no self-induction. If in Fig.

74 above the ordinates of the curve of sines represent the values of the

current at different instants of time, when L is zero, the current would be

represented for any given value of L by diminishing the ordinates of

the curve all in the proportion of R to {R^ + n^L^y, and shifting the curve

along AB from left to right through a distance equal to tj. It is plain

also that, for any finite resistance R, by diminishing T, that is, by
increasing the speed of the machine, the current can, by (24), be made
to approach the limiting value

y = lsin(«/-|),.... (28)

which is independent of the resistance, and has a retardation of phase

of T/4 seconds, a quarter period of a complete alternation. Hence
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into^ratin^ over a half period from zero current to zero current again,

and dividing by Tjl we g(it for the maximum mean current

y:^-l\ (29)
TT

17. Mean electrical activity in circuit. To find the mean value A.^

of the total ('lectricnl Jictivity in the circuit, we have by (22) and (21),

1 f E 2 V
^m = m\ ^h <^f = ^" —

i I
si" (^ - f )

sin ^ <^
^Jo (/?2^n2L2)^Jo

=1-^^ (30)

Hence by (27) if the activity is spent in heat

yim=y'Ii. (31)

that is, the true mean value of the total electrical activity is equal to

the mean square of the current strength multiplied by the total resistance

in circuit. This also applies to part of a circuit.

It may easily be shown, from (30), by the ordinary method that the

total activity in the circuit is greatest when R = nL, that is, for a given

speed and a given value of L, the activity is a maximum when R = nL.

It must be observed however that for a given resistance R the activity

is greater the smaller the value of T, that is, the greater the speed.

When R has the value nL we have, by (24), e = 7r/4 ; that is, the retard-

ation of pliase is then one-eighth of the whole period.

18. Compound periodic e.m.f. Supposing the electromotive force

and current, though periodic, not to follow the simple sine law, then, as

we have seen above, we may represent either by a Fourier series. Thus

E = ^Eic sin (knt - c^), (32)

where k is an integer, and takes all the values required for the simple

components which make up the periodic function which E is of the time.

For the equation of current we have now instead of (23),

lJ^ + ny = ^EkSm(knt-ek), (33)

of which the solution is

y = y^e"^' + V; ^ -.sin {hit - ej, - 4>k) (34)

, . , knL , R /or\where sin lU = .-
, cos d^k = r (35)

As before we may neglect the exponential term in the solution.

To find the mean square of the current strength we have only to

square the series on the right of (34), and integrate over the whole
compound period, 2x/w, that is, over an interval which is the least
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common multiple of tlie periods of tlie components. Now it can be

easily shown that an integral, of the form

sin (jnt - Cj - cfjj) sin (knt - Ck - ^h^dt,

vanishes when taken over an interval 27r/n, unless j= k. For the pro-

duct under the integral sign can by elementary trigonometry be resolved

into the difference of two cosines, each yielding a simple integral, which

obviously vanishes.

Then, since

2^ fi^^r'"^'"'(^"'-'''-^">'" = l W+^

we get for the mean square of the current

. y'^-i^wiSii^L^ • <^«)

that is, the mean square of the current is the sum of the mean squares

of the currents which would be given by the comj^onents of y if each

existed separately.

19. Mean activity = sum of mean activities of the components.

The mean activity is given by the equation

An= ^T-j- \ 2^,, sin {knt - e,)V j sin (knt -e.- 0,.) dt.

If the multiplication of the two series on the right is performed, a

number of integrals of the form

1 f
-'/''

.

-

—

J- I
sm {jnt - ej -

(f)j)
sm {knt - e,.) dt

are obtained, all of which vanish as before, except those for which

j= k. But we have

^
—

-. i I
sm {knt - e.) sin {knt - e,. - (/>,.) dt

^''l^{R^ +kVL^)^io
^

E,^cos(p„ I E.^R^

by (35). Hence ip^^ ^^^ m,

that is the mean activity is the sum of the mean activities which the

component currents would give separately.

Also, by (36) and (37),

A,n=y^R (38)

The practical importance of this result lies in the fact, that it proves

that any method of measuring power which is demonstrated for a current
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following the simple sine law of variation with the time, is also true for

any periodic current whatever, inasmuch as such a current can be

regarded as made up of simple sine currents of different periods. For
example, the generality of the method, given below, of measuring

power in the circuit of a transformer can be; inf(;rred from this result.

20. Circuit with two e.m.f.s of the same period. If in the circuit

there be two sources of electromotive force of the same period T, but

of different phases—for example, two machines driven so as to have

the same period of alternation—the solution here given applies. For
the two electromotive forces combine to give a single electromotive

force of the same period as the components, but differing in phase from
either ; so that, to use the solution it is only necessary to take this

resultant electromotive force as EQ^u\7it, reckoning the time from an
instant at which sinn^ is zero and increasing. If the difference of

phases be 2(/) reckoned in angle, the interval between the successive

instants at which a component is increasing through zero is 2«/>/n. Hence
taking the zero of reckoning of time midway between these two instants,

we may denote the two components by E^^ sin {nt + 0), E^ sin {rit - r/»).

Calling their resultant Eq sin {nt - x//-), we have

EQ^in [nt-x//-) = El sin {nt-^(p) + E^smint-i/)) (39)

By elementary trigonometry, we get

Eq^ = E^^ + E^ + ^E^E^cos 2<jy,\

, ,
E^-E^^ \ (40)

and tan\/r=-==—z^*tan0.
^1 + ^2 J

When (/> = 0, \/r = 0, and Eq = Ei + E^, as is evident without calculation,

since the machines are then in the same phase. If E^^E^, that is if

the machines are equal, the resultant is in phase halfway between its

components. When this is the case we have also

Eq=2EiC0S(P, (41)

which when </) = gives, as it ought, Eq = 2Ei.

21. Two unequal e.m.f.s of different phase. Considering still two
unequal machines, and remembering that when the value of the resultant

electromotive force is increasing through zero, the value of the current is

given by (24), that then the electromotive force of the leading machine is

^isin (nt + + \/y), and that of the following machine j&gsin {nt — (p + xf^),

we have, for the mean activity Ai„i of the leading machine.

^^im = m\ Eydt= ^ ^ 1 sin int - e) sin Int + (h+ \V

cos {(p + \l/-
+ e)

ill

T{R^ + n^L^Y

J E,E,

=^S$i{«cos(0 + xA)-riLsin(0 + V-)}. ...(42)
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To find the mean activity of the following machine we have only

to change the sign of cp in this expression. We get

^"" "l k^+M^^^ """ <'^ ~ '^> + "^ "'" ^^
'
'^'^ *^^)

If the machines be equal E^ = E2, and \/r = 0, so that

Am = ^2 ^ n^L^
^ ^^^ 9-nL sm 0), (44)

. JS'i^COS /-r. T . ,,^,Am =
^2 + ^2^2

{RGoa<f>+nL sm 0) (45)

22. Tendency of equal machines to opposition of phase. Parallel

alternators. Since (p is less than x/2, both cos cj) and sin ^ are positive,

and therefore the following machine does more work than the leading

machine. Hence, unless each is completely controlled by the prime-

mover, the leading machine will increase its lead, and this will go on
until 20 = X, when the two machines will be in exactly opposite phases,

and will exactly neutralise one another. This tendency to assume
opposition of phase depends on the difference ^gm -^my ^^^ this having

the factor nL/{R^ + n^U), has a maximum value, for a given resistance

and a given period of alternation, when nL = R.

The machines thus arrange themselves so that no current passes

in the wires joining their terminals, and these wires alternate in relative

potential with the period of the machines, and each is at any instant

very approximately at one potential throughout. It might therefore

be inferred that if a working circuit be joined from one wire to the

other, a current will pass through that circuit, and that the two machines
will control one another so as to keep in the same phase in supplying

it. We shall consider this case as a further example of the theory.

Let 20 be the difference of phase with reference to the external

circuit, so that at time t, E sin {nt + (p), E sin {nt-(p) are the electro-

motive forces of the two machines, y^, yg the currents, L the coefficient

(supposed constant) of self-induction for each, r the resistance of each

machine from one point of attachment to the other point, and R the

resistance of the external circuit. We shall suppose that the external

circuit has no sensible self-induction, and that the whole work there

developed is spent in overcoming resistance, for example, in lighting

glow-lamps. By considering the circuit through each machine and the

external resistance, according to Kirchhoff's rule, taking into account

the electromotive force of self-induction in each circuit, remembering
that the current in the external resistance is y^ -f- yg, and therefore the

difference of potential between the terminals R{yi + y2)y we find the

equations

L-Jr+ ^yi + ^(yi + 72)=^ sin {nt + 0),

L^ + ry2 + R{yi-\- yg) = E sin {nt - 0).

.(46)
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Adding and subtracting, we get

L J (yi + 72) + (2/2 + r) (y, + y^ =2^ coH . sin nt,

^ ,.(yi-y2) +^(71-72) =2^8in0 .cosw^

Solving these we find, as in (24),

7i + 72
= 2^008

2E Bin (ji

,co8(n/-e'),

where

^' ^' {r2 + w2L2}

nL ^ , nL
tan e =—r— » tan e ^—

.

2/t + r r

.(47)

.(48)

.(49)

.(50)

Hence, if ^„„ be the activity of the leading machine,

E f^Am =
2t\ ("^1 "^

'>'2 + yi " Vz) sin (w< + (/)) dt

E^l cos f
^'

. / . V . , .
=-=i { i I sin [nt - e) sm (nt + 0) at
^ l{(272 + r)2 + n2Z2}*Jo

+ ——
I

I cos (nt - e') sin {nt +<h)dt\

1 E^
= 2 (2i?^r)^ + n^Z^

^^^^^^^'^''^"^^'^"^"^'^^

1 J5;2

.(51)

The mean activity A^m of the following machine may be got from

<4,„t by altering the sign of throughout the expression on the right.

Hence
1 E^

(52)
1 ^2

^
2 1-2+^2X2

(^ «i^V - ''^ sm cos ^). ...

Am-^tm is positive, that is more work is done by the leading than
^H by the following machine. The lead will therefore tend to zero, and

|r^p the machines to settle down into coincidence of phase with reference

to the external circuit, that is, into opposite phases with reference to

their own circuit, which agrees with the result already obtained.

23. Theory of alternating motor. We shall consider only one more
case of this theory, that of an alternating motor connected by its
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terminals to two conductors upon which an alternating difference of

potential is impressed by other machines. Let the motor be started

so as to have the same period of alternation. Then denoting by R
the resistance of the motor-armature and the leads, up to the point

at which the difference of potential is impressed, by L the self-inductance

for the same part of the circuit, by E^ sin {nt + (/>) the impressed

difference of potential at time t, by E2 sin {nt - (jj) the back electro-

motive force of the motor at the same instant, we have for the equation

of the current,

L -^ +Ry = Ej^s\n(nt-\-(f))- E^sinint-cp) (53)

This equation differs only in the sign of E2 from (39) from which

(42) and (43) above are deduced. Hence taking the value of ^2^ i^

(43) we have for the mean electric activity received by the motor

1 Tt^ W
^2m =

2 R2+nk^^^ ''''^ ^'^ ~ "^^ "^ ''^ '''' ^^ ~ '^^^' ^^^^

where Eq = {Ej^ + E2^-2E^E2Gos2cJ,)^,
]

, ,
,

E,^E,^ (55)

tan \Lr= -~—
:=r »^an (h.

The second of (55) gives

cos \/r = (£^1 - ^2) cos 0/^0, sm\fr= -{E^i- E^) sin c/j/Eq,

and these values substituted in (54) yield

24. Maximum activity of motor. Explanation of self-synchronizing

action. Now 20 being the difference of phase cannot be numerically

greater than tt, and therefore the work received by the motor is less

when 20 is negative than when it is positive, that is, less when the

motor is leading than when it is following. Hence the motor will tend

to run slower when leading and faster when following ; or the difference

of phase will tend towards zero. Also so long as 20 is not far from zero

A^m is less the greater the lead, and greater the greater the lag, and in

nearly the same proportion. Hence when the machines are once in

phase any small deviation is opposed by a proportional corrective

tendency. This depends almost entirely on the term involving the

factor nLI(R^ + n^L^) in the value of A^m given in (56), and therefore for

a given resistance R, and period of alternation T, has its greatest value

when nL==R, or L/R=T/27r.
Writing in (56)

sin 20' = R/{R^ -f 7i^L^)^, cos 20' = nL/R^ + n^L^)^, (57)

we get ^,,, = 2/22^#Z2{^i(^' + ^'^'^ (^8)
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which is obviously a maximum when </> + </>' = ir/i. We have then

A,,.,J^j^,^l^j^^{E,(li^ + ,W)i-E,[l} (59)

The value of A.^m is positive if

El R

which may be the case even if ^j^^i- Hence we have the curious

result that an alternating machine may act as a motor even if its electro-

motive force be greater than the impressed or driving electromotive

force.

A qualitative explanation of the results given above for two alter-

nators can be given graphically by taking the areas of curves drawn to

represent the activity at each instant. From these it will at once appear

which machine is doing the greater amount of work. The reader may
easily construct these curves by drawing for each machine, from the

curves giving the current and electromotive force at each instant a new
curve, the ordinates of which are the products of the corresponding

ordinates of the former.

The theory just given of the working of alternating machines in the

same circuit is (apart from notation and mode of statement) sub-

stantially that due to Dr. J. Hopkinson. [See his Collected Papers.^

Its conclusions were verified by him in 1884, in experiments made
with two Dc Meritens machines made for the lighthouse at Tino. Some
very striking experiments are described by Mr. Mordey in a paper on

alternate-current working, which contains moreover much interesting

practical information on this subject. In discussion some difference of

opinion was expressed as to whether Mr. Mordey's results were in accord-

ance with the mathematical theory. It is to be remembered however

that the theory does not take into account the action of the armature

currents in the field-magnets, nor of the variation of self-induction.

The subject is further dealt with in treatises on Alternating Currents. •

25. Treatment of part of a circuit. We may apply, as we have already

done repeatedly above (see for example VIII. 22), the mode of treatment

adopted for the whole circuit to a part of it, taking for E the impressed

electromotive force on the part of the circuit considered, and for R and
L the proper values for that part only. We find that the effect of self-

induction is virtually to increase the resistance from R to {R^ + n^L^y,

that is to substitute impedance for resistance, and to produce a differ-

ence of phase between the current and the impressed electromotive

force given also by (24) and (25). But the resistance of a conductor

is the activity spent in it by unit current in producing heat ; hence

the resistance in this sense is not increased.

26. Effect of impedance of measuring instruments. Phase differences.

The impedance of a current electrodynamometer or current balance

O.A.M. IT
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or alternate-current ammeter, through both coil systems of which

flows the whole current in the main circuit, cannot, if it be low (as it

generally is) in comparison with that of the rest of the circuit, affect

appreciably the strength of the current by its introduction ; and since

the whole current passes through both sets of coils, the instrument will

give the mean square of the current passing.

It may be otherwise however with a fine wire instrument used as a

shunt to measure very accurately the difference of potential between

two points of the circuit. The inductance of such an instrument may
be considerable, and if it be used alone its impedance will affect the

result, though of course the effect of inductance is kept relatively

small by the high value of the resistance. Since the value of the

impedance depends on the period of alternation, it will have different

values when the instrument is connected to circuits in which the periods

are different. To obviate the uncertainty and inconvenience arising

from this cause, the instrument is made sensitive enough to allow a

considerable non-inductive resistance to be joined in series with its own

coils. This makes the value of i?/(/2^-f-w^X^) approximately unity.

Some calculations made by Prof. T. Gray, for Lord Kelvin's vertical

scale voltmeter, give for this ratio with only the resistance of the

instrument (640 ohms) included, and a period of alternation of y^y of a

second, the value '9976, which is within J per cent, of unity. Plainly

the error caused by the impedance in this case is small with any period

commonly employed, and can be made still smaller by the introduction

of non-inductive resistance. The difference of phase between the

currents through the coils of the instrument, and the difference of

potential [given by (25) above] is therefore small. This difference of

phase, it is to be remembered, does not affect the value of the mean
square of the difference of potential, provided the amplitude be corrected

for the effect of inductance. It is to be noticed that it is here supposed

that the two coils of the wattmeter are so placed that the mutual

inductance between them may be taken as zero.

It is however of importance in the action of a wattmeter, of which

one coil is placed in the main circuit, and the other as a shunt between

the extremities of the portion of the circuit in which the activity is to

be estimated. For let the circuit divide into two parts, each forming

a derived current with the other, and Zj, Lg, Ri, R2, myu my 2' ^^ ^^^

inductances, the resistances and the maximum currents in the two
parts, jnY the maximum total current in the circuit, and e,', 62, the dif-

ference of phase between ^y and ,„yi, ,„y2, respectively, then the

general formula of VIII. 22, above, for the difference of phase between

the total current in the circuit and the applied electromotive force at the

common terminals of two parallel conductors, gives in this case

.(60)
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and by (25), the dilfcrence of phase Cj between tlie impressed electro-

motive force and the current y, is given by

tan t'l = ., .

Hence for the lag in phase e/ ( = e, -f^) of the current y^ behind the

main current we liave

An interchange of suffixes in this result of course gives tan e^.

A nictliod of determining the difference of phase between the currents

in two l)ranches of the same circuit, or between two currents of the same
period, will presently be explained.

The value of the square of the maximum total current is easily found

^^
^2 _ m Uh + 'h)' +'llVhM /6-'

)

'"^ "^
(^,'' +n«V)W + »2V)'

' ^y (^'') "•Y'"'=7?7T^,-^' '"^^'=7v^^^
^''^^

2 2 2

«;n thqf
'"Vl !^0^2__ ^y /n..

The difference of phase between the two currents yj + yg can be

found as follows. Let y = yi + y2- Use three alternate-current direct-

reading ammeters to measure y, y^, yg, and let A, A^y A 2, be their

readings. Then, since

r'=yi^ + y2^+2yjy„

we get ^2 _ ^^2 _ J 2 = 2//j .^2 cos <^.

27. Condition that difference of phase between currents in parallel

may be insensible. If either L^, L^, be both small or LJL2 = Rijllz^ ^^^

diflference of })hase between the two currents ^yj, j^yg, will be insen-

sible. If the first condition is fulfilled both parts of the circuit will have
currents agreeing in phase with the difference of potential between the

terminals, and on the usually allowable supposition of negligible mutual
inductance, a wattmeter whose coils are included in them will measure
accurately the power expended. It will, on the same supposition, also

measure accurately the power expended while the wattmeter is on

circuit, if the ratio R/{R'^ + n^L^)^ be approximately unity for the fine

I

wire circuit, since the main current passes through the other coil, and it

ban be shown that the deflection will be the same as would be produced

py a constant activity A^ given by the equation

^»=~fVy(f( (65)
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where F, y, are the values of the difference of potential and the current

at time t. If also {R^-\-n^D'Y for the thick wire coil be small in com-
parison with the same quantity for the part of the main circuit in which

the activity is being measured, the inclusion of the wattmeter will not

affect the circuit, and the activity shown by the instrument may be taken

as that existing when it is not applied.

28. Apparent and true mean activity. The general problem of finding

the ratio of the apparent to the true mean activity as shown by the

wattmeter can now be solved with great ease. For let A, B, be the

points at which the terminals of the fine wire coil system are attached

to the main circuit ; let j?i, R^, L^, L^, be the resistances and induct-

ances of the fine wire and thick wire circuits between A, By and y^, yg,
the currents in them; then by (24), if the difference of potentials

between the terminals AB is Eq sin nt,

Vi
=

i sin (nt - e^),

{R,^ + n^L,^)i

72= ^— sin {nt-e^\ I

(R^^ + n^L^f j

with tan e^ = nLJR^, tan e^^nL^jR^- The former [tan e{\ is usually,

as remarked below, negligibly small.

The current through the fine wire coil is therefore the same as if the

resistance in its circuit between the points A, B, were without inductance,

and the difference of potential had the value obtained by multiplying

the above value of y^ by R^. Hence if A[,^ be the apparent activity,

Al„ = - ^

—

^
J

I sin {nt - e^) sin [nt - e^ dt
^ {R^^-\-n'L^^Y{R^^ + n'LiY Jo

^ 1 Eq^R^ cos (gi
- e^)

^g^^

'^(R,^ + n^Li^)^{R^^ + 7i^L,^f

that is the apparent activity is J the product of the maximum values

of the two currents by the resistance R^ of the fine wire branch, and by
the cosine of the phase-angle between the currents.

The true mean activity Ajn would be obtained if the current through

the fine wire branch had the value Eq sin nt/R-^^. In that case the

phase-angle between the two currents would be eg- Hence as before

^ 1 Eq^ cos ^2

^{R^^ + nH^j^)^

m {R,^ + 7iH.,^)i cos^.,

m R^ cos {e^ - e.^)

.(68)

Hence f^ ^ y^^i ^ '^^ f -^^^,
(69)

Am Ri cos {e^ - e.^)

The angle e^ is the angular phase difference between V and the current

yi in the fine wire coil, and we have

QOse^ = RJ(R^^ + n^L^^)^.
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iiins lor the true activity, in terms of the apparent activity, we get

the working formula ^.j^^ ^
^ lit,

^
I V ^ m'

COS e^ cos (<?! - e^)

Since sinc^^nLJiR^^ + n^Li^)^, cone^^ RJ{R{^ + n^L^^)^, we may
(calculate coa Cg/^^os (cj - e^) in terms of L^ Lj, Ri, Ri- Thus we obtain

A'„, ji, n,R.^+'ny:^Ly i+nv,'
where tj, T2. are written for LJR^, L2/R2, respectively, the so-called

time constants of the two parts of the circuit. It is to be observed that

the voltmeter coil of the current-meter is for practical purposes non-

inductive. For the wire being long and thin, nLJRy is very small, and

so the instrument gives nearly correct readings.

Now in general Ti<T2, hence as a rule the wattmeter will give too

high a result.

29. Measurement of difference of phase between alternating current?.

The angle of difference of phase between the currents in two such

branches may be measured as follows (Blakesley, Phil. Mag. April 1888).

We have seen that a current-dynamometer in any branch measures

the mean square of the current in that branch. This has the value ^7^/2,

where ^y denotes the maximum value of the current in the branch.

Now let „yi, ^y2 be the maximum currents in the two branches, and let

two electrodynamometers, or alternate-current meters, be arranged

one to measure ^y^ft, and the other ^y^l^^ ^^^ 1^^ ^ third be placed,

with one coil in one, and the other coil in the other of the two branches

in question. The action on the third electrodynamometer, or alternate-

current meter, at any instant vi^ill be proportional to yiy2 cos 0.

Hence the instrument will give a reading proportional to J,„yiT„y2 cos <p.

If then Di, Dg, T>^, be the readings of the current-meters, A, B, C,

their constants, so that

DJA = „,7,2/2, DJB = rnyo^l'2, D,IC=h„y,,,r, cos </>,

^^'^ =n'^ '''^

If the current-meters are direct reading so that A = B = C = \, the

factor sjABjC is unity.

Of course if three current-meters are not available a single current

-

meter may be used to take the three readings in succession (or to elimi-

nate error several sets of readings may be taken and combined). In

Ihat

case A = B = C and n

''-^-A
^"^

Blakesley* has also given a very simple method of measuring the

otal activity spent in the primary circuit of a transformer, that is of

* Phil. Mag. 1891 or Proc. Phys. Soc. U, pt. 2, 189!.
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finding the whole electrical work done per unit of time in feeding the

secondary, and directly or indirectly in dissipation.

30. Transformer. Measurement of activity. A transformer consists,

as is well known, of a primary and secondary circuit wound round a core

of laminated iron, in general in such a manner that as nearly as possible

all lines of magnetic induction, which pass through any spire of one of

the coils, also pass through every other spire of the same or the other

coil. It is not however safe to assume that this is always the case, and
serious errors may arise through making the assumption in all circum-

stances.

Now let a current electrodynamometer, or alternate-current meter,

be placed in the primary circuit, and another be arranged with one coil

in the primary and the other coil in the secondary circuit. Then if

Z)j be the deflection-reading of the first instrument, A the constant of

reduction of the readings to (current)^, Djg and B the corresponding

quantities for the other instrument (both deflections being taken

positive), iVj, N2, the number of turns in the primary and secondary

respectively, i^j, R^, their resistances, and A^^ the mean activity to be

rneasured,

^«=i^.5 + i?.5§^ (T3)

under certain assumptions.

This method is applicable whatever may be the law of variation of

current.

To prove this relation the equations of a primary and secondary

circuit given in (11) and (12), p. 234, maybe used, and may be modified

by writing E for Eq sin nt, since we make here no assumption as to the

mode of variation of the current or electromotive force, since these

equations hold for any primary or secondary whether or not containing

iron. We shall first also write Bj, Bg, for the total inductions through

a single turn of the primary and the secondary respectively, and N-^, iVg,

for the number of turns in the coils. Thus, since E^^O, we can write

the equations referred to in the form

(74)

Then we have

or

by the first of (74)

^' A='T Jo
^''"=

tJo
^^'''^ - T Jo y^H

^'

iJ>... =
«,J.f£,.^J., (75)
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If Z),2 be, in the same way, the reading of the second instrument,

taking account of the sign of the deflection, and B its constant, we have

by the second of (74).

If now we assume that 8^ = Bg, we get from the last equation

* Jo

(IB,
, ,, N, />,o

Substituting from this in (75) we find

1 r' D, „ iV, Z)„

and the quantity on the left is the mean value of the total activity.

Thus the total activity is given by the expression on the right in terms

of the readings of the electrodynamometers, or the alternate-current

ammeters.

It is to be noticed that since yj, yg, are on the whole in opposite

directions, the sign of D^g must be opposite to that of D^. Thus

RzN^Dj^JN^B is really negative, and the total rate of working is

greater than the first term, which represents the activity spent in heat

in the circuit. Hence if we agree to take the positive numerical value

of the reading of the second instrument for Djg* we may, putting Ai^
for the mean activity on the primary, write (76) in the form

^„„=ij,jHij,jj;^§? (78)

This method and result were given by Mr. T. H. Blakesley for a

transformer on the assumption that the currents followed the simple

sine law of variation : in the demonstration here given no assumption
at all is made except that B^ = Bg. The method is therefore applicable

to any transformer, whatever the law of variation followed by the

current, provided B^ may be taken as equal to Bg. This was first

pointed out by Ayrton and J. F. Taylor,* whose method of proof is

similar to that here given.

31. Proof of validity of method on assumption of constant permeability.

This method would hold even if B^ were not equal to Bg, provided we
could suppose the permeability constant during a cycle. In this case

the equations of current could be written in the form,

«-.Z./^-.Mf =
.,|

^^^^

* Proc. Phys. Soc. Dec. 1891.
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since L^, L^, M, do not vary in a cycle if the permeability does not.

Hence multiplying the first of these by y^, and calculating the mean

value of each quantity by integrating over a whole period, we get

^...=^J><^*=fjV<^^+fj>t*. (««)

since the integral of y-^dy-^jdt . dt over a period is zero.

But if we multiply the second of (79) by y^ and take mean values as

before, we find

i\\y^^^^^y>~-^>
since the last integral vanishes as before. Thus

Substituting in (80) we get

^„»=|*J^yi^*-gfJ^y,y2<i<- (82)

or putting in the readings of the dynamometers (taking Z)i2 positive

as before),

since approximately M = NiN2, L^^N^. This is the same result as

before, but obtained under a different assumption, not however

involving any hypothesis as to the mode of variation of the current.

32. Constant permeability involves zero dissipation in iron core of

transformer. It is to be observed that this supposition of no variation

of L^, L^, or My is equivalent to supposing that all the activity is em-

ployed in generating heat in the two circuits. For if the second of (79)

be multiplied by yg, and then integrated for mean values, it gives

This added to (80) gives

and the last term vanishes since the integration is round a closed cycle.

Thus
7? r^ Tf C^

A™=f-)^yi'* + f-J^y.'*.
(**)

and all that is measured is the mean value of R^y^ jplus that of R^y^^
or the total mean activity is equal to the rate of generation of heat in
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the secondary plus that in the jiriniary. The activity could in this

case be equally well measured by placing an alternate-current ammeter
in the i)riiiiary, and another in the secondary, as by Blakesley's method.

The supi)osition thus made above therefore excludes all dissipation

of energy otherwise than by direct heating of the circuits by the currents.

It has been urged that on the analogy of the behaviour of ordinary

bodies under strain produced by stress varied in rapid cycles, there

ought to be no dissipation of energy due to lagging of the magnetization

beliind the magnetic force in the cycle, as explained in II. 27 above, or,

as it is now called, hysteresis action, in iron subjected to rapid cycles

of magnetic stress. On this view magnetic like elastic hysteresis is

only important in slow cycles. This analogy appears a plausible one,

but any opinion founded on it must be tested by direct experiment,

and it would appear that the results of such experiments are adverse

to the view here indicated. Now it has been given as the result of

experiment by several observers* that there is in rapid cycles dissipation

of energy in the core of the same order of magnitude as in slow cycles
;

but that there is much less when the transformer is loaded by closing

the secondary circuit through a low resistance, than when the secondary

circuit is open.

This result is questioned by Ewing, who gives as the result of experi-

ments on a transformer core, an anchor ring made of iron wire insulated

to prevent eddy currents, that, for the same frequency of reversal and
limits of magnetization, the loss by magnetic hysteresis is just as great

when the transformer is heavily loaded, as when its secondary circuit

is open.t

The rate of loss by hysteresis is however in all cases small in com-
parison with the whole activity.

Assuming the truth of Blakesley's formula as deduced from the

hypothesis of no magnetic leakage, we can find the amount of energy

spent in eddy currents and magnetic hysteresis in the iron.

33. Energy spent in hysteresis. Assuming for simplicity that the

electrodynamometers are direct-reading instruments, or if not that

Dj, Z)]2j are reduced readings expressing each a mean square of a current

measured in amperes, so that the constants A = B = \^ then i?j, jRg,

being taken in ohms, ^„„ will be given in watts. If now we suppose a

third electrodynamometer placed in the secondary circuit, and D^
in like manner be its reading, we shall have

Thus we have ^„„ = /h/>i + /?o/)2+ //o(-^^/>,2 - A,) (85)

ÎH * Warburg and Honig. Wied. Ann. 20, 1883.

^^K t Tanakadate, Phil. Mag. Sept. 1889. See also Ewing, Magneliam in Iron and

I
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The two first terms on the right express the whole work done in

heating the wires of the primary and secondary, the third term that

spent in heating the iron by eddy currents and hysteresis.

If R^ be the resistance of the external part of the secondary, and the

work done in that be wholly spent in heat, the energy there spent is

R^^^. Thus if e be the electrical efficiency of the transformer

R'Do
e =

1-2

^1^1 + ^25^2
(86)

34. Difference of Potential between terminals of primary. From
the expression for ^„„ can be found at once the difference of potential

between the terminals of the primary. For if R^ be the external

resistance of the primary circuit between its terminals, we have instead

.(87)

Squaring the first of these we get

Hence if F'^ be the mean square of the difference of potential F,

The first integral is, as we have seen above, R'^D^, and the third is

2i?i'2?2^i2^i/'^'2- "^^^ second integral can be found by the second

of (87) since Bg is taken as equal to B^. Thus

1 fVcZBjV^^ R^^ \
[T B2

Substituting these values for the integrals we get

r' = R?D,+^^D,+2R,'R,^D,, (88)

The above results are all independent of the law of variation of the

current and involve only the assumption 3^ = 3^. They are due to

Blakesley, but were first proved by methods similar to those used above,

by Ayrton and Taylor in their paper above referred to.

35. Measurement of activity by current-meter only. In any practical

case of measurement of power in which a wattmeter is inapplicable, if

the actual resistance of the portion of the circuit considered is known and
the mean square of the current can be measured with accuracy, the
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product of the two will, an shown in 17 above, be the true mean value

of the activity if that is spent in he^t. This of eourse will be given in

watts, if the resistance is taken in ohms and the current in amperes.

As we have seen above, the projier mean value of the current, and of

the difference of potential, and therefore also of the activity, can be

found for any part of a circuit in the case of negligible self-induction,

either by means of an electrodynamometer, or by means of an electro-

meter, when the resistance of one part of the circuit is known. When the

resistance is unknown or uncertain, as for example in the case of in-

candescence lamps, tlie current and difference of i)otential may be

measured for the lamp circuit in the following manner. A coil of

german silver wire, having a resistance considerably greater than that

of the lamps as arranged, constructed so as to have no self-inductance,

is CQnnected in series with a current-meter between the terminals of

the machine so as to be a slmnt on the lamps. The lamps are brought

to their normal brilliancy, and the mean square y'^ of the current through

the german silver wire measured. If R be the resistance of this wire,

including, if appreciable, the resistances of the current-meter and its

connections, and R be great in comparison with the self-inductance

of the current-meter divided by T, we have for the mean square, V'^,

of the difference of potential between the terminals of the lamp system,

the value y'^R^. The current-meter is now employed to measure the

whole current flowing to the lamps while their brilliancy is kept the

same. Denoting the mean square of this current by yl^, we have for

the value y4„, of the mean activity spent in the lamp system

yi,a=Vy = yy^'R (89)

86. Testing dynamos. Method of Messrs. Hopkinson. Messrs. J.

and E. Hopkinson* have employed the following method of testing the

efficiency of dynamo-machines, which obviates the difficulty of measuring

accurately the mechanical power transmitted to the driving shaft of a

dynamo by a steam engine or other motor. Two equal dynamos of the

type to be tested are used, and one of these is run as a motor at the

required speed and with the proper amount of electrical activity in the

circuit. This can be adjusted by suitably varying the magnet resist-

ances of one of the machines. The motor is made to spend the available

activity which it gives out in driving the generator, and the difference

in power required is supplied by a steam- or other engine, and measured
by a Hefner-Alteneck dynamometer, or by any other similar method
by which the difference of the pulls in the two parts of the belt is de-

termined. This latter amount of power represents the losses in trans-

mission, and added to the power returned to the generator by the motor
gives the mechanical powder required to drive the generator. The errors

inherent in the determination of mechanical power transmitted to a

driven shaft are thus made to affect only the comparatively small

* Phil. Trans. R.S. Part i. 1886.
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balance of power, and the efficiency is obtained to a much higher per-

centage of accuracy.

The whole electrical power Ey developed by the generator is then

found by calculating that spent on each part of the circuit from the

observed differences of potential between the terminals of the generator

and motor, the current in the circuit, and the known resistances of the

different parts of the machines. By adding to this the power w, in

watts, wasted in the machine, the power spent in driving it is obtained,

and hence at once the gross efficiency Ey/{Ey + w).

Then the sum of the heats developed in the armature and mag-

nets of each machine, and in the leads and other resistances in the

circuit, subtracted from the power transmitted from the engine and
measured by the dynamometer, gives a balance which represents the

total loss in the circuit over and above those here enumerated. This

is made up of power wasted in the iron cores of the armatures and in

the pole pieces in consequence of hysteresis or eddy currents, in reversals

of the currents in the sections of the armatures, in connexions, in spark-

ing if any, and in the friction of the bearings and brushes. Half of

this balance may be taken as spent in each machine. The whole power

spent in driving the generator is therefore the sum of the whole electrical

power Ey given out in the circuit, and half the balance, w say. Thus

the efficiency is

.=^ = 1-^, (90)Ly + io Ey
nearly.

37. Swinburne's method of testing dsoiamos. Swinburne measures

electrically the loss of power w here described, and requires only one

machine of the type to be tested. The magnets of the machine are

excited separately, so that the armature is under the induction which

would exist if the machine were working under the load specified for it."

The machine is then driven by a small dynamo which furnishes current

at the electromotive force of the machine just sufficient to drive it at

the required speed, without any load beyond that involved in iv, namely

the losses in eddy currents, hysteresis, and friction in the machine

which is being tested. The speed can be adjusted as in the tests above

described by suitably varying the resistance of the magnet circuit.

The power spent on the machine by the small dynamo is determined

electrically in the ordinary way by measuring the number of volts

difference of potential between the terminals and the current in amperes.

The former will of course be approximately the full electromotive force

of the machine when working under the prescribed load. The power

thus determined, diminished by that spent in heat in the armature

(which is generally negligible), is the waste power w required.

The efficiency can then be found by calculating the total electrical

activity in the circuit when the machine is running under the prescribed

load, by adding to the activity in the external circuit the electrical
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activities in the armature and magnets, found in watts by multiplying

the resistance of each part in ohms by the square of the current in

amperes. Call this electrical activity A'y, as in 17 above. Then the

mechanical power spent in driving is Ey + w. The gross efficiency of the

machine is thus Ey/{Ey + w). The electrical efficiency of the arrange-

ment is Eiy/Ey, if E^ be the difference of potential between the

terminals of the external circuit. Finally the net efficiency is

E,yl{Ey + w).

88. Sumpner's method oi testing transformers. On the analogy

of the Hoj)kinson method of testing dynamos just described, Sumpner
based the following method of testing power supplied to transformers.

Two equal transformers have their primary coils C1C2 joined in parallel

across the terminals of an alternating dynamo as shown in Fig. 75,

and their secondaries CjOg also joined in parallel between the points

AB. Non-inductive resistances r and R are included in the primary

and secondary circuits as shown.

Supposing the transformers to be alike, and the primary circuits to

have the same resistance, the magnetizing currents will be the same in

both, and there will be equal electromotive forces at any instant in the

secondaries. Thus no current will flow in the secondary circuit what-

ever the resistance R. A non-inductive resistance r in the primary

of either will cause the currents in the primaries to be different, and if

r is in the circuit of Cg a current will flow in the secondary which will

load the transformer c^Ci, and help to magnetize the core of C2C2,

thus raising the electromotive force in the primary of that transformer.

If however the transformers be somewhat different, for example,

so that (to take an example given by Sumpner) No. 1 converts from 100

to 2100 volts, and the other from 100 to 2000 volts, then there will be

an electromotive force of 100 volts in the circuit of the secondaries which
will produce any desired current if R be properly adjusted.

39. Determination of waste power. If then with two unequal trans-

formers the current flowing through the secondaries be of the proper

amount, each transformer will be fully loaded, but one, the more power-

ful, No. 1 say, will transform up, and the other down. That is the

former will take energy from the mains, the other will return energy

to the mains. The power-losses occurring in the double transformation

are then, in the aggregate, the difference between the power taken by
No. 1, and that given back by No. 2, diminished by the amount absorbed

in the resistance R, and by the amount spent in heating the connecting

wires and instruments applied.

It is only necessary therefore, in order to obtain w, to measure the

balance of power supplied to the system at ah, and correct it as described.

This may be done with a wattmeter, the fine wire coil of which is placed

across the terminals ah, and the current coil in one of the mains, or by
the electrometer-method described below. To calculate the efficiency

we have then only to find the power W, say, supplied to No. 1 trans-
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former. This can be done nearly enough by measuring the load on

either transformer, say by placing a wattmeter with its fine wire coils

across ah, and its current coil in c, or by measuring the difference of

No.1

potential and current of any coil of either transformer. Then the

efficiency of the double transformation, e^ say, is given by

IV

nearly.

The efficiency of each transformer is approximately the square root

of this, or

- 1 w 1 lo"^ ,^,.

'-^-'2ir-sW" <"'>

nearly.

40. Case of two equal transformers. One great advantage of this

method lies in the fact that a considerable error in the estimation of w
can only slightly affect that of e^ ore, if e be not very different from unity.

This method as it stands is only applicable to two transformers, the

electromotive forces of the secondaries of which differ by at least

twice the " drop " in difference of potential between the terminals

of the secondary of either, when its load is raised from zero to the

prescribed value. In the case of two similar transformers Sumpner
used a small additional transformer which is able to supply the waste

w for the two large transformers to be tested. The primary of this is

connected in series with an adjustable non-inductive resistance x,

across the main terminals ah, and the secondary is placed in, say, No. 2

transformer, in series with either Cg or Cg, in place of the non-inductive

resistance r or R.

This small transformer will supply an amount of energy, depending

on the value to which x is adjusted, sufficient to cause any required

current to flow in the secondaries of the large transformers. It is
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only necessary then to measure the energy given out by the small

transformer by measuring the current and difference of potential on its

jjrimary and secondary, and further to measure as before the power

supplied by the mains. The sum of these corrected as before will be

to. Then W is measured as before for either of the large transformers,

and the efficiency is determined by (91) above.

Different arrangements will suggest themselves to the engineer

carrying out these tests as suitable in the varying circumstances in

which he may be placed by his instruments, etc.*

41. Three-voltmeter method. Ayrton and Sumpnerf gave the follow-

ing nu'tliod of measuring the power given out in any portion of a circuit.

It will be seen that it is intimately related to the electrometer method
described below. Three points on the circuit are taken, two (Fig. 76)

AB, between which is the portion of the current in which the activity

Fio. 76.

is to be found, while the portion BC consists of a non-inductive resistance

of R ohms. Three alternate-current voltmeters of proper construction

are used to give the mean squares of the differences of potential between
A and B, B and (7, and A and C. If Dj, Dg, D be the readings of these

voltmeters each in volts, and Aj,^ the mean activity in watts,

21{
i^U2_D2_J)2y (92)

A in —
=M,

V.ydt,

if Fj be the difference of potential between A and B at any instant.

But if Fg be the difference of potential existing at the same instant

between B and C we have y = VJR- Hence

^"'=7rrf/>^^'«-

The difference of potential between A and C is at the same instant

Fj + Fg, and we have

* See a paper by Ayrton and Sumpner, Electrician^ Oct. 7, 1892.

t Proc. R.S. April 9, 1891, or Electrician, April 17, 1891.
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Hence
^--m{\y^^^'^^''''\^'''"\y-''' /̂'

or A^.=^iAy^-i\'-i>,'). (93)

It can be shown by the Theory of Errors of Observation that on the

assumption of equal proportional errors in the quantities observed the

Fig. 77.

best arrangement for this measurement is one in which the mean square

of the difference of potential between A and B is equal to that between

B and G. This however is an arrangement in which the power consumed

in the non-inductive resistance is equal to the power measured.

42. Method with two current-meters and voltmeter. A modification of

this method was proposed by Ayrton and Sumpner, in which two current-

meters A^, A 2, and a voltmeter V are arranged as shown in Fig. 77.

ah is the portion of the circuit in which the power is to be measured, cd

a non-inductive resistance placed across its terminals, F is a voltmeter

placed parallel to ah, and cd, and measuring the mean square of the

difference of potential between ac and hd. If V be the difference of

potential between a and h at any instant, and y the current at that

instant, the activity is

1 r
^,a=j,\ Vydt,

or if y' be the current in cd at the same instant,

A,n=~^yydt,^ ^^^"^

V/R. But if Di be the reading of the current-meter, A^, D^

2 (each giving the mean square of the current in amperes),

smce y =
that of A
we have

and

A=i dL

^2 = ^j '(y + yT dt =
\^^

(y2 + y'2 + 2yy']

rr

-.\yydt,

dt

Di -f T.O +
jy2 2^fr
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if D be the reading of the voltmeter expressed in volts. Hence by (94)

^„. = y£yy<« = f (/>,-/>, + j1) (95)

This was given* as an improvement upon a method proposed by Dr.

J. A. Fleming, in which a current-meter is placed in cdy and A,^ is given

by (95), with D^ the reading of this current-meter used instead of the

term D^/R^. The current-meter introduces a certain amount of induct-

ance into cd, although this might be made negligible by taking cd large

enough.

43. Electrometer-method measurement of mean squares of current

and potential. An electrometer may be used in the following manner to

give the mean square of the current, and of the difference of potential

for any part of a circuit, whether containing motors or arc lamps or any
arrangement with or without counter-electromotive force or self-

inductance. A coil of thick german silver wire (or to prevent sensible

heating a set of two or more coils arranged in parallel) having no self-

inductance is included in the part of the circuit considered, so that the

current to be measured also flows through the wire. The mean square

of the difference of potential between the ends of this resistance is

measured as described in 14 above by connecting one pair of quadrants

of the electrometer to one end, and the needle and the other pair of

quadrants to the other end, and the mean square y'^ of the current

obtained by dividing by the square of the resistance of the wire. The
mean square of the difference of potential between the terminals of the

part of the circuit considered is then found in the same manner. A
multicellular electrostatic voltmeter, or any electrostatic voltmeter of

large range of sensibility, is very convenient for such measurements.

The product is not generally to be taken as the mean square of the

activity in the part of the circuit considered, for it is evident that in

this case what is obtained is the value of

i\y-H y^dt,

where V and y are the difference of potential and the current at any
instant. The square root of this quantity is not generally the same
thing as

yVy-ft,

the true mean value of the activity. This is, however, given indirectly

by the following method.f

* "Alternate Current and Potential Difference Analogies," Phil. Mag. Aug. 1891.

t This method is described by A. Potier, Journal de Physique, t. ix. p. 227, 1881,
but was independently invented also by Prof. W. E. Ayrton and Prof. G. F. Fitz-

gerald (see Prof. Ayrton on " Testing the Power and Efficiency of Tr^^usformera,"
^^roc. Soc. Tel. Engs. and Els. Feb. 1888).
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44. Electrometer-method of determining activity. Let the two ends

of the resistance coil of zero self-inductance and known resistance R
be (jailed A and B, and let the extremities of the portion of the circuit

for which the measurements are to be made be called C and D. One
of the pairs of quadrants is connected to A, the other pair to B, and the

needle to C, and the reading, d say, taken. The quadrants remaining

as they were, the needle is connected to D, and the reading d' taken.

Now, if at any instant F^ be the potential of A, V^ of B, V^ of (7, and

V2 of D, we get, if (17) above is applicable to the instrument (see 12

above),

i4jV.-F,)(F,'-Il±I-^)«
(96)

and by subtraction and division by kR,

(Fi-F2)(F/-F,')cZ« (97)

d-d' 1 r^

kR RTjo

But it is clear that the expression on the right-hand side of (97) is the

true mean value of the activity required.

If Vi - Fj be great in comparison with F^ - F2 and A, say, be con-

nected with the case of the instrument, the first of (96) becomes

d = ^\v,-V,)V,'dt (98)

If A and D coincide V^' = F^, and the activity in the part of the circuit

between C and D is given by the first of (96) alone when put in the form

-^=i^l'(^'-^^>^''*
(99)

This observation is due to Sayers. It is thus possible in the case

supposed to use an electrometer as a direct-reading wattmeter.
If a quadrant electrometer is used as here explained, care must be

taken to see that the equation (17) holds for the instrument (see p.

295 above). Dr. Hopkinson found {Phil Mag. Ap. 1885) that the
indications of his instrument were very exactly expressed by the equation

J) = I /v _ v\( V- ^VtZs^
1 +mr^

{V,-V,){V-^^^) (100)

where m is a small constant. Hence for high values of F it is necessary
to know and use this second constant if its value is sensible. The devia-

tion from fulfilment of the ordinary equation here shown was found to

be in great part due to downward electrical force on the needle caused
by its hanging a little too low in the quadrants.



CHAPTER XI.

THE COMPARISON OF RESISTANCES.

1. Comparison of resistances to steady currents. Galvanometers.

We give here an account of methods for the comparison of the resist-

ances of conductors in wliich steady currents are kept flowing. In

most cases the conductor to be compared is arranged in a particular

way in connection with other conductors, which are then adjusted so

as to render the current through a certain conductor of the system

zero. From the known relation of the resistances of the other con-

ductors the required comparison is deduced.

The form of galvanometer generally employed in the measurement

of resistances is the well-known reflecting galvanometer, one arrange-

ment of which is shown in Fig. 78. For most ordinary purposes the

Fig. 78.

form of the instrument here described is convenient. A mirror of

silvered glass to which the needle-magnets are cemented at the back is

hung within a cylindrical cell about half a centimetre in diameter.

The ends of the cylinder are closed by glass plates from four to five

323
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millimetres apart, held in brass rings which can be screwed out or in

so as to increase or diminish the length of the cell. The mirror is hung
by a piece of a single silk fibre passed through a small hole in the

cylindrical surface of the chamber and fixed there with a little shellac.

The mirror is only of slightly smaller diameter than the cylinder in which

it hangs, so that in this arrangement the fibre is very short, rendering

it necessary in cases in which deflections have to be read off to allow

in one way or another for the effects of torsion. The cylindrical chamber
is screwed into one end of a cylinder of slightly greater diameter which

fits the hollow core of the coil, and is called the galvanometer-plug.

Fig. 79.

When the plug is in position the mirror hangs freely within its cell, with

therefore the point of suspension on the highest generating line of the

cylinder. Deflections of the needle are observed either by the Poggen-

dorfE telescope method (Fig. 15), or, and much more frequently, by
using a ray of light reflected from the mirror as an index (Fig. 79).

The mirror being made in this case concave, the reflected light is

brought to a focus on a fixed graduated, scale, and the displacement of

the spot of illumination gives the deflection. If the scale is straight

and horizontal, and is set, as it usually approximately is, at right

angles to the undeflected direction of the reflected ray, supposed also

horizontal, the ratio s/r, of the displacement s to the distance r of the

scale from the mirror, is tan 20, if 6 be the angle turned through by
the mirror.

The weight of the needle and mirror is small, generally under one

grain, and the period of free vibration of the suspended system about

any position of equilibrium is short. The needle is also made to come
quickly to rest by the smallness of the chamber in which it hangs.

Since the mirror nearly fills the whole cross-section of the cell, the
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air damps the motion of the mirror to a very great extent even when
the cell has its largest volume. The mirror may be made quite " dead-

beat," that is, to come to rest without oscillation, by screwing in the

front and back of the cell until the space is sufficiently limited.

In instruments in which it is desirable to avoid effects of torsion the

galvanometer coil is made in two halves which are fixed coaxially,

with a narrow space between them to receive the suspension piece.

This piece forms a chamber in which the needle hangs between the two
halves of the coil, and gives a length of fibre which at shortest is equal

to the radius of the outer case of the coil, and which can obviously be

made as long as is desired. The part of the hollow core at the needle

is closed in front and at back by glass plates carried by brass rings.

These can be screwed in or out by a key from without so as to diminish

or increase the size of the chamber, and thus render the needle system

more or less nearly " dead-beat."

We shall suppose the galvanometer set up so that the deflections

are read by the ordinary deflection method. It is only necessary to

arrange that when no current is flowing in the wires the mean plane of

the coils sliall be parallel to the magnetic axis of the needle-system.

This is done as follows. A straight thin wire of steel (a knitting needle)

is magnetized and hung by a single silk fibre of a foot or so in length.

This can easily be done by taking a sufficiently long single fibre of silk

and forming a double loop on one end by doubling twice and knotting.

In this double loop, made widely divergent, the steel wire is laid hori-

zontally, and the single end of the fibre is attached to a support carried

by a convenient stand, which is then placed so that the wire takes up
a position in the direction of the horizontal component of the magnetic

field where the needle is to be placed. A line can now be drawn parallel

to the wire on the table beneath it. All that is necessary then is to

place the galvanometer so that the front and back planes of the coil

are vertical and parallel to this line, and adjust the lamp and scale as

described above.

It is sufficient for our present purpose to state that if the needles be

so small as in the Thomson reflecting galvanometer, and torsion can be

neglected, the current in the coil may be taken as proportional to the

tangent of the deflection angle, and therefore if that angle be not greater

than three or four degrees the current may, with an error not greater

than 1 per cent., be taken as proportional to the deflection simply.

2. Sensitiveness of a galvanometer. The galvanometer should be

made as sensitive as possible by diminishing the directive force on the

needle as far as is practicable without rendering the needle unstable.

This is easily done by placing magnets near the coil so that the needle

hangs, when the current in the coil is zero, in a very weak magnetic
field. That the field has been weakened by any change in disposition

of the magnets, made in the course of the adjustment, will be shown
tby a lengthening of the period of free vibration of the needle when
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deflected for an instant by a magnet and allowed to return to zero.

The limit of instability has been reached when the position of the spot

of light for zero current changes from place to place on the scale, and the

intensity of the field must then be slightly raised to make the zero

position of the needle one of stable equilibrium. For ordinary testing,

attention to this matter of sensitiveness is important. Very frequently,

especially in laboratories for students, the magnetic fields at the galvano-

meter needles might be weakened with advantage. The less sensitive

arrangement is more easily made by the student.

Although not absolutely essential, except when accurate readings

of deflections are required, it is always well when the field is produced

by magnets, to arrange them so that the field at the needle is nearly

uniform. It may therefore be produced by two or more long magnets

placed parallel to one another at a little distance apart symmetrically

with respect to the centre of the needle above or below it, and with

their like poles turned in the same directions ; or a long magnet placed

horizontally with its centre over the needle, and mounted on a vertical

rod so that it can be slided up or down to give the required sensibility,

may be used. The earth's horizontal field must of course always be

taken account of in such adjustments. Also when the directive force

on the needle is much reduced and deflections have to be measured
and compared, it is to be remembered that the couple due to the

suspension may be of very sensible amount.
Sensibility is sometimes obtained by the use of astatic galvanometers,

but these are rarely necessary and, except in the hands of people with

some skill in electrical work, are more troublesome to use than the

ordinary non-astatic instrument.

3. Resistance coils and resistance boxes. For the comparison of the

resistances of conductors other resistances the relations of which are

known are employed. These are generally coils of insulated wire wound

Frr.. 80.
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on bobbins (Fig. 80) which are arranged so that the coils can be used

conveniently in any desired combination. Such an arrangement of

coils is called a resistance box. Figs. 81 and 82 show resistance boxes

of different forms.

In a resistance box each coil has a separate core, which ought to be

a brass or copper cylinder split longitudinally to prevent induction

FlO. 81.

currents, and covered with thin rubber or varnished paper for insulation.

These cores are shown in Fig. 80. The metallic core facilitates the

cooling of the coil if an appreciable rise of temperature is produced by
the passage of a current through it. After each layer of the coil has

been wound it is dipped in melted paraffin wax, so as to fix the spires

relatively to one another, preserve them from damp, and insure better

;«
Fig. 82.

insulation. It is of great importance to use perfectly pure paraffin wax,

and especially to make sure that no sulphuric acid is present in it.

Unless this precaution is observed trouble may be caused not only by
the action of the acid on the metal of the conductor, but by the polariza-

tion effects due to electrolytic action in the acid paraffin. Paraffin
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wliicli is at all doubtful should be melted and well staked up with hot

water to remove the acid.

The wire chosen for the higher resistances is generally an alloy of one

part platinum to two parts silver. This has a high specific resistance

(see 37 below) combined with a small variation of resistance with

temperature. Standard coils are made of various metals and alloys

(see 10 and 40 below). For the lower resistances wire of greater thick-

ness is employed on account of its greater conductivity, which enables

a greater length of wire to be used, and this facilitates accurate

adjustment.

Coils are sometimes made of " platinoid," a species of german silver

which does not tarnish seriously with exposure to the air and has a low

variation of resistance with temperature (see Table V.).

4. Construction of resistance coils. When a coil of given resistance

is to be wound, a length of well-insulated wire of slightly greater resist-

ance (determined by comj)arison at ordinary temperature by one of

the processes to be described) is cut, doubled on itself at its middle point,

and wound thus double on its core. This is done to avoid the effects of

induction (see 16 below) when the current is in a state of variation, as

when starting or stopping. After the coil has been wound its resistance

is again measured, and if good insulation has been obtained, it ought

now to show a slightly increased resistance, on account of the change

produced in the wire by bending. The coil is fixed in position by two
long brass or copper screws d, d, Fig. 80, passing through ebonite discs

in the ends of its core, which fasten it to the cover of the box. These

screws should be sufficiently massive to give no appreciable resistance.

They are attached to two adjacent brass pieces, a, a, on the outside

of the cover, and have the ends of the wire of the coil soldered to them
so that the coil bridges across the gap shown in the figure between every

adjacent pair of brass pieces. The coil is now brought to the tempera-

ture at which it is to be accurate and finally adjusted so that its resist-

ance taken between the brass pieces is the required resistance. The
method of adjustment of the resistance of a coil by shunting it by a

wire of sufficiently high resistance will be understood from the examples

of its use in 30 below and elsewhere.

5. Legal and International ohm. Coils are made in multiples of the
" Ohm " or practical unit of resistance. The ohm is defined absolutely in

Chap. I. 48. It was agreed at an International Conference on Electrical

Standards and Units, held in London in October 1908, that the resistance

offered to an unvarying electric current by a column of mercury, at the

temperature of melting ice, 14-4521 grammes in mass, of a constant

cross-sectional area, and of a length of 106-300 centimetres should be the

International Ohm. This choice was legalized by an Order in Council

issued on January 10, 1910. The Order in Council is given in an

Appendix and is quoted in I. 49. Different forms in which copies of

such a standard are made are also described below, pp. 368, 369.
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6. Different forms of resistance boxes. A series of coils are arranged

ill a resistance box in some convenient order either in series or in parallel.

Fig. 83 shows a series arrangement suitable for many purposes. Each
number indicates the number of ohms in the corresponding coil. The
space between eadi pair of blocks is narrow above and widens out below,

as shown in Fig. HO, to increase the efT<?ctive distance along the vulcanite

from block to block. In the adjacent ends of the brass pieces, between

u hi(;h is the narrow gap, are cut two narrow opposite grooves, so as to

Fig. 83.

form a slightly conical vertical socket. This fits a slightly conical plug»

/ in Fig. 80, which when inserted bridges over the gap by making direct

contact between the blocks, and when not thus in use is held in a hole

drilled in the middle of the upper surface of the block. The coil is short-

circuited when the plug is inserted, that is a current sent from one block

to the other passes almost entirely across the plug on account of the

much greater resistance of the coil. The handle,/, of the plug is generally

made of ebonite.

The plan of arranging a series resistance box which is most econo-

mical of coils is a geometrical progression with common ratio 2, though

this is not much used. It was, however, employed in some of the earlier

^^ boxes used at Glasgow when methods of testing were being worked out.

^H In such a box two unit coils are generally provided to enable the box to

' -^ be conveniently tested. The inconvenience of the arrangement is in the

reduction of any resistance which it is proposed to unplug in the box to

I

its expression in the binary scale of notation. For example if the resist-

ance 370 is to be found on the box, this is expressed as 2^ + 2^ + 2^ + 2* + 2—
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370

185

92 1

46

23

11 1

5 1

2 1

1

-<^a

fourth, fifth, sixth, and eighth of the plugs beyond the units. The
process of reduction is performed as follows by dividing successively

by 2, and writing the remainders as successive figures

of the number from right to left in the order in which
they are obtained, ending with the last quotient, which
is of course 1.

Hence 370 = 101110010 in the

binary scale. It is not however

always necessary to go through

this process. Practice with a

box on this principle leads soon

to readiness in deciding what
coils are to be unplugged, or

what is the resistance of any

set of coils which may be unplugged. It is

well to remember that any coil of the series is

greater by unity than the sum of all the pre-

ceding coils of the series.

The coils form a geometrical series from 1

to 4096 with a common ratio 2. The unit is

duplicated for the reason stated above.

The " Dial " form of series resistance box

shown in Fig. 82 above, is preferable to the

ordinary forms for many purposes. It con-

tains three or four or more sets of equal coils,

each nine in number. One set consists of nine

units, the next of nine tens, the next of nine

hundreds, and so on. Besides these the box

sometimes contains a set of nine coils each a

tenth of a unit. Fig. 84 is a plan of a five-

dial box. The sets of coils are arranged along

the box in order of magnitude. Each set is

arranged in series, and the blocks to which

the extremities of the coils are attached are

arranged in circular order round a central

block, which can be connected to any one of

the ten blocks of the set surrounding it, by

a plug inserted in a socket provided for the

purpose. Each central block, except the first

and last, is connected by a thick copper bar

inside to the initial block of the succeeding

series of nine coils, as shown in Fig. 84 by
the dotted lines. The ten blocks of each set

of coils are numbered 0, 1, 2, ...9, as shown.

Thus a current passing to one of the central blocks passes atjross

through the bar to the next series of coils, then through the coils

m=g
Fig. 84.
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until it reaches a block connected to the central piece by a plug, when
it passes across to the centre and then to the next series of coils. If

no coil of a series is to be put in circuit, the plug joins the central block

to the coil marked zero.

In a five-dial box the central blocks are marked respectively tenths,

units, tens, liundreds, thousands, and the resistances are read off deci-

mally at once. Thus supposing the centre in the first dial to be con-

nected to the block marked 5, in the second dial to the block marked 7,

in the third to that marked 6, the resistance put in circuit is 67*5 units.

The advantage of the arrangement consists in the fact that only one

j)lug is required in each dial whatever the resistance may be, and since

the plugs when no coils are included complete the circuit through the

zeros, there is always the same number of plug contacts in circuit,

instead of a variable number as in the ordinary arrangement. More-

over a disadvantage of a series of plugs in line, joining metal blocks

on a single base plate, is avoided. When one of these is forcibly

tightened the contacts of the others may be altered. For this reason

high precision resistances are placed in blocks detached in position,

with the metal pieces joined by heavy flexible conductors.

Besides the dial resistances there is generally in each box a set of

resistances arranged in the ordinary way, and comprising two tens,

two hundreds, two thousands, and sometimes two ten-thousands, fitted

with terminals to allow the box to be conveniently used as a Wheatstone
Bridge, as described below. The extremities of this series of resistances

can be connected by means of thick copper straps with the series of dial

resistances. Each pair of equal coils are sometimes wound on one

bobbin to ensure equality of temperature.

7. Resistance slides. It is sometimes desirable to have a ready means
of varying the ratio of two resistances, or of increasing a single resistance

by steps of any required amount. For this purpose a resistance slide is

a convenient arrangement. One form is shown at (7Z) in Fig. 85. Along

a metallic bar r in front of a series of equal resistance coils slides a contact

piece s by which r is put in conducting contact with any one of the

series of brass or copper blocks by which the coils are connected. The
figure shows a combination of two slides used by Thomson and Varley

for cable testing. Each resistance in AB is five times that of each

coil in CD, and there is the same number in each, so that the whole

resistance of CD is twice that of each coil in AB. The slider, S, oi AB
consists of two contact pieces insulated from one another on the slider,

and at such a distance apart as to embrace two coils. The terminals of

CD are connected to CC as shown in the figure, and therefore in what-

ever ratio the resistance CD is divided by the contact piece s, in that

ratio is the joint resistance of the two coils CC divided. CD thus forms

a vernier for AB. In the arrangement figured the resistance CD is

divided into the two parts 12 and 8, and therefore the sixth and seventh

coils oi AB which are between the terminals of S are divided into two
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similarly situated parts 12 and 8. Hence the whole resistance between

A and B is divided into the two parts 56 and 44.

®nooooaoaQoo

Fig. 85.

Dial forms of the double resistance slide are also used, and are

very convenient.

8. Conductivity box. Boxes in which the coils in circuit are in

parallel seem to have been first made at the suggestion of Lord Kelvin,

and called Conductivity Boxes, because the conductance* (the reciprocal

of the resistance) in circuit is obtained by adding the conductances of

the coils. Fig. 86 shows the arrangement. Each coil is a resistance

Fig. 86.

coil wound on a bobbin as described above and has one extremity

connected to a massive bar a, the other to a brass block c, outside the

box, which can be connected by a plug to the massive bar b. The
resistance in circuit is obtained at once by adding the conductances of

•^ The word " Conductance " is now widely used instead of "Conductivity," and
is also adopted in this book.
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the coils thus in circuit, and taking the reciprocal of their sum. The
conductances of the coils are marked on the corresponding blocks outside

the cover.

This arrangement is very convenient for the measurement of low

resistances such as one ohm and under, as it gives a long graduation

of fractions by combination of the coils.

Lord Kelvin proposed to call a box arranged thus a Mho-Box, where
" Mho " is the word " Ohm '* read backwards to indicate that the box

gives conductances, that is reciprocals of resistances. " Perversion " of

spelling of the word Ohm thus indicated inversion of numerical value.

9. Temperature variation of resistance. The resistance of almost

all wires increases with rise of temperature, and the box is generally

adjusted to be correct at a convenient mean temperature which is marked
on the cover. The value of the resistance shown by the box at any
other temperature is obtained when the change of temperature can be

ascertained from the known variation of resistance with temperature.

A table of the variation of the resistances of different substances with

temperature is given at the end of this volume.

The general internal temperature can be observed by means of a

thermometer passed through one of the orifices which should be left

in the side of the box to allow free circulation of air. Local changes

of temperature may sometimes be produced in the coils without affecting

appreciably the general internal temperature. These changes cannot

be accounted for, as it is impossible to observe them with any accuracy,

but can be avoided by using only the very feeblest currents, and con-

tinuing these for the shortest possible time.

The general internal temperature can also be measured by means of

an auxiliary coil provided for the purpose. This is constructed of thick

copper wire wound on ebonite, and extends along the whole length of

the box. Since the variation of resistance of copper relatively to that

of the wire of which the coils are constructed is known, we can by
measuring the resistance of this auxiliary unit by the box itself obtain a

closely approximate estimate of the internal temperature.

The temperature variation may be made for all the coils the same as

the highest variation for any one, by introducing into each a piece of

copper (conveniently at the bight after the coil is wound) just sufficient

for the purpose.

10. Testing a resistance box. In every case the blocks to which the

coils are attached should be pierced with a socket for special plugs

with binding terminals attached, by means of which any coil in the box
may be brought into circuit itself. This is necessary for the testing

of the box, which is done as follows. In the case of the ordinary arrange-

ment of coils (Figs. 81, 83), each of the units is compared with a standard

unit, then the two units together are tested against each of the 2s,

then the 2s and a 1 are attested against the 5 and so on, until the lOOs

are reached. All the preceding coils put together give 100, which can be
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tested against each of the lOOs, and this process is continued until the

box is completely tested. The process can be checked by other possible

combinations, and the whole of the results, if necessary, put together

by the ordinary methods of combination.

If a dial box is to be tested the auxiliary unit, if it has one, suffices

for the comparison of each of the units, then the nine units and the

auxiliary unit give 10 for the comparison of each of the nine tens. These

when compared give with the ten units 100 for the comparison of each

of the hundreds, and so on.

In the case of a box arranged in geometrical progression with common
ratio 2, and first term 1, the unit is duplicated for the sake of comparison.

Each unit having been compared with a standard, they give together a

comparison of the next coil, which is 2, then that with the two units

give 4, with which the coil of 4 units can be compared, and so on.

The actual methods of comparing coils are described below (p. 352

et seq.). It is to be remembered that in the comparison of the coils of

low resistance the connecting wires (which should be in all cases short

and thick) must be taken into account.

In the use of a set of resistance coils it is important that the plugs

be kept clean, and the ebonite top of the box, especially between the

blocks of brass, kept free from dust and dirt. The ebonite may be

freed from grease by washing it with benzole applied sparingly by means
of a brush, and a film of paraffin oil should then be spread over its

surface. The plugs and their sockets may also be freed from adhering

greasy films by washing in the same way with benzole or very dilute

caustic potash. The latter should not however be allowed to wet

the ebonite surface. If necessary the sockets may be scraped with a

round-pointed scraper. On no account should the plugs or sockets

be cleaned with emery or sand paper.

11. Rheostats. It is frequently necessary to adjust a current to a

convenient strength by varying the amount of resistance in circuit.

When the amount of resistance in circuit need not be known, this can be

done most readily by means of a rheostat, or resistance coils in series

with a rheostat, an arrangement which has the advantage of giving

a continuous variation of the resistance. Rheostats of convenient

design consist of resistance wires of constantan alloy, which has a tem-

perature coefficient very nearly zero. These wires are bare and are

wound " non-inductively " on slate blocks, and a slider making contact

with the wires brings into the circuit more or less of the wire. This alloy

consists of 50 per cent, copper and 50 per cent, nickel, and has a tem-

perature coefficient of only about 0-003 per cent, per degree centigrade.

It has the disadvantage of a considerable thermoelectric power

against copper.

12. Christie's, or Wheatstone's bridge. The method of comparing re-

sistances of most general use is that usually referred to as Wheatstone's

Bridge, though as a matter of fact it was invented by Mr. S. Hunter
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Christie [Phil. Trans. 1833J. It was brought into general use by

Sir Charles Wheatstone. The arrangement of conductors employed is

that shown in Fig. 80, with a battery, generally a single Daniell's or

Menotti's cell, included in /-g, and a galvanometer in r^. A nmch higher

battery power is however sometimes required, especially in cable and

other testing. The three conductors whose resistances are rj, r^, r^

are coils of a resistance box j)rovided with terminals so arranged that

connections can be made at the proper places to form the bridge, for

example as in Fig. 88, which shows diagrammatically how a resistance

c

box is joined up as a Wheatstone bridge. It will be easy to make out

in Fig. 83 the terminals corresponding to A, B, C, D respectively of

Fig. 87. Fig. 83 above shows how in a so-called " J*ost-Oifice Resist-

ance Box," the battery and galvanometer keys are mounted on the

cover, and permanently connected to the proper points inside the box.

The resistance to be compared is placed in the position BD (Fig.

88), and convenient values of r^ and rg are chosen, while rg is varied until

It
K l<

Fig. 88.

no current flows through the galvanometer. The value of r^ is then

found by (24) of Chapter IV. with c = 1 , which, since y^ is zero, may be
written

^
'4 = ?'-3 (1)

If i\ and fg are equal, r^ is equal to r^, and is read off at once from the

resistance box.

I
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13. Arrangement of bridge for greatest sensibility. In the practical

use of Wheatstone's bridge we have generally to employ a certain

battery and a certain galvanometer for the measurement of a wide

range of resistances ; and it is possible if great accuracy is required

so to choose the resistances of the bridge as to make the arrangement

have maximum sensibility. An approximate determination is first

made of the resistance to be measured. Call this r^. It has been shown
in IV. 13 above that if the battery and galvanometer are invariable

we should make

r, =J^, h-^Jur/^^, h = ^JW^^^^ (2)

When the other resistances r^, rg, r^, r^^ are fixed the coil of the galvano-

meter, supposed wound to fill a given bobbin, should have the resistance

5- given by ^r^{H + u)

If the resistances of the given battery (see p. 376 below) and galvano-

meter are at the disposal of the experimenter, then on the supposition

that the resistances of the connections are so slight that the resistance

of the galvanometer may be taken as equal to r^, the most sensitive

arrangement is that in which each of the resistances is equal to r^^.

Unless in particular cases in which great accuracy is necessary, any
convenient values* of r^, r^ will give results sufficiently accurate for all

practical purposes, but in arranging the bridge with these the following

rule should be observed : of the resistances r^, r^ of the galvanometer

and battery respectively, connect the greater so as to join the junction

of the two consecutively greatest of the four other resistances to the

junction of the two consecutively least.

14. Practical rule for sensibility. This rule follows easily from IV.

(14) above. For interchanging r^ and r^ we alter only the value of D,

and calling the new value D' we get

D'-D-{H-r,){r^-H)(r^-r^\ • (3)

The expression on the right will be negative if r^^r^ and r^, r^ be the two
greatest or the two least of the other resistances. Hence on this sup-

position the value of D has been diminished, and therefore the current

through the galvanometer for any small value of ^2*'3~*"i^4 increased

by making fg join the junction of rj, ^3 to that of r^, r^- In cases in

which the resistances in the bridge are large, a galvanometer of high

resistance should also be used.

15. Further discussion of sensibility. The rule, however, that the

given battery should be so arranged as to make the internal resistance

equal to the resistance to be worked through in the bridge is utterly

impractical, as it cannot be carried out. But one or two storage cells

of negligible resistance are usually available, and the e.m.f. applicable

can be made as large as the resistances will bear without overheating,
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80 that the conditions to be fulfilled arc quite different from those which

contemplate the use of a certain battery of cells, to be joined in some
combination of series and parallel arrays.

Using then the battery of negligible resistance, we see that, when
balance is nearly obtained, the e.m.f. E applied is y{r2-\-r^)y where y is

the current in AD and DB [Fig. 87 j. The best value, g, of the

galvanometer resistance, if a coil of given size is to be made for the testy

is [IV. 13 (26)] ri(r3 + r^)l {ry^-\-r^). When this value is used the deflec-

tion D is, if k be a constant, given by

'»-'v?/(('<:)(-^)l'-
'"

In or^ler that the deflection should be as great as possible it is clearly

required by this formula that r^ should be small in comparison with r^

and with 7-4. Since r3/r4 = ri/r2 it is clear that rg must be large. Thus
we get again the rule that the galvanometer should connect the junction

of the consecutively largest pair of resistances with the junction of

the two which are consecutively least.

The actual resistance I'r^ of the available galvanometer may be different

from the best resistance g. As we have seen [IV. 13 (26')] the current

through the galvanometer is then

y^K ^1 + ^2

r^+gr^ + r^-^-r^ + U'

and the deflection may be compared with that for the coil of best resist-

ance, if the bobbins are similar, by multiplying this value of the current

by Jy . Thus for the resistances chosen for the bridge the deflection

is proportional to
V ^s ^ V ^

^ (.5)

fg + gr w+l'

if r^ = ng. The maximum deflection is obtained for » = 1, and

hence the ratio of the actual deflection to the maximum is 2v/w/(« + I).

This result was given by Schuster [Phil. Mag. 39 (1895)], who also

points out in the same paper that, obviously, as sensitiveness is always

increased by an increase in electromotive force, the limit is only reached

when the current is so strong that there is danger of overheating one

or other of the resistances.

If the current through r^ be nearly the maximum, y, which the

conductor will bear, the galvanometer current will, if r^ = r^, be

kydrjr^ [see (27'), p. 141], where k is a. constant. If this be the

smallest current, dy^, which can be measured by the galvanometer,

we have dyjy = kdrjr^. Thus the percentage accuracy of measure-

ment of r^ is proportional to the current, y, which can be safely passed

through that resistance.

16. Operations in testing with a bridge. In the practical use of the

I

method the electrodes of the battery should be carried to the terminals

G.A.M. y
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of a reversing key, so that the testing current may be sent in opposite

directions if desired through the resistances of the bridge. Also a single

spring contact-key, which makes contact only when depressed, should

be placed in r^. These keys are convenient when arranged side by
side, so that the operator placing a finger on each can depress one after

the other. A convenient form of wire rocker with mercury cups,

combining the two keys, may be easily made by the operator. When
the bridge has been set up and a test is about to be made, the single

key in r^ is first depressed to test whether any deflection of the galvano-

meter needle is produced without closing the battery circuit. If there

is a deflection, this must be due either to thermoelectric action in the

galvanometer circuit, or to leakage from the battery to the galvano-

meter wires. The procedure in this case will be stated presently. If

there is no deflection, the operator then opens the galvanometer circuit,

depresses the key which completes the battery circuit, and immediately

after, while the former key is kept down, depresses also the galvano-

meter key. After the circuits have been completed just long enough
to enable the operator to see whether there is any deflection of the

needle, the keys are released so as to break the contact in the reverse

order to that in which they were made. This order of opening the

circuits enables him to make a second observation of deflection without

its being necessary again to send a current. It is easy to imagine and
construct a form of contact-making key, which being depressed a

certain distance completes the battery circuit, and on being depressed

a little further completes the galvanometer circuit, and therefore on
being released interrupts these circuits in the reverse order. This

form of key is of use in the testing of resistance coils in which there is

considerable self-induction. For general work, however, it is incon-

venient, as the reverse order of making the contacts may have to be
adopted for certain other tests. Again, in many practical operations,

such as cable testing, etc., the contacts have to be made after different

intervals of time in different cases.

17. Effect of self-inductance in a bridge network. The object of thus

completing and interrupting the battery circuit before that of the

galvanometer is partly to avoid error from the effects of self-inductance.

When a current in a conducting wire is being increased or diminished,

an electromotive force, the amount of which depends on the arrange-

ment of the conductor, is called into play, so as to oppose the increase

or diminution of the current [see p. 240]. The effect of this electro-

motive force is to produce, therefore, a weakening of the electromotive

force of a battery for a very short time after the circuit is com-
pleted, and a strengthening during the very short interval in which
the current falls from its actual value to zero at the interruption of the

circuit. Its value is small, though not zero, when the wire is doubled
on itself so that the two parts lie along side by side, the current flowing

out in one and back in the other ; but is very considerable if the wire
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is wound in a helix, and Htill greater if the helix contains an iron core.

It is shown in tlie discussion at p. 240 that the electromotive force of

self-inductance is directly proportional to the rate of variation of the

current in the circuit, and is greater the larger the magnetic induction

through the circuit, and thus is explained the bright spark seen when
the circuit of a powerful electro-magnet is broken.

If, then, one or more of the coils of a bridge arrangement were wound
so as to Iiave self-inductance, the electromotive force thus called into

play would, if the galvanometer circuit were completed before that of

the battery, produce a sudden deflection of the galvanometer needle

when the battery circuit is closed. All properly constructed resistance

coils are, as has been stated, made of wires which have been first doubled

on themselves and then wound double on their bobbins, and have

therefore no self-inductance. The wire tested, however, and the con-

nections of the bridge have generally more or less self-inductance, the

effect of which, unless the contacts were made as described above,

might be mistaken for those of unbalanced resistance. This mode of

winding the coils also avoids direct electromagnetic effects of the coils

on the galvanometer needle when the coils arc placed near it.

If on depressing the galvanometer key at first as described above a

current is found to be produced by thermoelectric or leakage disturbance,

and the spot of light is therefore displaced, the operator keeping down
the galvanometer key depresses the battery key, and observes if there is

any permanent deflection of the spot of light from its displaced position

during the time that the battery key is kept down. This is easily dis-

tinguished from the sudden deflection due to self-inductance, as that

immediately dies away to zero as the current rises to its permanent value.

If the coil which is under test for resistance has an iron core the

battery key must be kept down for a little time before the galvano-

meter key is depressed, to allow inductive action, due to the growth

of magnetism in the iron, to have ceased.

18. Testing with a known ratio of arms of bridge. Interpolation. When
comparing a resistance the operator first observes the direction in which

the mirror or needle is deflected when a value of r^ (Fig. 88) obviously

too great is used, and again when a much smaller value of r^ is used.

If the deflections are in opposite directions, the value of 7*3, which would
produce no deflection of the needle, lies between these two values, and
the operator simply narrows the limits of r^, until on depressing the

galvanometer key no motion, or only a very small motion, of the needle

is produced. It may happen, however, that the value of the resistance

which is being compared may be between two resistances which have
the smallest difference which the box allows. Thus with a resistance

box by which with equal values of r^ and rg he cannot measure less than

,\y of an ohm, he may either by making the ratio of r^ to rg, 10 to 1, or

100 to 1, obtain the values of )\ to one or two places of decimals. Any
inaccuracy in the relation of the arms of the bridge may be eliminated
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by reversing the arrangement, that is, interchanging r^ and r^, and r^

and r^, and taking the mean of the results.

Whatever be the ratio of r^ to rg, if he can read the deflections when
first one and then the other value of fg (between which r^ lies, and which
differs by only ^L of an ohm) is used, he can find r^ to another place of

decimals by interpolation by proportional parts. For example, let

the value 120-6 of r^ produce a deflection of the spot of light of 6 divisions

to the left, and 120-5 a deflection of 14 divisions to the right : the value

of rg which would produce balance is equal to

120-5 +-1x14/(14 +6) = 120-57.

19. Slide-wire bridges. A convenient and accurate form of bridge

is that introduced by Kirchhoff. In this an exact balance is obtained

by moving a sliding contact, D, say, along a graduated wire which
joins the two points A, B oi Fig. 87. A diagrammatic sketch of the

arrangement is shown in Fig. 89. S is the sliding-piece. A, B the wire

H^7

g) ®| I® ® @| I®

Fio, 89.

along which it slides. A, B is stretched in front of a scale a metre in

length graduated to half-millimetres and doubly numbered, from left to

right and from right to left. The coils a, c, d, h of the diagram have the

respective resistances r^, r^, r^, r^. Fig. 90 shows a form of the instru-

ment manufactured by Messrs. Elliott Bros.

Fig. 90.

Fig. 91 shows an easy-made and cheap form of wire bridge devised

by Prof. T. Gray, w, w is the wire, made of platinoid or german
silver, which is stretched above, but not in contact with, a base-board,

passing round the insulating and supporting vulcanite block B from the

mercury cup c^ to the other c^. A vulcanite crossbar A clamps the wire

in position near the cups. If the wire be long several such crossbars

may be used. Each end of the wire is soldered to a stout bar of copper,
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bent, as shown in Fig. 91, so as to dip into a mercury cup without any

risk of contact of the mercury with the soldered junction. The cups

should be of copper, and may conveniently be made of the form shown

FIO. 91.

FlO. 92.

3

in the figure, and fixed in holes in the wooden or ebonite supporting-

block. The ends of the coi)per pieces dipping into them should be

carefully squared and bear against the copper bottoms. They should

be freshly amalgamated with mercury.

The wire is divided into parts of equal resistance by a process of

calibration (p. 342 et seq., below), and marks indicating these parts are

made on a rule attached to the base-board, along

which the contact-piece slides. A movable scale
^''''''^^''^^^^^^i^^^

subdivides the space between two divisions.

On a plate of ebonite or well-paraffined hard

wood are fixed mercury cups Cg, C3, c^, made as

just described. The auxiliary resistances r^, r^

of the bridge when required are placed between

Cj and Cg, Cg and C4, while the wires to be com-

pared connect Cg and C3, c^ and c^. Since the

wire Wy w can be made long, the auxiliary

resistances are not frequently required. When they can be dispensed

with Cg and c^ are removed and c^ placed in the socket h, and the

wires to be compared are then placed between C3 and Cj, c^ and Cg.

A form of slide-wire bridge was used by Matthiessen and Hockin
in the comparisons of resistance made by them in their work as members
of the British Association Committee on Electrical Standards ; and it

was found by these experimenters that an alloy of 85 parts of platinum

with 15 parts of iridium formed an excellent material for the graduated

wire. This alloy, they found, did not readily become oxidized. Platinum-

silver alloy is however frequently employed.

The contact piece is generally a well-rounded edge of steel with a

slight notch to receive the wire. The knob pressed by the operator

bends a spring which presses the contact piece with just sufficient

pressure against the wire. A turning bar can be put into position to

keep down the contact when desired. The sliding piece carries a

vernier which enables fractions of a division to be read on the scale.

The method of testing by a slide-wire bridge is precisely the same as

by the ordinary bridge, except that when balance has been nearly

obtained in the usual way, by varying the relation of the resistances

^i> ^2> **3» ^or ^ particular position of the sliding piece, an exact balance
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is obtained by shifting the sliding piece in the proper direction along the

wire. Supposing that the resistance of the wire per unit of length has

been determined for different parts of the wire, and that the resistances

of contacts have been determined (32, 33) and allowed for, the value of

r^ is at once found by taking into account the resistances of the segments

of the wire AB, on the two sides of the point contact at which gives

zero deflection.

20. Calibration of a slide-wire. The wire AB (Fig. 89) may be " cali-

brated " by one of the following methods. The first is that which was
employed by Matthiessen and Hockin.* Let r^ and r^ {a, h in Fig.

89) be such resistances that balance is obtained at some point P in AB,
with two coils f 2> ^3 (<^j (^ i^ Fig. 89) differing in resistance by say i\y per

cent. Let Ti + a be the total resistance, including contacts, between

C and P, and r^ + p that between D and P. Now alter r^ by inserting

a short, piece of wire. This will shift the zero point along the wire

through a certain distance to the left. Balance so as to find this point,

which call P^ ; then interchange rg and r^, and balance again, and call

the second point thus found Pg. Let z denote the resistance between
P and Pj, z' the resistance between P and Pg, x the resistance of the

short piece of wire added to r^, and I the length of wire between P^
and Pg. We have, neglecting connections of rg, r^,

Tj^ + a+x-z _r^+^+z \

'^ r^Y' wr^+a+x-z _r^ +^-\-z ^
'

from which we obtain for the resistance per unit of length between

Pj and P.,,

^-^=1^1,)^''^^'^^'^^^^^^ ^'^

The value of x is easily obtained with sufficient accuracy from either

of equations (6), as z is approximately known from the known resistance

of the whole wire. In this way the resistance per unit of length at

different parts of the wire can be easily found, and, if necessary, a table

of corrections formed for the different divisions of the scale.

21. Carey Foster's method of calibrating a slide-wire. Professor

Carey Foster has given the following method for the calibration of the

bridge wire. The arrangement is shown diagrammatically in Fig. 93.

The battery shown in Fig. 89 is removed, and two equal copper bars

are attached at 0, D (Fig. 93), at right angles to the bars of the bridge

at those points. Between the extremities of these is stretched a second

slide wire. Or the slide wire of a second bridge, from which all other

connections have been removed, may be connected to C and D by

* Reports on Electrical Standards, p. 171 (11)12 edition).
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wireH from the end bars to which it is attached. In place of the coils

c, d of Fig. 89, and the middle bar of the bridge, is substituted a single

Daniell's or other cell. One terminal of the galvanometer is connected
to a sliding piece on the wire W, the other to a sliding piece on the other

wire, W. In place of rj and r^ are substituted two small resistances,

W
\r\ixi

w ! \.i ^J ••.!

/ ^

Fio. 03.

60

one simply a piece of thick wire c, the other a resistance g, equal to that

of a convenient portion, say from 80 to 100 millimetres of the bridge

wire. The former of these has been called the connector, the latter the

gauge. They are connected to the bridge by mercury cups in the manner
described in 19 above, and some form of switchboard is usually employed
to effect the interchanges described below.

The connection by massive contacts of copper in mercury-filled copper

cups, or at least cups with copper bottoms, on which the massive

contact pieces rest in the mercury, is of the utmost importance. It is

the only method of connection which admits of interchange of coils

without error from resistance of contact.

Supposing the gauge placed first on the left and the connector on
the right, the slide on W is moved close up to the extremity B, and
balance is obtained by placing the slider on W at some point near

D. The gauge and connector are then interchanged, and balance is

again obtained by shifting the slider on W towards the left to some
point h.

The gauge and connector are again interchanged, and balance

obtained by shifting the slide on W to the left, and so on until both wires

have been traversed almost completely from end to end. The distance

through which the slider is moved at each interchange of the resistance

is read off, and gives, as we shall now show, a determination of the

average resistance per unit of length over that portion of the wire.

Let P and P' be points of contact on W and W when balance is obtained,

let the permanent resistances included with W, W at the left-hand ends

be denoted by a, a', and at the other ends by b, b' respectively, the

resistance of the connector by c, of the gauge by g, of the wire from
.4 to P by z, of the whole wire by w, of the wire W from C to P' by 2',

and of the whole wire by w\ If the connector be on the left and the

gauge on the right, we have

c-i-a + z _g + h-\-w-z

a' + z' b' + w - z
•(^)
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and if the gauge and connector be interchanged so that z receives a

new value z^,

a' ^z' h' -vw -z
(9)

From these equations we get at once

g-c=z^-z, (10)

that is, the steps along TF have each a total resistance equal to g-Cy

a result evident without calculation at all.

Again, supfiosing the gauge at first on the left, and next on the right,

the slider on IF' is shifted, and we get the equations

a +z' h' + Hj - z'

g+a+z b+c+w + z'

a -\-zi_ _ h'+'

c+a+z

y-'-)

b -i-g -\-w-z

a' +h' -{ w
(11)These crive z - ,.-. - . ., . , ,° ^ ' a +0 +c +g +tu

The quantities on the right-hand side are all constants, and therefore

the wire W is thus divided into parts of equal resistance. From the

known resistance of the whole wire, which can be found as shown in 23,

p. 347 below, the resistance of each part can be found. The steps on

each wire are thus steps of equal resistance.

The following are the actual results obtained in the calibration of the

slide-wire of a bridge performed by the method just described.

Parts of the wire of equal resistance (~r).
Resistance of the parts included between

the corresponding readings.

Readings (zero taken at
right-hand end).

Lengths I. Readings. „ . , lOr
Rcsistimce =— •

0... 10-59 10 59 0... 10 -94429 r

9-79... 20-35 10-56 10... 20 -94697 „
19-70... 30-26 10-56 20... 30 -94697 „
29-84 ...40-41 10-57 30... 40 -94607 „
39-69 ...50-22 10-53 40... 50 -94967,,

49-71 ...60-27 10-56 50... 60 •94697,,

59-80... 70-35 10-55 60... 70 -94787 „
69-82... 80-32 10-50 70... 80 •95238 „
79-86... 90-38 10-52 80... 90 -95057 „
89-41 ...99-97 10-56 90... 100 -94697,,

,.,100 9-47873 r

The numbers in tlie right-hand column are taken from tables.

correct to the number of decimals given.
Tile results are of course not
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It will be noticed that the second reading in any line of the first

column is not exactly the same as the first reading in the next line.

This was caused through its being difficult to balance by adjusting the

contact on the auxiliary wire. Balance was therefore obtained after

a step was taken along the auxiliary wire by moving the slider through

a short distance on the wire which was being calibrated.

The value of r found as described below, p. 347, was -0452 ohm.
From this the resistance of the part of the wire between two readings

of the scale is found as shown in the table.

22. T. Gray's method of calibrating a slide-wire. A modification of

this method, whi(;li works well in practice! and avoids some difficulties,

has been made by Prof. T. Gray. The two wires W, W\ are arranged

parallel to one another as in Fig. 94, and are connected at the ends A, C
and B, D by two equal small resistances

of suitable amount g, the terminals of

which rest in mercury cups as described

fW-fS3above (p. 343). The equality of these

resistances can be tested with great

ease and delicacy by connecting the \. C
battery at ^, 5, and balancing with

the galvanometer between a point

on W and another on PF', then inter-
F o 94

changing the small resistances g, g,

and observing if the balance is disturbed. If it is not the resistances

are equal. When the resistances have been adjusted to equality, the

battery is brought into contact at A and Z> and balance is obtained by
placing one galvanometer terminal close to B on IT, and the other at

h on If'. The battery contacts are then transferred to B and 0, and
balance is obtained by shifting the terminal of the galvanometer on
W to some point a, while that on W is kept at h. The battery con-

tact is then transferred to ^, D, and balance obtained by moving the

terminal on IF' so that the points of contact are a, e, and so on.

The readings on the graduated scales are taken for the successive

points of contact, and divide each wire, as will be shown presently,

into steps each of resistance g.

The contact of the battery at ^, Z) or 5, C can be made by means of

two simple rockers K^ K, working between mercury cups or ordinary

metal contacts, or by means of any simple key. This renders un-

necessary any mercury-cup switchboard arrangement for transferring

coils.

Thus the method has the very great advantage that the contacts

are all permanent except those of the battery and the sliders, no one of

which of course introduces any error.

Let contact be made by the battery at A and D, and balance be

obtained with the galvanometer at points a and e on the wires W and
W'y then calling as before z, z' the resistances of the wires between A
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and a, C and e respectively, and w, w' the resistances of the whole wires,

we have, neglecting (which will not affect the result) constant resist-

ances of connecting bars, etc.,

w-z^-g ^ w -z'

z z -\-g

Let the battery now be transferred to B and C and balance be ob-

tained at d and e. Denoting the resistance between A and d by z^,

we again have
io-z,_w' -z^g

^j3^

Equations (12) and (13) give

-(i^'-A (H)
w ^g)

or the steps along W are steps of equal resistance. The same can of

course be proved for W

.

To avoid thermoelectric effects in such processes, the mean of the two
positions of balance for opposite currents should always be adopted as

the true position.

The slide-wire bridge may be used for the accurate comparison of

resistance coils with a standard, say for the adjustment of single ohms
with a standard ohm. Fig. 89 (p. 340 above) shows the arrangement

adopted, r^ and T/^ are the resistances of the coils a, 5, to be compared,

and are nearly equal, rg and r^ are the resistances of the two coils

c, d, and are each nearly equal to r^ or r^. The connections are made by
mercury cups as already described. Balance is obtained with the

contact-piece somewhere near the middle of the slide-wire. The coils

fj, r^, are then interchanged and balance again obtained. By (10) above

we have ,^^,
^1-^4 = 2:1-22' (1-^)

where z^, z^ are the resistances of the wire from A to the points of con-

tact in the two cases. If p be the resistance per unit of length for the

whole wire, Sj, Sg t^® distances (reduced, if necessary, by calibration,

as shown above, to distances along a wire of uniform resistance p per

unit of length) measured along the wire from A, we have

»"i-^4=/oK-«2) (16)

These results are evidently free from any uncertainty as to the re-

sistance of the junctions of the slide-wire to the copper bars at its ends,

and from any error due to want of correspondence between the index

mark on the sliding piece and the point of contact.

It is to be observed in this connection that the resistance of a coil

may be accurately adjusted to any required value by first making it

slightly too great, and then joining it in parallel with a thin wire cut
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HO as to give as nearly as j)0S8ible the required correction. If the

observed resistance be r^, and that required r,, the resistance of the

correcting wire is Tifjir^-Ti).

If a separate experiment be made with a coil of accurately known
resistance r,, just a very little less than that of the whole wire, and a

second conductor of resistance r^ so small that it may be neglected, the

value of p may be obtained from the equation

p= •' (17)

If the coils compared are too unequal to allow balance to be made on
the wire, a series of intermediary coils may be obtained, so as to give a

gradual descent from one coil to the other.

23. Resistance of the slide-wire between two readings. The resistance

of the wire between any two readings may also be determined by the

following method, due to Mr. D. M. Lewis. The total resistance of the

wire is approximately found by measuring it with an ordinary bridge

consisting of a post-office set of coils, or other available form of a re-

sistance box. Two coils are then made, the resistance of each of which

is less than unity by a quantity which is nearly equal to, but not greater

than, the total resistance of the wire. These can be also made by means
of an ordinary resistance box. Let R^, i^g ^® ^^^ ^^ 7^* ^^^ accurately

known resistances of these coils. Each is tested as follows in the slide-

wire bridge against a unit coil, a standard ohm for example. The unit

coil is first placed in the position a of Fig. 89 and one of the two resist-

ances, /?! say, is placed in the position b. The connections should be

made by mercury cups as already described. In the positions marked
c, d are placed permanently two coils of nearly equal resistance. The
magnitudes of these need not be known, but should not be greater

than one or two units. Balance is obtained with the slide /S at a point

near the end B of the slide-wire, and the reading on the slide-scale is

taken. The coil R^ and the unit are then interchanged, and balance

obtained with the slide near A. The difference of the two readings

gives the length of wire intercepted between them, and this must be

equal in resistance to 1 - i^j.

The other coil i?2 is now substituted for R^ and two readings for which

balance is obtained taken in the same way. These give a length of the

wire the resistance of which is 1 - i^g-

The two resistances are now put together in series and tested against

the unit in precisely the same way, and give between the two readings

taken a length of wire of resistance R^ + R2-1-
Now from a previously made .calibration of the wire the resistances

of the three portions of the wire thus observed can be obtained in terms

of the resistance of the calibration-step, and three equations are thus

available for the determination of the three unknown quantities i?i, /?2,

and r, the resistance of the step used in calibration, as in 21 above.
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The following table gives the results of this process applied to the slide-

wire the calibration of which is given above :

Positions of the
Resistances. Readings

on Slide-

wire.

Resistances between these readings in terms of r.

Left. Right.

1

1 1-40

97-72

9-131

[9-47875 - -13220 - -2 1 590 = 9-13065r]

It,

1

1

It,

0-14

98-97
9-3G8

[9-47873 - -01322 - -09754 = 9-367977-]

B,+Ii2
1

1

lt, + Ii,

69-70

31-45

3-625

[3-79058 - -02843 --13717 = 3-62498r]

Here

and therefore

I-i?i=9-]31r, I-7?2 = 9-368r,

7?i+i?2-l =3-625/-,

9- 131 "9^68
7?i+i?2j

3-625

1

22124
= •«^^2.

Substituting this value of r in the first two equations we find R^
and R^. This can be used to find the resistance of the portion of the

wire between any two readings of the scale.

24. Comparison of two standards. An accurate comparison of two
nearly equal resistances, for example a unit with its copy, can be ob-

tained by making rg and r^ to be compared occupy the positions c, d,

of Fig. 89. Balance is first obtained with rg and r^ in one pair of posi-

tions, then they are interchanged and balance again obtained. Assum-
ing that the permanent resistances are included in r^, r^, r^, rg, and giving

Zj, Zg the same meanings as at p. 346 above, we have

r^-\-z. Ta+W r^ -\-r.+w-\-z,

fg r^+w-z^ ri+Z2 r^+r^+iv-iz^-z^)'

and therefore
To -r. 2{z,-z,)

,(18)
»*3 ri+r^+w-{zi-Z2)

Hence the greater r^ + r^ the greater z^ - Zg- Thus, by choosing a pair

of resistances as nearly equal as possible, and sufficiently great, rg and
rg may be compared to any needful degree of accuracy.

The permanent resistances, «, /9 say, corresponding to the coils a,

b of Fig. 89, may be estimated by the following method, by which two
low resistances can be measured when the ratio of two others is accurately

known. Let the resistances rg, r^ of c, d in Fig. 89 have the known ratio
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yu. We sliall suppose fj and r^ to be so low resistances that, with a value

of yu differing conHidcTably from unity, balance can be found on the

wire. Balance is obtained with the coils in the positions c, d, shown in

Fig. 89 ; then rg and r^ are interchanged, and balance is again obtained.

We have - j.- - j..« -

r^-hw-Zi **i +2:2

From these equations we obtain

M-1 yu-1

If thick copper pieces be substituted for the coils a, b of Fig. 89,

their resistances, if the connections as is understood are made with

proper mercury cups, may be taken as zero, and a and /S are approxi-

mately given by (19). The values of a, /S thus obtained may be used for

the correction of the values of fj, r^ found as just described. This

correction will not be appreciably affected by the unknown permanent

resistances corresponding to the coils c, d, if rg* ^3 ^^e taken moderately

large so that the actual ratio may be taken as equal to their known ratio.

Neither of the arrangements of Wheatstone's bridge described above

is at all suitable for the comparison of the resistances of short pieces of

thick wire or rod, for example, specimens of the main conductors of a

low-resistance electric-light installation, the resistances of which are so

small as to be comparable with, if not less than, the resistances of the

contacts of the different wires by which they are joined for measure-

ment. To obtain an accurate result in such a case, we must compare,

directly or indirectly, the difference of potential between two cross-

sections in the rod which is being tested, with the difference of potential

between two cross-sections in a standard rod, while the same current

flows in both rods, in a direction parallel to the axis at and everywhere

between each pair of cross-sections.

25. Thomson's double bridge. Thomson modified Wheatstone's

bridge, by adding to it secondary conductors, to enable it to be used with

the convenience of the ordinary arrangement, for the accurate com-

parison of low resistances. The arrangement is shown in Fig. 95,

as applied to the comparison of the resistance of a certain length of a

rod of metal with that of a similar length of a standard rod. CD are

two cross-sections, at a little distance from the ends of the conductor

to be tested, and AB are two similar cross-sections of the standard con-

ductor. These rods are connected by a thick piece of metal, so that the

resistance between B and C is very small, and the terminals of a battery

of low resistance are applied at the other extremities of the rods as shown.

The sections B, C are connected also by a wire BLC, and the sections

A, D by a wire AMD, in each case by as good metallic contacts as

possible. BLC and AMD may very conveniently be wires, along which

sliding contact-pieces L and M can be moved, with resistances R, i?, R, R
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of half an ohm or an ohm each, inserted as shown in the figure. The
sections A, D are so far from the ends of the rods, and the wires AMD,
BLC are made of so great resistance (one or two ohms is enough in

most cases), that the current throughout the portions of the conductors

compared is parallel to the axis, and the effect of any small resistance

of contact there may be at ^, B, C, D is simply to increase the effective

nuttery

resistance of BL and LC and AM and MD by a small fraction of the

actual resistance of the wire in each case. The terminals of the galvano-

meter G are applied at L and M, and the circuits of the galvanometer

and battery are completed through a double key as in the ordinary

bridge. A reversing key is inserted in the battery circuit as in other

cases, to enable the comparison to be made with both directions of

current.

Let the resistances AM, DM be denoted by rj, r^ ; BL, CL hy a,h',

AB, CD by r^, r^ ; and BC by s. Suppose i\ and r^ to be varied by
moving the sliding piece at M till no current flows through the galvano-

meter. To find the relation which must hold among the resistances

when this is the case, we may suppose the point L connected by a bar

of zero resistance, with the cross-section of E which is at the same

potential as L. Call this cross-section K. The resistance of the

portion of BC to the left of K is as/{a + b), and the portion to the right

bs/{a + h). The resistance between B and KL is therefore

{ah/{a + h)}/{a + as/{a + b)} or as/{a + b + s),

and similarly that between C and KL mbs/{a + b + s). Hence by (I)

we have

as \ / bs
iW r,+

a + b-\-s
= ri 7-4 +

* a+b+s

or r/>\ -r,ro = iar^-br^, .(20)
^ '^'^~a^b^s

Now $ has been supposed very small in comparison with a + 6, and
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a and b can be easily chosen ho as to make ar-^-br^ approximately

equal to zero. Hence equation (7) reduces to

Tx-fn (21)

the foiiiiula found above for the ordinary Wheatstonc bridge.

26. Theory of Thomson double bridge. If we go back to the descrip-

tion of tlie Wheatstone bridge network and the discussion of the

sensitiveness of its arrangement, it will be clear that we have to add
to the resistance G of the galvanometer the term ab/{a + b) on account

of the two conductors LB and LC. Thus the current through the

galvanometer is here

y.= i * I'z
(22)

^^ ab
^

{r,+r,){r^ + r^) r^+r.^+r3 + r^

a + b ri+r2 + r^ + r^

The deflection is assumed above to be proportional to the product

of this by VO, so that the maximum deflection is obtained when

^^_a6_ (r,+r.,)(r3+r,)

a + b Ti+rz+r^+r^

that is when g^^ r,{r^ + rj

a + b r^ + r^

Hence the maximum deflection Z)^ is proportional to

1 r, + ro

iy dr^
jGri + r^ + r^ + r^

where y is the current in rg and r^, and G has the special value just

stated. Inserting this value, and noticing that

{ri + r2)/{ri + r2 + ri + r^) = rj{r^ + r.^).

and that a/ {a + b) = rj {r^ + r^), we get

kD^ = iydr, ^ -^, (24)

where k is a constant. Thus we have

IcDrn-hP^l^ST^'^J,^:^^^^ (25)

^_ Vr^ l(o + r3 + r4)(ri + r3)j

|j^^f which is the form that the result stated at 15 (4) above for the Wheat-
stone bridge takes for the Thomson double bridge.

For r4 = 0-0001, r2 = 0-001, r3 = l-0, rj^ = 10, 6 = 1, a = 10, the sensitive-

ness would be proportional to 0-0034 y drjVr^. With a = 10, 6 = 1, the

best resistance of the galvanometer would be about 20/11.
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27. Example of a test by double bridge. The following example

taken from a paper, " On methods of high precision for the comparison

of resistances " by Mr. F. E. Smith,* gives the details of an exact

determination made at the National Physical Laboratory. As indi-

cated, we alter the notation of the foregoing theory to agree with the

example as presented by Mr. Smith. The resistances, in ohms, were as

follows :

r^ = P = 0-1, with potential leads.

r2 =Q = 1-0,

1-0,

l-OOOOOg at 17^

S =10-0, no potential leads.

Value to be found

Value,

Value, 1-00002

Value, 10-OOOlg

10, 6 = 1, t = n°c.

The diagram shows the arrangement of the coils. The procedure is as

follows. Balance is first obtained by shunting R ot S ; R\ S' is put

for the shunted values oi R + L and
S + L' + L". The value of L is ob-

tained by disconnecting the battery

lead from P.L and joining it to

L . R and balancing again. Similarly

L' + L" is evaluated. To find the

connector resistance d, a and b are

disconnected, and the galvanometer

terminal connected to the junction of

Q and d. a is a resistance coil plus

a potential lead of Q, h is another

coil plus a potential lead of P, and
the ratio b/a is determined with a

and b in position, in the following

way. The bridge is balanced by

pjq gg shunting R or S. The connector

which joins P to ^ at d is removed
and balance restored by shunting a or b. Then the original arrangement
is restored, and balance again obtained. Thus we get successively

P_P+b_b_R: ,g..

Q~Q + a-a-S'' ^ ^^

where R\ S' are the shunted values of R.S.
The value of P is given by

ad /R'_^
(27)

^~^'S' '^a + b + d\S'

If that of ad/{a + b + d) is not too great the second term of this expression

will be negligible ; ad/{a + b + d) should not be greater than P. As
Mr. Smith remarks, if this quantity be NP and the probable error of an

* B.A. Reports on Electrical Standards (1913), p. 674,
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observation bo 1 x 10^", the error of the final result is not less than

N X 10~". It follows that the resistance of the current leads of standard

resistances in the double bridj^e should not be greater than that of the

standard. If the contrary is the case the potentiometer method is to

be preferred ; its sensitiveness is higher, but the heating is greater and
the tests take longer.

Now taking the example for which numbers have been stated above,

we have first balance obtained by shunting R with a resistance of

122,000 ohms. The connector at tl was removed and balance restored

by shunting b with 6500 ohms. This balance remained when the

connector d was restored. The value of d was found (sec below) to

be 0-00012, which is less than P. Thus

P-qJ^^A^ _l:229005x(100001e + OOOOIJ^)_
^-^S + L' + L"- lOOOOlg + OOOOl,

-0 100UlIo.atl7 U.

The evaluation of (/, L, L' + L" is shown in the following table :

Position, Position,
gtilvr. letidH. battery luuds.

(1) L".R a.h P.L Q.U
(2) „ „ L.n Q.L'

(3) i:'.S „ P.L S.U
(4) U'.li Q.d P.L Q.U

From (1) and (2)

„ (1) „ (3) //' + L"= 10(0000133) /1 1=0-00012,

„ (I) „ (4) (i=0-(K)0128.

28. Thomson's apparatus for testing rods by a double bridge. The
apparatus illustrated in Fig. 97 is interesting as that which Thomson
constructed for the application of the method to thick rods of conducting

material. It is not now used in the practice of the method. The
description and cut, however, which appeared in the first edition of this

book, are here allowed to stand ; the apparatus is in the historical

collection in the Natural Philosophy Institute of the University of

Glasgow. [On a massive sole plate of iron, P, are mounted two vertical

guide-rods of copper, A, A, and parallel to these the rods to be compared,

viz., a standard rod C, and the rod to be tested Cy^. C, C^ are supported

with their lower ends in two mercury cups cut in a single block of copper.

This block corresponds to the piece E in Fig. 95. The upper ends

of C, Ci are fixed in screw blocks of copper, t, t, to which also are

attached the terminals of a constant battery B of low resistance. A
reversing key K is interposed between t, t and the battery. A scale D
graduated along its two edges nearly fills the space between the rods

C, C,.

A pair of resistance coils r, r are fixed to the sole plate, and have one

terminal of each connected by a strip of copper, which also carries the

terminal screw T. The other terminals of these coils aiQ fixed to two

Halancing condition. Ohm.

Shunt on /?= 122000

-S^= 8150

„ /?= 7100

S= 8370

Z/ = 10(0-0001308)/

E<|uivt. change 0-00000^

00122s

000014,

000119^

ll=0-0«)011»
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copper slides, /Sg, ^^3, which move along, but are insulated from, the

guide-rods, and carry contact pieces c, c, each of which is bevelled off

to a knife-edge on a level with, its upper side. This knife-edge is pressed

against the corresponding rod by springs s, s, which are insulated so as

not to touch the rods. The coils r, r

are attached directly to the contact

pieces c, c. Thus /Sg^Tr/Sg corresponds

to the partial circuit BRLRC of Fig. 95.

Near the upper ends of C, G^ is a

similar arrangement of sliders S, S^,

with spring contacts and attached coils

R, R. These coils are connected by a

copper strip which carries the terminal

T^. The coils R, R are attached to the

upper ends of the guide-rods A, A, and

through these to the sliders >S, Sj^. The
guide-rods are so thick that no appreci-

able change is made in the ratio of the

resistances of the parts of the partial

circuit SRT^RSj^ on the two sides of T^

by varying the positions of the sliders.

This partial circuit corresponds to

ARMRD of Fig. 95.

Each pair of coils, r, r and R, R,

may be wound on a single bobbin with

advantage. The arrangement is thereby

rendered more compact, and there is

less risk of error from difference of

temperature between the bobbins, or of

thermoelectric disturbance between their

terminals.

Between T and T^ is placed the gal-

vanometer G, which is provided with a

simple key k, placed for convenience in the actual arrangement beside

the reversing key K.

In the use of the instrument the rods to be compared are placed in

position, and the sliders on the rod of lower resistance are placed so that

their upper edges, and therefore their knife-edges, are opposite the

lowest and uppermost divisions of the scale. The lower contact piece

on the other rod is placed with its upper edge opposite the lowest

division of the scale on that side. The upper contact piece on the same

rod is then shifted until no current flows through the galvanometer.

Balance is obtained for both directions of the current, and the mean
position of the slider taken, to eliminate error from thermoelectric

disturbance.

A number of standard rods of different thicknesses are provided with
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t}i« in.struinent in order that nearly equal ratios may be obtained over

a wide ran^e of low rrsistanrcH.]

29. Matthiessen and Hockin's method for low resistances. TIk-

fuilowiii}^ method was used for the same purpose by .Messrs. Matthiessen

and Hockin in their researches on alloys. AB, CD, Fig. 98, are the two
rods to be conii)ared. They are connected in circuit with two coils

of resistances r, .s-, which have between them a graduated wire WW,
as in Kirclihoff's bridge. SS' are two sharp knife-edges, the distance

of which aj)art can be accurately measured, fixed in a piece of dry hard

wood or vulcanite, and connected with mercury cups on its upper side.

This arrangement is placed on the conductor AB, so that the knife-

edges making contact include between them a length SS' of the rod.

TT' is a precisely similar arrangement placed on CD. One terminal

of the galvanometer is applied at *S, and the resistances r, 8 adjusted so

Fig. 98.

that a point P on the wire which gives balance is found for the other

terminal. The terminal of the galvanometer is shifted to S', and a

second point P' found by varying the resistances of the coils from fj,

Si to r^, s^ in such a manner as to keep the sum r + s constant. Simi-

larly balance is found for TT' with values fg* ^2' ^'a* ^2f ^^^ ^^^ resistances

of the coils, fulfilling the condition that the sum r 4- s is the same as in

the former case. Let a, b, c, d, k denote the resistances between L and
S, L and S', L and T, L and T', L and M respectively ; a, /8, y, S the

resistance between W and P in the four cases, k the resistance of the

whole wire WW. We have by (1)

a r.+a

k — a s^ + K-a

and therefore 7 = *''i"> (28)
a; K

where ^ = r + s + K. :
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Similarly t = „ .

Therefore ~k~^ R ^ '

In the same way we get

Hb"- R ^^^^

and combining the last two equations we get for the ratio of the resist-

ances of the conductors between the pairs of knife edges,

h-a_ r^-r^ +^-a ^3^v

d-c r^-r^+S-y

30. Rayleigli's method of comparing low resistances. This method

of Matthiessen and Hockin is not given here as a highly accurate means

of comparing low resistances. The arrangement shown in Fig. 98

would be improved by the addition of two finite but not large " ballast-

ing " resistances, one inserted at A, the other at D, to prevent the

terminal ratios, e.g. a/{k-a), from being exceedingly small. With a

sufficiently sensitive reflecting galvanometer of high resistance the

differences of potential between S, /S', T, T' can be compared with

accuracy enough to enable a satisfactory estimate of the comparative

conductivities of two pieces of thick copper rod to be obtained.

The following method was given as an alternative by the late Lord

Rayleigh [Collected Papers, 2, p. 276]. It is founded on the arrange-

ment for obtaining a low resistance for use in the Lorenz method of

determining the ohm [see XII. 35, below]. A low resistance p, which

is to be measured, is joined in series with a standard coil of resistance

q, 1 ohm, or ^\ ohm. The coil q is shunted by the coils c and h, of

which the ratio of resistances, b/c, is made nearly equal to p/q, while

c is fairly large. A high resistance galvanometer is applied to the

terminals of p, and the deflection, d, noted. The galvanometer is

then applied to the terminals of 6, and c is adjusted until the deflection

is again d. If the resistance G of the galvanometer be very great we
have p = bq/{b + c-^q).

The exact equation however is

hqG

^-{b + c + q)G + bc

It is essential, if G is not so great as to render the resistance of the

wires connecting the galvanometer to the pairs of points in the current

circuit to use the same galvanometer leads in taking the two readings.

To avoid error from thermoelectric electromotive forces the tests should

be repeated with the battery reversed and the mean result taken.

Since p is supposed small it is necessary, in order that the largest

available current may not be reduced, that q should not be too large.
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It is generally convenient, though some of the sensibility of the arrange-

ment is thereby sacrificed, to take G large. A high resistance reflecting

galvanometer is generally sensitive enough to give very considerable

accuracy. With ;)=,}^^, </ = l,6=l, and G very great c would be 98.

31. Potentiometer method for low resistances. Low resistances may
be measured by means of a potentiometer arranged as follows. Two
circuits Ay B are provided, as shown in Fig. 99. Circuit A contains

a resistance p which is to be evaluated, a standard resistance r, an

additional resistance r', a battery B and a galvanometer g^ so that the

current y in the circuit can be observed and controlled. Circuit B
is arranged in like manner with resistances q, s, and s', a battery B'

and a galvanometer g'.

The terminals of r are connected to those of s, the left-hand terminal

directly by means of a massive conductor in mercury cups which form

these two terminals, the right-hand terminals through the galvano-

meter G as shown. The current in the circuit B is now adjusted so that

there is no current through G. Currents y, y' now flow in A and B.

A similar experiment is made with p and q connected in the same way
(but r and s now disconnected from one another), except that q is now
shunted with a high resistance to balance the galvanometer. These

experiments are repeated until balance for both pairs of resistances

are obtained. We have now, if p, q, r, s denote the resultant balancing

resistances, py = qy'i ry = sy' so that

p^q^
r 's'

Of course by means of a special rocking arrangement with mercury
cups, or a suitably designed key, the two connections are transferred

from one pair of coils to the other as quickly as possible, for it is to be

remembered that the currents in the circuits are running continuously.

The arrangement is described by Mr. A. Campbell [Phil. Mag. July

1903] as one in use at the National Physical Laboratory.
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The sensitiveness of the arrangement is easily found. Let the con-

nections be as in the diagram. The terminals a, h are at the same

potential ; if then the total resistances of the circuits A, B are f + r^

and q-\-s^, the current through G due to a small alteration, dp, of f
from balance will be y cl'pl{G -V pr^jif + r^) + qs-^^jiq + sy^, and the de-

flection will be proportional to this multiplied by ^/G. It follows that

the deflection will be a maximum if the resistance G of the galvano-

meter have the value 'prJ{'p-\-r-^-\-qsJ{q + s^.

Putting in this value of G we find that the deflection D is pro-

portional to Jy dp/VG, that is, is given by

kD^i y^ (32)
2

\p + r, q-{-sJ

Let us take r^, s^ very great in comparison with p and q respectively.

Then the deflection is given by

kD^ /._. (32')

V1+2

The best resistance of the galvanometer is now p + q, or simply p, if

q/p is very small.

Of course unless p and r be nearly equal the best galvanometer resist-

ance for the second observation will not be the same as for the first.

The reader may compare the sensitiveness in the case of ^ = r and q=s,
and verify that, if q/p be small, the sensitiveness is about twice that of

the bridge with equal arms, that is with rj^ = rQ = r2 = r^. The bridge

method has the advantage that in it the keys are only tapped
down, while with the potentiometer the currents are kept flowing while

the observations are made, so that in the latter case the heating effects

are much more serious.

By reference to Fig. 99 it will be seen that if the resistance q be

removed and an arrangement be made so that the terminals shown
connecting s and r can be swung over so as to connect s and p, r and p
can be adjusted to equality. The coil s may have any convenient

value, and thus if ^ be a standard, r may be made a copy of ^j very

readily.

32. Two-step method for low resistances. Mr. Campbell has suggested

the following, which he calls a "two-step " bridge method. The arrange-

ment is shown in Fig. 100. p and q are two resistances, r and s two others.

A small resistance u is inserted in the position shown, and is shunted

so that the galvanometer is in balance in position a. The galvanometer
is now placed in position h, and r or s shunted until balance is again

obtained. It is not necessary to know u accurately. The connections
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c, c are included with r and 8. They may be determined by «endinj? a

current round their circuit and comparing the drop of jiotential for each

with that for a known rcsintance pot qm the circuit.

Lwv\AAAAAAM--V\AA-rAAA/—

'
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Fio. 100.

We have if u be the shunted value of u for the position o, and 8 be

supposed to be the shunted value of s for the j)08ition 6,

u' 4- 2?-

(33)

If for the second position balance is obtained by shunting r down to r',

w«have
jp i.- + r4-/ .3

q m' + 2s
^'

'

Since w' is small in comparison with the resistance r and 5, and is

approximately known, we get 'pjq.

33. Fall of potential method for low resistances. The following

method of comparing resistances is in principle the same as Thomson's
bridge with secondary conductors, and Matthiessen and Hockin's

method described above, as, like them, it consists in comparing the

difference of potential between two cross-sections near the ends of the

conductor to be tested with the difference of potential between two cross-

sections in a standard conductor, when the same uniform current is

flowing in both. It is, however, more readily applicable in practice,

and is very useful for a great many practical and commercial purposes,

as, for example, in the testing of the armatures or magnet coils of

machines, in the estimation of the resistances of contacts, and in the

determination of the specific conductivities of thick copper wires or

rods. All that is required is a small battery, a suitable galvanometer

of sufficient sensibility, and two or three resistance coils of from i ohm
to 1 ohm. These coils may very conveniently for many purposes be

made of galvanized or tinned iron wire of No. 14 or 16 b.w.g., wound
round a piece of wood J inch thick, from 8 to 10 inches broad, and from

12 to 18 inches long, with notches cut in its sides, at intervals of a

quarter of an inch, to keep the wire in position. To avoid any electro-

magnetic effect which may be produced by the coils if they happen.
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when carrying currents, to be placed near the galvanometer, the wire

should be doubled on itself at its middle point, the bight put round a

pin fixed near one end of the board, and the wire then wound double

on the board, the two parts being kept far enough apart to insure

insulation. Resistance coils made in this way are exceedingly useful

for electric lighting experiments, as the thickness of the wire and its

exposure everywhere to the air prevent undue heating by strong currents,

or, if there is much heating, obviate the risk of damage. For the

battery a single cell, as for example a gravity-Daniell, or, if the battery

is to be carried from place to place, two hermetically sealed chloride

of silver cells, which may be joined in series or in parallel as required,

may very conveniently be used. As instrument of comparison a

Thomson's centiampere balance used as voltmeter with a resistance in

series with its coil, or some sensitive form of voltmeter, is convenient

for many practical purposes ; but when greater accuracy is aimed
at, as when the method is used for the measurement of the (specific)

conductivity of short lengths of thick metallic wires by comparison with

a standard, a sensitive reflecting galvanometer of resistance great in

comparison with that of the conductor between the points at which the

terminals are applied should be employed, and the battery should be of

as low internal resistance as possible.

The galvanometer is first set up and made of the requisite sensibility

by adjusting, as described in 2 above, the intensity of the field in

which it is placed.

The conductor whose resistance is to be compared, and one of the coils

whose resistance is known, are joined in series with the battery. It is

advisable to have the circuit at a distance of a few yards from the

galvanometer, so that accidental motions of the wires carrying the current

may not have any sensible effect on the needle. One operator then

holds the electrodes of the galvanometer so as to include between
them, say, first the wire which is being tested, then the known resistance,

then once more the wire being tested, in every case taking care not to

include any binding screw connection, or other contact of the conductors.

The known resistance should, when great accuracy is required, be so

chosen that the readings obtained in these two operations are as nearly

as may be equal.

Let the mean of the readings for the first and third operations be F
scale divisions, for the second V ; let r denote the known resistance,

and X the resistance to be found.

Since by Ohm's law the difference of potential between any two
points in a homogeneous wire, forming part of a circuit in which a

uniform, current is flowing, is proportional to the resistance between
those two points, we have tz

^=p'- (35)

The resistance of a contact of two wires whether or not of the same
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metal may be found in the same manner, by placing the galvanometer

electrodes so as to include the contact between them, and comparing
the difference of potential on its two sides with that between the two
ends of a known resistance in the same circuit. Care must however
bo taken in all experiments made by this method, especially when the

galvanometer circuit includes conductors of different metals, to make
sure that no error is caused by thermal electromotive forces. To
eliminate such errors the observations should be made with the current

flowing first in one direction and then in the other in the battery circuit.

The following results of some measurements of the resistance of a

Siemens SD2 dynamo machine, made at Glasgow, may serve to illustrate

this method. An iron wire coil, of half an ohm resistance, was joined

to one of the terminals of a standard Daniell, and short wires attached

to the other terminal of the cell and the free end of the coil were made to

complete the circuit through the armature, by being pressed on two
diametrically opposite commutator bars, from which the brushes and
the magnet connections had been removed. The electrodes of the

galvanometer, which was a dead-beat reflecting galvanometer of high

resistance, were applied alternately to the same commutator bars, and
to the ends of the half ohm, and the readings recorded. The following

are the results, extracted from the Laboratory Records, of three con-

secutive experiments :

Experiment I.

Operation. Reading on I^eflection of

Scale. Spot of Light.

Galv. zero read 214

Electrodes on | ohm 857 643

„ „ armature 597 383

Experiment II.

Galv. zero read 214

Electrodes on armature 607 393

„ J ohm 874 660

„ armature ' 607 393

Experiment III.

Galv. zero read 214

Electrodes on J ohm 874 660

„ armature 607 393

„ J ohm 872 658

The first experiment gives for x the value, 383 x -5/643, or '298 ohm
The other two experiments, although their numbers are different, give
very nearly the same result, which agrees closely with a measurement
made about eight months before, by the same method, with another
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potential galvanometer. The readings show that the galvanometer

had ample sensitiveness for the test.

In the ordinary testing of the armatures of machines by this method,

the circuit of the battery may be completed through the brushes
;

but if the machine has been wound on the shunt system, care must be

taken previously to disconnect the magnet coils. In every case the

galvanometer electrodes must be placed on the commutator bars

directly.

34. Differential galvanometer with high resistance coils for low

resistance tests. Prof. Tait* used a differential galvanometerf (see 35

below) for this method of determining low resistances. The con-

ductors to be compared were arranged in series, so that the same
current flowed through both. The terminals of one coil were then

placed at two points on one conductor, the terminals of the other coil

at two points on the other, such that the galvanometer deflection was
zero. The difference of potential between the points of each pair was

Fig. 101

therefore the same in the two cases. Hence the lengths of portions

of the two conductors of equal resistance were obtained.

The following zero method, due to Prof. T. Gray, is founded on the

same principle. The arrangement of apparatus is shown in Fig. 101.

One terminal of a battery of one or two low resistance cells is attached

to a stud on a thick copper bar P, the other terminal to a metallic axis

round which the copper bar h turns. The bar h makes contact at its

outer end with a bare wire and a bare rod bent round into concentric

circles with centre at the axis of the bar, and having a pair of remote

extremities connected with mercury cups or binding terminals, and the

other pair of extremities free as shown. To one of these terminals is

connected one end of the bar to be tested, to the other one end of the

standard bar. The other end of one o^ these bars, say the standard,

is connected to a mercury cup S, which is in line with, but is insulated

from, a row of mercury cups or a mercury trough cut in a copper bar

placed parallel to P. Between this bar and the trough are stretched

* Trans. R.S.E. vol. xxviii. 1877-8.

t For an account of this instrument and its use in the measurement of resistance

see Maxwell's Electricity and Mar/netism, vol. i. Further particulars of tlie

use of differential galvanometers are given in XIV. 55, 56 beloM*.
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u series (»i pjirallel wires all of the same material and length and as

nearly aw possible of the same resistance ; and a single wire, of the same
resistance, material, and length, connects the bar I* and the cup S with

which the standard bar is in contact. These wires may be conveniently

straight rods of platinoid, an eighth of an inch in diameter, and six feet

long, soldered at one end to the bar P, and at the other to stout well-

amalgamated copper terminals dipping into the mercury cups or trough.

The wires may be made of the same resistance by means of a slide-wire

bridge, or by the method described below.

The cup S and the terminals T are now brought to one potential by
turning the bar h round on the circular wire until a sensitive galvano-

meter, /, joining them shows no deflection. This galvanometer is then

left connected, and by means of a second sensitive galvanometer, g,

two pairs of points a, d and c, d are found between which in each case

no current flows when they are connected by a wire. Each pair of

points are therefore at the same potential. Hence if we denote by
r^ the resistance of the standard between h and d, by r^ that of the

other rod between a and c, and by n the number of wires joining P and
T, we have

U=^ (36)

A differential galvanometer with two independent pairs of terminals

may be employed for this method. One coil may be made to join a, 6,

the other c, d, or one coil may be made to join 6, d, and the other a, c.

In the former case either the effect on each coil must be made zero,

or care must be taken to connect the terminals to a, h and c, d so that

the magnetic effects of the two coils at the needle may be opposed.

The resistance of the galvanometer coils, except when the current in

each coil is made zero, must be so great as not to cause any sensible

alteration of the potentials at the points at which the terminals are

applied.

The wires joining P to S and T may be tested for equality as follows.

Two nearly equal wires are made to join P to S and P to T, and h is

placed so that the galvanometer/ shows zero current. The wire joining

P to T is then removed and another put in its place. If the current

in / still remain zero for the same position of h the latter wire and the

former are of the same resistance. If not the necessary correction is

made and the comparison repeated.

35. Differential galvanometer method for comparison of standards.

A com2)arison of two nearly equal resistances, such, for example, as

those of two standard unit coils, or even of two unequal standards,

can be made with precision by means of a differential galvanometer.

We shall suppose that the two coils of the galvanometer have been
adjusted so that the action on the needle is zero when the same current

passes through each. This adjustment can be made by putting the

coils in series and setting the magnetic action of one against the other.
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The current in the circuit flows through both, and either by changing

the relative positions of the coils if they are movable, or by adding a

turn or turns to the feebler, the adjustment is made. The coils are at

the same time made of the same resistance, though this adjustment is

not so important as the other. If the coils do not balance for equal

currents, a balance obtained by adjustment of resistance will only hold

for other cases in which the same currents or currents in the same

ratio flow in the coils. For example, if balance is got for^ = l, q = lO,

balance will also be got for p = 0'l and q = l, if the current y is made
10 times what it was in the former case. The coils, of which the actual

resistances are p, q, are arranged

as in Fig. 102 with the two gal-

vanometer coils, which though

symmetrically placed with respect

to the suspended needle are here

shown separate for distinctness.

9^— We suppose that the resist-

ances of the coils both have the

same value G, and that along

with these are ballasting coils of

known resistances x and y. It is supposed that by means of a

mercury-cup commutator, the connections of the derived circuits

to the terminals AB and CD may be interchanged. The main current

is y.

The difference of potential on ^5 is yp{G + x)/{p + G + x), so that the

current through the coil of resistance G + x is yp/ip + G + x). Similarly

the current through the coil of resistance G + y is yq{q + G-\-y). The
difference of these currents is

AAAr

Fig. 102.

{p + G-\-x Q + G\-v)
'

or

p + br + x q + G + yi

p{G + y)-q{G + x)

^{p-i-G + Q^(q + G + y)'

If this difference is zero we have

G + x
(37)

(I
G+y

Let now the coils be interchanged by means of the commutator, and
X and y be altered to x' and y' to give balance. We now get

p__G+y\
^

q G + x'

With the previous result this gives

p_ y' -^

q x'-y

(38)

(39)
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If the same connecting wires are used for the coils employed, the

values oiy -X and x -y are known and the ratio of p to ^ is determined.

Another mode of jiroceeding is as follows. It is convenient when

J)
and

(J
are nearly equal. The deflection Z), of the galvanometer needle

is read off. Then the resistance q is altered by a known amount to q
by shunting, and the new deflection D^, is read oflF. Wo yjA

D^^TP-q q' + G^-x
^Q

Z), p-q' q-^G+x

Now G -\-x m usually fairly large in comparison with q, and we suppose

that the difference between q' and q is small. Hence we have, very

approximately, instead of (40),

^^ = ^-^ (41)

To obtain an idea of the sensitiveness of this mode of testing, we notice

that if p and q be nearly but not quite equal, we have approximately,

since x = y, for the difference of currents,

y{l^-q)l{q + G+x) = ydj)l{q+G+ x).

The deflection is proportional therefore to this multiplied by \/G.

The best galvanometer resistance is then q-\-Xy and the deflection is

then proportional to lydp/Vp + x, since p is nearly equal to q.

It appears that at the Physikalische Reichsanstalt in Berlin the

arrangement for the testing of mercury standards G = G' = 6 ohms,

p = q = l ohm, 07 = 10 ohms.

36. Measurement of specific resistances. In order that the conducting

powers of different substances may be compared with one another, it is

necessary to determine their specific resistances, that is, the resistance

in each case of a wire of a certain specified length and cross-sectional

area. We shall here define the specific resistance of any substance at

any given temperature as the resistance between two opposite faces

of a centimetre cube of the material at that temperature.* This

resistance has been very carefully determined for several different

substances at ordinary temperatures by various experimenters, and a

table of results is given below (see Appendix).

To measure the specific resistance of a piece of thin wire, we have
simply to determine the resistance of a sufficiently long piece of the

wire by the ordinary Wheatstone-bridge method described above, and
from the result to calculate the specific resistance. Let the length

of the wire be I cm, its cross-section s square cm, and its resistance

R ohms. Then the specific resistance of the material would be Rs/l

ohms. The length I is to be carefully determined by an accurately

*Tlie reciprocal of this (called below the specific conductivity) may be
advantageously called the electric conductiHty of the substance, if the word
conductivity be set free by the general adoption of the word coiulucCance for the
reciprocal of the resistance of a given conductor.
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graduated measuring-rod ; and the area s may be found with sufficient

accuracy in most cases by direct measurement, by means of a decimal

wire gauge measuring to a hundredth of a millimetre. If, however,

the wire be very thin, the cross-section may, if the density is known, be

accurately obtained in square cm by finding the weight in grammes
of a sufficiently long piece of the wire (from which the insulating covering,

if any, has been carefully removed), and dividing the weight by the

product of the length and the density. Very thin wires are generally

covered with silk or cotton, which may very easily be removed, without

injury to the wire, by making the wire into a coil, and gently heating it

in a dilute solution of caustic soda or potash. The coating must not

in any case be removed by scraping.

If the density is not known, it may be found by weighing the wire

in air and in water by the methods described in books on hydrostatics.

All the weights, from 1 gramme upwards, ordinarily used in weighing

are made of brass, and hence when conductors of nearly the same
specific gravity as brass are weighed in air, the correction for buoyancy
may be neglected. The weighing in water however must be corrected

both for expansion of water with rise of temperature and for the weight

of air displaced by the weights. For a temperature of 13° C. these

corrections are as follows :—for expansion of water an increase of loss

of weight in water of 0-059 per cent. ; for buoyancy of air a diminution

of apparent weight in water of about 0-0143 per cent. Care should be

taken in weighing to prevent air bubbles from adhering to the sides of

the specimen ; and the water used for weighing should first have been

carefully boiled to expel the air contained in it. All error of this kind

may be avoided by boiling the water with the si)ecimen in it, and then

allowing both to cool together.

37. Commercial tests of specific resistances of copper mains. If the

wire be thick, and a sufficient length of it to render possible an accurate

measurement of its resistance by the ordinary bridge method is not

conveniently available, one of the methods of comparing small resist-

ances described above (25... 34) is to be used. The most convenient

in many practical cases is that described in 33, in which the resistance

between two cross-sections of the bar to be tested is compared with

that between two cross-sections of a standard rod of pure copper.

The cross-sections should, if the distance between them be not thereby

made too small, be chosen so as to make the two resistances nearly

equal. If we put F for the number of divisions of deflection on the

scale of the potential galvanometer, when the electrodes of the galvano-

meter are applied to the standard rod, at cross-sections I cm apart

;

F' that when they are applied to the rod being tested, at cross-sections

V cm apart, then we have for the ratio of the resistance of unit length

of the wire tested to the resistance of unit length of the standard at the

temperature at which the comparison is made, the value Vl/Vl'. If

s and s' be the respective cross-sectional areas, which in this case are
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ra.Miv u» iciiinimble by measurement with a screw-gauge, and we
assume tJiat the temperature at which the measurements of resistance

are made is 0*^ C, we get for the ratio of the specific resistances at 0° C.

the value Via'I VI'Sy and therefore also for the ratio of their specific

conductivities VI's/ Vis. This last ratio nmltiplied by KXJ gives the

percentage conductivity at 0° C. of the substance as compared with

that of pure copper. If, as will generally be the case, the temperature

at which the experiments are made be above the freezing-point, the

value of H.K)Vl's/Vls' may be taken as the percentage of the specific

conductivity of pure copper at the observed temi)erature i)ossessed by
tlie substance, and this, if the wire tested is a specimen of nearly pure

copper, will be nearly enough the same at all ordinary temperatures.

If in experiments by this method the electrodes are api^lied by hand to

the conductors, the operator should, especially if the electrodes and the

conductors tested are of different materials, be careful not to handle

the wires, but should hold them by two pieces of wood in strips of paper

passed several times round the wires, or by some other substance which

conducts heat badly, so that no thermal electromotive force may be

introduced into the circuit of the galvanometer (see above, p. 316).

He may conveniently make the galvanometer contacts by means of two
knife edges fixed in a piece of wood which can be lifted from one con-

ductor to the other without its being necessary to handle the galvano-

meter wires in any way. This will besides render any measurement
of the length of the conductor intercepted between the galvanometer
electrodes unnecessary, as I is equal to I'. We have then for the per-

centage specific conductivity of the substance the value lOOVs/V's'.

As an example of this method we may take the following results of a

measurement (made in the Physical Laboratory of the University of

Glasgow) of the specific conductivity of a short piece of thick copper

strip. The specimen was joined in series with a piece of copper wire

of No. B.w.G. of very high conductivity, in the circuit of a Daniell's

cell of low resistance. The electrodes of a high resistance reflecting

galvanometer applied at two points 700 cm apart in the copper wire

gave a deflection of 153-5 divisions, when apj^lied at two points 500 cm
apart in the strip 270 divisions. The weight of the wire per metre was
443 grammes, of the strip per metre 186-3 grammes. Hence the specific

conductivity of the copper strip was 96-6 per cent, of that of the wire

against which it was tested.

38. Realization of a standard ohm. The accurate realization of a

standard ohm, as defined on p. 29 above, involves the determination

of the specific resistance of mercury, an operation which requires great

care and considerable experimental skill. This determination has been
made by several experimenters, among others by Lord Rayleigh and
Mrs. Sidgwick and by Messrs. Glazebrook and Fitzpatrick at Cambridge,
and by Messrs. Hutchinson and Wilkes at Baltimore. [See Chapter
XV. below.]
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The value obtained by Lord Rayleigh and Mrs. Sidgwick for the

resistance at 0° of a column of mercury 1 metre long and 1 square milli-

metre in cross-section was -95412 B.A. unit (XV. 27, below). Messrs.

Glazebrook and Fitzpatrick's value for the same resistance is '95352

B.A. unit, Messrs. Hutchinson and Wilkes found it to be -95341 B.A.

unit. Previous measurements made by Werner Siemens and Matthies-

sen gave -9536 B.A. unit and -9619 B.A. unit respectively for this resist-

ance. It will be noticed that the mean value for this resistance given

by the three later measurements quoted lies between these, but much
nearer to the former. Messrs. Siemens Brothers for a long time used

the resistance of a column of mercury specified as above as the unit of

resistance, and standard units were issued by them to experimenters.

One of these examined by Lord Rayleigh gave -95365 B.A. unit for its

resistance at the temperature 16-7° at which it was stated to be correct.

39. Copies of the standard ohm. Standard ohms have been made in

mercury, by using tubes bent so that the requisite length is obtained

in a compact form, but they are not very convenient in use, and are of

course liable to breakage. A copy of the standard ohm can however
be easily made when the resistance

of a column of mercury of definite

cross-section and length has been

accurately found. Figs. 103 and
103(a) show such copies. Fig. 103 is

the usual form of the standard. It is

made of platinum-silver wire, wound
within the lower cylinder. The
space within up to the top of the

wider cylinder is filled with parafiin

wax. The ends of the coil are

attached to two thick electrodes of

copper rod, bent as shown and kept

in position by a vulcanite clamp.

The ends of these when the coil is

used are placed in mercury cups in the manner already explained, and
should always, before the coil is placed in position, be freshly amalga-

mated with mercury. The lower cylinder up to the shoulder is placed

in water when the coil is in use, and the temperature of the water is

ascertained by means of a thermometer in the hollow core of the

cylinder. The variation of the resistance of the coil with temperature

is known, and hence its resistance at any observed temperature can be

obtained. Of course care must be taken not to expose the standard

to too strong currents, and to keep the temperature as near as possible

to the normal temperature at which the standard is given as correct.

Fig. 103 shows a form of the standard constructed by Messrs. Elliott

Bros, according to a suggestion made by the late Professor Chrystal. A
thermoelectric couple, of which one junction is within and close to the

Fig. 103.
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FIO. 103 (a).

coil, and the other outside the case, is used to determine the temperature

of tfie coil. In the form in which the instrument is now made the

external junction is not brought out through the bottom of the case as

shown, but the wire is brought out at the top of the case, and then joined

to a wire of the other metal which is entirely outside and attached to

one of the binding screws. The external junction is of course placed

in water the temperature of which is measured, and

the thermal current is observed by means of a

galvanometer connected to the terminal. This

gives the difference of temperatures between the

junctions and therefore the temperature of the coil.

On account of the uncertainty of the temperature

of the coil, and its liability to loss of insulation by
deposition of moisture on the upper surface of the

cylinder, Prof. J. A. Fleming* has constructed- a

standard in which the case containing the coil is

a hollow circular ring of brass made by screwing

together by projecting flanges two square sectioned circular troughs.

The electrodes (rods arranged as in Fig. 102) proceed to the ring through

two upright brass tubes from 5 to 6 inches in length, from which they

are insulated by vulcanite collars at the bottom, and at the top by

two vulcanite funnels corrugated on the outside, and projecting above

the tubes. Paraffin oil placed in these vulcanite funnels prevents loss

of insulation by condensation of moisture on the insulating pieces.

40. Constancy of standards. A careful watch has been kept on the

values of the B.A. standards of resistance, for several years at Cambridge

by Glazebrook, and more recently at the National Physical Laboratory

by various members of the Laboratory staff. The primary standards

at the National Physical Laboratory are of mercury ; the secondary

standards are made of platinum, platinuni-iridium alloy, gold-silver,

platinum-silver, and manganin. The last mentioned substance is

an alloy of 84 p.c. copper, 12 p.c. manganese, and about 4 p.c. nickel.

It has a very low temperature coefficient, which however depends on

the temperature. From the following table of its values it will be seen

that it is positive at ordinary temperatures, vanishes at about 45° C,
and is negative at higher temperatures

:

Ilange of Temp. Mean Temp. Coeff. Iltiiige of Temp. Meau Temp. Coeff.

10° to 20° + 25xlO-« 45° to 50° - 1 X 10-«

20° „ 30° + 14 „ 50° „ 55° -2 „
30° „ 35° + 4 „ 55° „ 60° -4 .,

35° „ 40° + 3 „ 60° „ 65° -5 „
40° „ 45° + 1 ,,

VJ.A.M.

Phil. Mwj. Jan. 1889.

2a
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If manganin resistances are allowed to approach 100°, their constancy

at varying temperatures is injuriously affected.

As regards the constancy of the coils it appears that the mercury

standards and the platinum standards have varied little, while the

platinum-iridium, the gold-silver, and some of the platinum-silver coils

have altered to a relatively large extent. A few of the manganin

standards have altered very little, but most of these standards have

increased in resistance.

The method of comparison consists in placing the coil to be tested

in one arm of a Wheatstone bridge, of which the other arms are man-
ganin resistances. The balance is obtained by shunting, for which the

bridge is adapted.

41. Measurement of high resistances. The measurement of a very

high resistance such as that of a piece of insulating material cannot be

effected by means of Wheatstone's bridge, and recourse must be had
in most cases to electrostatic methods, in which the required resistance

is deduced from the rate of loss of charge of a condenser, the plates of

which are connected by the substance in question. If, however, the

resistance of the material be not too great, and a large well-insulated

battery of from 100 to 200 cells, and a very sensitive high resistance

galvanometer are available, the following method is the most convenient.

First join the galvanometer, also well insulated, and the resistance to be

measured (prepared as described in 43 below, to prevent leakage) in

series with as many cells as gives a readable deflection, which call D.

Now join the battery in series with the galvanometer alone, and reduce

the sensibility of the instrument to a suitable degree by joining its

terminals by a wire of known resistance, and, to keep the total resistance

in circuit great in comparison with the resistance of the battery, insert

resistance in the circuit. Let E and B denote respectively the electro-

motive force and resistance of the whole battery, G the resistance of the

galvanometer, S the resistance joining its terminals in the second case,

R the resistance introduced into the circuit of the galvanometer in that

case, and X the resistance to be found ; we have for the difference of

potential between the terminals of the galvanometer in the first case

the value,
j^^

GTBTZ=»'^' <*^)

where m is the factor by which the indications of the galvanometer
must be multiplied to reduce them to volts. In the second case the

resistance between the galvanometer terminals is SG/{S + G), and
therefore the difference of potential between them is,

j,SG_

""S + G ESG _ .^„^= mD^ (43)
r_lP_u ^^ {B-\-R){S + G) + SG
^ + ^ +

,S + 6'
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Hence combining equation» (42) and (43) so uh to eliminate E and m,

and solving for X, we get

X= ^>[b^R + G + ''^*^^^)-{B + G) (41)

If X be great in comparison with the remainder of the resistance in

circuit the term (B + G) may be neglected.

Tliis method was used by Mr. T. Cray and the author for the deter-

mination of the specific resistances of different kinds of glass. The
specimens of glass were in the form of thin, nearly spherical flasks about

7 cm in diameter, witli long narrow and thick walled necks. The
thin walls of the flask were brought into circuit by filling it up to the

neck with mercury, and sinking it to the same level in a bath of mercury,

then joining one terminal of the battery to the internal mercury by a

wire passed down the long neck, and the other to the mercury in the

bath without. This mercury bath was an iron vessel contained in a

sand-bath which could be heated to any required temperature. A
well-insulated galvanometer (constructed by aid of a grant from the

Government Research Fund to a special design*) of high resistance

and great sensitiveness was included in the current. A battery of over

100 Daniell's cells was used, and after a reading of the galvanometer

in one direction had been taken and recorded, with the corresponding

temperature of the glass, the coatings of the flask were connected

together until the next reading was about to be taken. For this the

current was reversed, and the deflection taken as before, and so on.

The *' electric absorption " was thus reversed between every pair of read-

ings, and lasted in most cases about three minutes. The resistances

were therefore those existing after three minutes' electrification. The
result for the glass of highest insulation tested, which was lead glass of

density 3-14, was a specific resistance at 100° C. of about 8400 x 10^®

ohms. The resistance was halved for each 8-5° or 9° rise of temperature.

A modification of this method, for which a potential galvanometer

or voltmeter is very suitable, may be used for the determination

of the insulation resistance of the conductors in an electric-light

installation.

The conductors are disconnected from the generator and both ends

from one another. They are then joined at one end by the potential

galvanometer in series with a battery of as many cells as gives a readable

deflection. The number of divisions corresponding to this deflection

is read off, and the number of divisions which the battery gives when
applied to the galvanometer alone is then observed. Call the latter

number V and the former V ; and let E divisions be the total electro-

motive force of the battery. Let the resistance of the battery, which
may be determined by the method described below (p. 377), be B ohms,

* Proc. R.S. vol. xxxvi. (1884). See 32 below.
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the resistance of the galvanometer G ohms, and the insulation resistance

to be found R ohms ; we have plainly,

y^^G_ y,^ EG

Therefore

B + G' B + G + R'

VR={B + G)(^^,-]^ (45)

If B be small in comparison with G we may put

V-V
R-G'^y,"^ (46)

A shunt-wound generating machine giving sufficient electromotive

force may be used instead of the battery, and in this case R is found by
equation (46).

The insulation resistance for unit of length is found from this result

by multiplying by the length of either of the conductors.

This method is applicable to the measurement of the insulation-

resistance of cables or telegraph lines, but for details the reader is

referred to the manuals of testing in connection with these special

subjects.

42. Leakage method for high resistances. In the case of insulating

substances the method just described requires the use of so powerful

a battery that it is quite inapplicable except when the specimen, the

resistance of which is to be measured, can be made to have a large surface

perpendicular to the direction of the current through it, and of very

small dimensions in that direction. Such a case is that of the insulating

covering of a submarine cable in which the current by which the insula-

tion-resistance is measured flows across the covering between the copper

conductor and the salt water in which the cable is immersed.

In general, therefore, in the determination of the insulating qualities

of substances which are given in comparatively small specimens it is

necessary to have recourse to the electrometer method mentioned in 41

above, of which we shall give here a short account.

The most convenient instrument for this purpose is a quadrant electro-

meter of good sensibility. For a full description of this instrument, and
the mode of using it, see the chapter below on Electrostatic Measure-

ments. The electrometer, having been carefully set up according to the

most sensitive arrangement, and found to be otherwise in good working

order, is tested for insulation. One pair of quadrants is connected to

the case according to the instructions for the use of the instrument,

and a charge producing a difference of potential exceeding the greatest

to be used in the experiments is given to the insulated pair by means of

a battery, one electrode of which is connected for an instant to the

electrometer-case, the other at the same time to the electrode of the

insulated quadrants, and the percentage fall of potential produced in



XI THE COMPARISON OF RESISTANCES 373

thirty minutes or an hour by leakage in the instrument is observed.

If this is inappreciable, the instrument is in perfect order. For practical

purposes the insulation is sufficiently good when the same battery

being applied to charge the electrometer alone as is applied to charge

the cable, or condenser formed as described below, there is not a more

rapid fall of potential without the cable or specimen tlian with it

;

for there can then be no error due to leakage.

43. Details of leakage observations. An air condenser, well insulated

by glass stems varnislud and kept dry by pumice moistened with strong

sulphuric acid, is adjusted to have a considerable capacity, and its

insulated plate is connected to the insulated quadrants of the electro-

meter, and the other to the electrometer-case, to which the other pair

of quadrants is also connected. A charge producing as great a difference

of potential as before is given to the condenser and electrometer thus

arranged, and the fall of potential observed by means of the electro-

meter. If tlie loss in a considerable time be also inappreciable, the

condenser insulates properly, and its resistance may be taken as

infinite.*

The specimen of material to be tested is now placed so as to connect

the plates of the condenser. The manner in which this is to be done of

course depends on the form of the specimen. If it is a flat sheet, it may
be covered on each side, with the exception of a wide margin all round,

with tinfoil, and thus made to form itself a small condenser which is to

be joined by thin wires in parallel with the large condenser. The

edges and margins of the sides of the specimen should be carefully cleaned

and dried, and covered with a thin coating of paraffin to prevent con-

duction along the surface between the two tinfoil coatings, when the

condenser is charged. It is advisable, when possible, to coat the whole

surface including the tinfoil with paraffin, and to make the contacts

with the tinfoil plates by means of thin wires also coated with paraffin

for some distance along their length from the tinfoil. The plate con-

denser thus formed should be supported in a horizontal position on a

block at the middle of the lower surface. The upper coating is made
the insulated plate.

If the specimen be cup-shaped, as, for example, if it be in the usual

form of an insulator for telegraph or other wires, the hollow may be

partially filled with mercury, and the cup immersed in an outer vessel

containing mercury, so that the mercury stands at nearly the same level

outside and inside. The lip of the cup down to the mercury on both

sides is to be cleaned and coated with paraffin, as before, to prevent

leakage across the surface. A thin wire connected with the insulated

A condenser of any other kind, such as those used in cable testing, the
insulating material between the plates of which is generally paper soaked in

paraltin, may bo used instead of an air condenser, but as the resistance of the
latter may, if the ghiss stems be well varnished and kept dry, be taken as infinite,

and there is besides no disturbance from the phenomenon called electric absorjdion^

it is preferable to use an air condenser if possible.
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plate of the condenser is made to dip into the mercury in the cup, and a

similar wire connected with the other plate of the condenser dips into

the mercury in the outer vessel. Strong sulphuric acid may, on account

of its drying properties, be used with advantage instead of mercury as

here described, when the substance is not porous and is not attacked

by the acid.

In every case in which, as in these, the insulating substance and

the conductors making contact with it form a condenser of unknown
capacity, the condenser used in the experiment must be arranged to

have a capacity so great that the unknown capacity thus added to it,

together with the capacity of the electrometer, may be neglected in the

calculations.

The condenser, if it has been disconnected, is again connected as

before to the electrometer. One electrode of a battery of from six to

ten small Daniell's cells in good order, is also connected with the electro-

meter case, and the other electrode is brought for a short time, thirty

seconds say, or one minute, into contact with the insulated plate of the

condenser at any convenient point, such for example as the electrode of

the electrometer connected with the insulated pair of quadrants. The
battery electrode is then removed, and the condenser and electrometer

left to themselves.

The condenser has thus been charged to the potential of the battery,

which will be indicated by the reading on the electrometer scal'e at the

instant when the battery is removed. The deflection of the electro-

meter needle will now fall, more or less slowly according to the insulation

resistance of the condenser with its plates connected by the material

being tested. Readings of the position of the spot of light on the electro-

meter scale are taken at equal intervals of time, and recorded, and this is

continued until the condenser has lost a considerable portion, say half,

of its potential.

44. Calculation of resistance from leakage. The resistance of the

insulating material is easily calculated from the results in the following

manner. Let V be the difference of potential between the plates of the

condenser at any instant, Q the charge of the condenser at that instant,

which may be taken as proportional to the deflection on the electro-

meter scale, and C its capacity (I. 28). We have Q = CV, and there-

fore dQ/dt = CdV/dt. But -dQ/dt is the rate of loss of charge, that is,

the current flowing from one plate to the other, and this is plainly equal

by Ohm's law to V/R. Hence - dQ/dt = V/R, and therefore

Integrating, we get logF+-^— = ^, (47)

where ^ is a constant. If F be the difference of potential t seconds
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after it was V^^, we get by putting t = in (47), A =Iog V. Hence (47)

be

6'. K
log

If F = iro, we have R = t/C log 2.

If the condenser have a resistance so low as to add materially to the

rate of discharge, an additional experiment must be made in the same
way to determine the resistance of the condenser alone, with its plates

connected only by its own dielectric. Let Re denote the resistance

of the condenser, determined by equation (48) from the results of the

latter experiment, and /?< the resistance of the specimen ; we have

l/R = l/Ri + l/R„ and therefore

^^^tS.-
^^^^

If C has been obtained in c.g.s. electrostatic units of capacity, it may
be reduced to electromagnetic units by dividing by the square of the

number of electrostatic units of capacity equivalent to the electro-

magnetic unit, that is (see I. 56 and XVI.) by 9 x 10^*^ nearly.

When an air condenser is used, its capacity can generally be obtained

approximately by calculation from the dimensions and area of the

plates. For example, if two parallel plates of metal, placed at a distance

d apart, very small in comparison with any dimension of either surface,

have a difference of potential F, and there be no other conductor or

electrified body near, it can easily be shown that the capacity on a

portion of area A near the centre of either plate is A/iird. Hence, in

the example below, we have for the capacity of the disk of area A the

value A/4:7rd, if we neglect the non-uniformity of the electrical distri-

bution near the edge.

If C has been taken in absolute c.g.s. electromagnetic units of capacity

(see I. 33, 41 and Chap. XVII. ), we obtain R from (48) in cm per

second, which may be reduced to ohms by dividing by 10^.

When a condenser such as one of those used in submarine telegraph

work is used, the capacity C of which is known in microfarads [I. 54J,

then since a microfarad is 1/10^^ c.g.s. electromagnetic units of capacity,

we have for R in ohms the formula

A' = 10«^,—L^ (50)

* It i.s to be remonibered tliat the logarithms to be used here are Naperian
loj^arithius. The Naperian logarithm of any niiml)er is equal to the onlinarj' or
Briggs' logarithm multiplied by 2-3l>2585
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The following are results actually obtained in tests of a specimen

of insulating material made in the form of an ordinary telegraph in-

sulator. An air condenser consisting of two horizontal brass disks, the

distance of which apart could be regulated by means of a micrometer

screw, was joined with the insulator made into a small condenser with

mercury inside and outside, as described above. The lower disk was of

considerably greater diameter than the upper, which had a diameter of

12*54 cm, and the distance between them was adjusted to be I cm.

The upper disk was connected to the insulated pair of quadrants, and

the lower to the electrometer case. Calling A the area of the upper plate,

and d the distance between them, we have, neglecting the effect of the

edges of the upper disk, for the capacity of this condenser the value

Ajiird in c.g.s. electrostatic units. Hence in the actual case (7 = 9-828.

The interior surface of the insulator covered by the mercury was so

small, and the thickness of the material so great, that, even allowing the

material to have a high specific inductive capacity, the capacity of the

condenser which it formed was small in comparison with that of the air

condenser. The experiment gave, when the condenser and insulator

were joined as described, Fo = 251, F = 100, ^ = 5640 seconds. Hence

J.
5640 _^'- 9828 X 2-303 xlog,of!i

''^'''

in seconds per centimetre (c.g.s. electrostatic units of resistance).

As the condenser was not insulating perfectly, a separate test was made
for it alone, with the results Fq = 239, Fj = 182, t = 6120. Hence

^' ~ 9-828 X 2-303 x log,, t|| "
^^^""^

and therefore by (49) B, =i|^^ = 857,

in seconds per centimetre.

Multiplying this result by 9 x 10^° (the approximate value of v^, see

Chap. XVI.), to reduce to electromagnetic units, we get for the

resistance of the insulator 7712 x 10^° cm per second, or 771 x 10^^ ohms.

45. Measurement of battery resistance. We shall now consider very

briefly the measurement of the resistance of a battery. This term is

not perfectly definite in meaning, as there is reason to believe that the

resistance as well as the electromotive force of a battery depends to some
extent on the current flowing through the battery, and further the

resistance and the electromotive force, and possibly also the polariza-

tion of the battery, are affected by differences of temperature. But
the information which in practice we generally require from the test,

is really what available difference of potential can be obtained with a

certain working resistance in the external circuit. This could be

obtained at once by connecting the terminals of the battery by this

resistance, and measuring the difference of potential by means of a
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(jiuidrant electrometer or a potential galvanometer. If we call this

(iiffercnce of potential V, and the electromotive force of the battery

vvlicn on open circuit E^ then putting R for the external resistance we
may write y^. ,/

where r is a quantity the definition of which is simply that it satisfies

this equation. If the battery had the same electromotive force E,

when generating the current y, as when on open circuit, then r would be

the efTective resistance of the battery ; but, although this is not the

case, we may without being led into error still speak of it as the resistance

of the battery for the current y. In fact, the value of r, thus found for

a particular value of R, does actually enable us to calculate from the

known electromotive force for open circuit, with a moderate degree of

apj)roximation in the case of a constant battery, and also, but less surely,

in the case of a secondary battery, what available difference of potential

will exist between the terminals of the battery when connected by other

and somewhat widely differing values of R, and therefore also to find

what arrangement of a battery it will be best to adopt in any given

circumstances. So far as this practical result is concerned, the nume-

rous methods which have been devised for the determination of the

resistance of a battery before any sensible polarization (which requires

time to develop) has been set up are, though interesting in themselves,

of no practical value, and we shall not here describe any of them.

From equation (51) we have

E-V
r= y R (52)

To determine r therefore we have simply to measure with a potential

galvanometer the difference of potential which exists between the

terminals of the battery when on open circuit, or connected only by
the galvanometer coil, the resistance of which we suppose to be very

great in comparison with r, and again to measure in the same way the

difference of potential when the terminals are connected by a resistance

R, also small in comparison with that of the galvanometer.

If the galvanometer scale be graduated so that readings are pro-

portional to the tangents of the corresponding angles, we have, if D
be the deflection in the first case, and D' the deflection in the second

case, the equation

r=^R (53)

Instead of a potential galvanometer a quadrant electrometer may be
employed if the battery is not too large, and the same formula applies

when D and D' are taken proportional to the sines of the angles through
which the mirror is turned.
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A resistance coil, which may be of german silver wire, constructed

as described in 4 above, should be used for the resistance connecting the

terminals, and if the current passing through it be considerable its

resistance should be determined when the current is flowing. This may
be done by including in its circuit a current-galvanometer, and deter-

mining the current y through the wire in amperes, when V is read off

in volts on the potential instrument. The resistance of the wire with

that of the current-galvanometer is in ohms F/y, and this is to be used

as the value of R in equation (53).

If a galvanometer of high resistance be not available, an approximate

test can be made by means of a sensitive galvanometer of low resistance.

The battery and galvanometer are joined in series with a resistance R,

and again with a resistance R\ Let D and D' be the deflections, which

must have a difference comparable with either. Then, supposing E
and r to be the same in both cases, and putting G for the resistance of

the galvanometer, we have

E ED = m^^—7^—, D' = mR+G + r -R' + G + r"

where m is a constant.

Therefore we find r= —z-—— G (54)

46. Methods of Mance and Thomson for battery resistance. Mance
showed how to determine the resistance of a battery by means of

Wheatstone's bridge. The battery is placed in the position BD of

Fig. 88 above, and a key is connected between A and B. The resist-

ances r^, r^, fz ^^® adjusted until the depression of the key produces no

alteration in the galvanometer deflection. The galvanometer and the

key, with their respective connecting wires, are then conjugate conduc-

tors ; and it is easy to show that the resistance of the battery is then

rgrg/r^. The needle of the galvanometer is kept nearly at zero by means
of a small magnet during the adjustment of the resistances, so that

it is as sensitive as possible to any alteration of current produced by
depressing the key.

This method is so troublesome as to be practically useless, chiefly

on account of the variation of the effective electromotive force of the

cell produced by alteration of the current through the cell which takes

place when the key is depressed. Prof. 0. J. Lodge * has discussed

the method, and shown how it may be improved by inserting a con-

denser in series with the galvanometer between G and D. Still it is

inconvenient and gives no information which may not be obtained

more easily in another way, and we shall therefore not enter into

further detail regarding it.

* Phil. Mag. 1877, p. 515.
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Lord Kelvin * showed how the same mode of oj)erating may be
made to give the resistance of a galvanometer when there is no
other galvanometer available. The arrangement of Fig. 88 is varied

by placing the galvanometer in the i)08ition /iZ), and a key in the position

there shown as occupied by the galvanometer. The deflection of the

galvanometer produced by dei)ressing the battery key is nearly annulled

by means of a magnet, and the resistances fj, fj, r^ are adjusted until

no alteration of the galvanometer deflection takes place when the key
in CD is depressed. When this is the case C and D are at the same
potential, since the addition of the conductor CD does not disturb the

current distribution in the network ; and we have for the resistance

r^ of the galvanometer

*/Vor. n.S, vol. xix. (Jan. 1871).



CHAPTER XIL

GALVANOMETEY AND MEASUREMENT OF CURRENTS.

Section I. Absolute Galvanometry.

1. Standard galvanometers and electrodynamometers. Since currents

flowing in a given circuit are taken (V. 3 above) as proportional to

the intensities of the magnetic fields they produce, and unit current is

defined accordingly, the fundamental determinations of currents in

absolute units must be made by some form of standard galvanometer,

or standard electrodynamometer, or by the particular form of the latter

instrument which is called a current weigher. Various current weighers

of very elaborate and accurate construction have been made, and are

employed in standardizing laboratories for the direct absolute measure-

ment of currents. A standard galvanometer is an instrument which

exerts on a magnetic needle in any given position a couple which can be

calculated with sufficient accuracy from the dimensions and arrange-

ment of the coil-system, and the (approximately) known distribution

of magnetism in the needle. For absolute measurements of currents

by such an instrument it is necessary to know also the intensity, at the

needle, of the magnetic field which exists independently of the current

in the coil ; since that with the field produced by the current gives the

resultant-field in which the needle rests in equilibrium if subject only to

magnetic action, or the magnetic couple system on the needle if besides

magnetic forces, others (such as elastic forces) are effective in producing

equilibrium.

A standard electrodynamometer is simply a standard galvanometer

with the needle replaced by a movable coil, or coil-system, of such form
and arrangement, and so suspended as to enable the system of couples

acting upon it to be calculated for any position, or for a certain zero

position, to which the movable coil-system is brought back by a proper

displacement or distortion of the suspension or otherwise. In this case

equilibrium is generally produced by means of a force due to elasticity

or to gravity, which can be accurately determined.

The calculation of the magnetic forces has been given in Chapter VII.

for the more important arrangements of coils. We have only to

consider the general construction and action of such instruments,

380



cHAi'. XII GALVANOMETRY 381

the modes of suspension adopted for the needle or coil, the calculation

or determination of the other than magnetic forces acting on the sus-

])ended system, and the practical operations of setting up and using the

instruments,

2. Tangent and sine ' galvanometers. Construction. Dealing first

vvitli absolute galvauonu'tors, we notice that according to the mode in

which they are used they are classed as tangent galvanotiieters or sine

(lalvanometers. In the former the arrangement is such that the current

flowing through the coils is (exactly or approximately) profK)rtional

to the tangent of the deflection of the needle from the undisturbed or

initial position, in the latter the current is proportional to the sine of

the deflection. We shall consider first the construction of galvano-

meters.

As stated above, the standard galvanometer should be of such a

form that the values of its indications can be easily calculated from the

dimensions and luimber of turns of wire in the coil. Such a galvano-

meter can be made by any experimenter who can turn, or can get turned,

with accuracy a wooden or brass ring with a rectangular groove round
its outer edge to receive the wire.

If a wooden ring is made the wood should be hard and perfectly

seasoned. It is desirable that the block from which the ring is turned

should be built up of pieces of well seasoned wood put together with

glue, and under pressure, and arranged so that the grain of the wood
offers the maximum resistance to warping (see 5, below).

If a brass ring is made the greatest care should be taken to select

brass free from iron, or other magnetizable material. Some account of

tests of brass and other materials for freedom from magnetic matter

will be given below in connection with the description of various absolute

instruments which have been made. In early absolute instruments

this precaution was probably insufficiently attended to.

It is to be preferred that the experimenter should at least perform

the winding of the coil and the adjustments of the needle, etc., himself,

to be sure that errors in counting the number of turns, or in placing

the needle at the centre of the coil are not made. If there are to be

several layers of wire, the breadth and depth of this groove ought to be

small in comparison with its radius, and each should be not greater than

i\, of the mean radius of the coil, which should be at least 15 cm.

The gauge of the wire with which the coil is to be wound must depend
of course on the purposes to which the instrument is to be applied, but
it should be good well-insulated copper wire of high conductivity, and
not so thin as to run any risk of being injured by the strongest currents

likely to be sent through the instrument. For the exact graduation of

current as well as of potential instruments, it is convenient to make it

have two coils—one of comparatively high, the other of low resistance.

The latter may in some cases in which great accuracy is not required be

a simple hoop of say 15 cm radius, made of copper strip 1 cm broad
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and 1 mm thick. As however the distribution of the current in a

massive conductor is uncertain in consequence of want of homogeneity
in the material, and it is besides difficult to allow exactly for any
irregularity that may exist where the ends are led out, and further, as it

is difficult to make such a hoop of perfectly accurate shape, and it is

impossible to determine by calculation the exact constant of such a

conductor, it is better to use instead several turns of thick wire. Each
spire of the coil may then be regarded, as explained above, as a circular

conductor coinciding with its circular axis.

To form electrodes to which wires can be attached, the ends of the

copper strip or thick wire are brought out side by side in the plane of the

ring, with sheet vulcanite or paraffined paper between them. Insulated

wires are soldered to the ends of the circle thus arranged, and are twisted

together for a sufficient distance to prevent any direct effect on the

needle from being produced by a current flowing in them. The end of

the wire should be brought from the end of the last winding to the

beginning of the first by a step—in an axial plane of the coil for instance

—

which can have little or no effect on the needle, and then the two wires

should be close together for some distance from the coil. If one terminal

is a piece of wire well insulated with rubber, and the other is a piece of

copper tubing enclosing the wire, the terminals will be non-inductive.

But provided the needle is never deflected through a large angle, it will

be sufficient to twist the two leading in and leading out wires together,

and lay them along a line parallel to the axis of the coil.

In constructing the fine-wire coil the operator should first subject

the wire to a moderate stretching force, and then carefully measure its

electrical resistance and its length. He should then wind it on a mode-
rately large bobbin and again measure its resistance. If the second
measurement differs materially from the first, the wire is faulty and
should be carefully examined. If no evident fault can be found, on the
removal of which the discrepance disappears, the wire must be laid aside

and another substituted. When the two measurements are found to

agree the wire may then be wound on the coil. For this purpose the
ring may either be turned slowly round in a lathe or on a spindle, so as

to draw off the wire from the bobbin also mounted so as to be free to

turn round. The wire must be laid on evenly in layers in the groove
(which may be done with the utmost uniformity with a self-feeding

lathe) and the winding ended with the completion of a layer. Great
care must be taken to count accurately the number of turns laid on.

Error in counting may be avoided by following the plan used by Maxwell
of winding a single layer of thin cord on a long wooden cylinder rigidly

attached to the bobbin and therefore turning with it. A pin driven
into the cylinder serves to indicate the end of one layer and the beginning
of the next. After winding the resistance should be again measured,
and if it agrees nearly with the former measurements the coil may be
relied on,
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The ring carrying the coil thus made should then be fixed to a

convenient stand in such a manner that if necessary it can be easily

removed. The stand ought to be fitted with levelling screws, so that the

plane of the coil may be made accurately vertical. A shallow horizontal

box with a glass cover and mirror bottom may be carried by the stand

near the level of its centre, and within this the needle and attached

mirror or index suspended. Or, what is more convenient in many
cases, a platform should be arranged below the level of the centre a

sufficient distance to allow a magnetometer (such as one of those de-

scribed in Chapter II. above) to be placed with the centre of its needle

at the level of the centre of the coil.

8. Needle and suspension. Scale and pointer. The needle should be a

single sniall nuignet about a centimetre long, hung by a single fibre of

unspun washed silk (half a cocoon thread), at least 10 cm long, or,

better, by a fine quartz thread from the top of a tube fixed to the cover

of the shallow box, or from the suspension head of the magnetometer
if that is used, so that the centre of the needle when the coil is vertical

is exactly the centre of the coil. To allow of the exact adjustment of

the height of the needle, the fibre should be attached to the lower end

of a small square screw spindle, raised or lowered, without being turned

round, by a nut working round it above the cap of the tube.

If the instrument is to be used with scale and pointer (or, as is desirable

in some cases, is to be furnished with scale and pointer as well as mirror),

the pointer may be made by drawing out a bit of thin glass tube at the

blowpipe into a thread, so thick as to remain nearly straight under its

own weight when suspended by its centre. In order that the zero

position of the pointer may not be under the coil, the pointer ought to

be fixed horizontally with its length at right angle? to the needle, so as

to project to an equal distance on both sides of it. To test that this

adjustment is properly made, draw a couple of lines accurately at right

angles to one another on a sheet of paper. Then suspend a long thin*

straight magnet over the paper, and bring one of the lines into accurate

parallelism with it. Remove then the magnet and put in its place the

little needle and attached index. If the index is parallel to the other

line the adjustment has been correctly made. The needle may then
be suspended in position, and the box within which it hangs closed to

prevent disturbance from currents of air.

A circular scale graduated to degrees, with its centre just below the

centre of the coil, and its plane horizontal, is placed with its zero point

on a line drawn on the mirror-bottom of the box at right angles to the

plane of the coil, so that when the needle and coil are in the magnetic
meridian the index may point to zero. The accuracy of the adjustment
of the zero point is to be tested, as explained below, by finding whether
the same current reversed produces equal deflections on the two sides

of zero.

To test whether the centre of this divided circle is accurately under
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the centre of the needle, supposed at the centre of the coil, draw from

the point immediately under the centre of the needle two radial lines

on the mirror-bottom, one on each side of the zero point and 45° from it,

thus including between them an angle of 90°, and turn the needle round

without giving it any motion of translation. If the index lies along these

two radial lines when its point is at the corresponding division on

the circle the adjustment is correct. Of course a fairly accurate first

adjustment is previously made by placing the circle so that the two
points each at distance 45° from the zero lie on these straight lines.

Error from inaccurate centering can be almost completely eliminated

by making the pointer extend across the circle and reading both ends

of it.

When taking readings the observer places his eye so as to see the

index just cover the image in the mirror-bottom of the box, and reads

off the number of divisions and fractions of a division, indicated on the

scale by the position of the index. Error from parallax is thus avoided.

A mirror rigidly attached to the needle may be used as in the magneto-

meter, instead of the needle and index, and observed by means of a

telescope with attached scale, or, in the manner of an ordinary testing

galvanometer, by means of a beam of light thrown by a lamp on the

mirror and reflected to a scale. A long fibre magnetometer carried

on a platform properly fixed within the bobbin may be used for

the needle and attached mirror. A hole, slot, and plane arrangement

on the platform for the adjusted position will enable the magneto-

meter to be taken away and replaced at pleasure. The adjustments

of scale, etc., are the same as those described in Chapter II. above.

When a mirror is employed the coil is parallel to the undisturbed

position of the needle (the magnetic meridian, when as usual the earth's

field only is employed to give the return couple on the needle) when
equal deflections on the two sides of zero are produced by reversing any
current. The scales used should, if of paper, always be carefully glued

to a wooden piece thinly painted over with melted paraffin instead of

being, as they frequently are, fixed with drawing-pins, and the scale

should then be carefully tested, with a metal or glass scale, for possible

stretching in the process of attachment. Preferably however they

should be scales ruled on glass by any one of the simple methods now
available for copying an accurately engraved standard.

It is to be noticed that a mirror and straight scale placed at right

angles to the undeflected position of the ray, and used in the ordinary

way, give readings proportional to the tangents of double the angles

of deflection.

4. Single-layer tangent galvanometer. The author, about 1884,

constructed a standard galvanometer which possessed several advan-

tages over the ordinary form. He had long been of opinion that single-

layer coils were much preferable to multiple-layer coils for absolute

work, and had advocated their use. This view has been entirely
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confirmed by the results of the employment of single-layer coils in the

various Lorenz apparatus, inductance standards, and current weighers

which liave been more recently made. The galvanometer referred to

consisted of a cylindrical bobbin, about 50 cm in diameter and 25 cm
in Icngtli, wound with a single layer of fine wire. The needle (1cm long)

was suspended at the centre of the bobbin, and the magnetic field,

produced by a current flowing in the wire, was in this arrangement

practically invariable over a distance in any direction at the centre

considerably exceeding the length of the needle. Very accurate placing

of the needle was not necessary, as a displacement of so much as half its

length from the central position (an error of adjustment which is practi-

cally impossible with the slightest care) produced a quite imperceptible

effect on tlie deflection with any given current.

The distribution of the wire, since there was only one layer, was known
with perfect certainty, and hence the constant of the instrument could be

calculated with great exactness. At each end of the bobbin was wound
one of two equal coils of small transverse dimensions in comparison

with their radii. These were of thick copper wire arranged so as to form

a Helmholtz double-coil galvanometer of the kind described above
(VII. 8), available for strong currents.

When the instrument was being designed it was thought desirable

to have the bobbin made of some material which could not possibly

contain magnetic substances in sufficient quantity to affect the accuracy

of measurements of currents flowing in the wire. The fear then felt

by the author that the bobbins of brass ordinarily employed for standard

galvanometers might very probably contain iron, in sufficient quantity

to cause disturbance through its induced magnetization, was after-

wards found by Prof. T. Gray to be entirely justified. The measurements

of currents made by a new standard galvanometer were found by him
to be so much disturbed by the effect of magnetic substances, contained

in the walls of a brass box surrounding the needle, as to be useless.

5. Manner of building up a wooden bobbin. It was resolved therefore

to construct a bobbin of wood in such a manner as to avoid risk of

serious alteration of figure by warping, or of dimensions through varia-

tion in the amount of moisture contained in the wood. A large number
of pieces of mahogany were cut from a dry well-seasoned board about

J inch thick. Each piece was about 4 cm broad, 20 cm in length, and
was cut so as to form a segment of a ring the outside diameter of which

was about 50cm and the inner diameter about 8 cm less. Four of these

cut so that the grain of the wood ran in different directions in adjoining

pieces and placed end to end gave a complete circular ring, or rather

cylinder, ^ inch in length. Above that was placed a similar ring with

the grain of the wood in the pieces crossing that in the pieces below, and
the pieces themselves overlapping the end joints in the preceding ring.

Above that was placed another ring, and so on until the whole bobbin,

rather more than 25 cm in length, had been built up. The cylinder
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thus roughly formed was then turned carefully down to cylindrical

figure of the size desired, and as nearly truly circular as possible, and the

pores all over the surface, inside and outside, filled with spirit varnish

to prevent the absorption of moisture.

[A bobbin thus built up of pieces of wood will probably not take or

keep so true a figure as one made of metal, but there can be no doubt

of its great superiority over the ordinary bobbin of wood, made out of one

piece. For all except purposes for which the highest accuracy is

required, it may be relied on to give correct results.]

Two edges of wood, projecting slightly beyond the outside cylindrical

surface, were fixed at the ends to keep the wire in its place. The coil

was then carefully wound, the turns counted, and the wire covered with
" American cloth " to preserve it from injury. The two ends of the

thin wire coil were brought out together at one end of the coil for con-

nection to two electrodes closely twisted together and several yards in

length, by which the instrument could be joined to any circuit in which

it might be required. That end of the wire which had to be carried

from the further extremity of the coil was (supposing the coil set up
in position) brought along horizontally in a vertical plane through the

axis of the coil until it met the other extremity at the termination

of the last spire of the coil. The current in this part of the wire of course

just compensates by its effect on the needle that of the component of

current in each element of the spires in the direction of the axis.

6. Tangent galvanometer : sine galvanometer. Principal constant.

The couple given in VII. 5 (13) is, if as a first and usually suf-

ficient approximation the first term of the expression only is taken,

2irNyM cos j {a^ -\-h^Y , where M is the magnetic moment of the needle,

N the total number of turns in the coil, a the radius of the coil, h its half

length, and 6 the angle which the needle makes with the mean plane of

the coil. The return couple given by the permanent magnetic field

(horizontal intensity H) is MR sin 0, if the mean plane of the coil and
the axis of the needle are made to coincide when the deflection is zero,

by the adjustment explained below. Thus equating these couples we

For the thick wire coils the deflecting couple G is given in VII.

5 (13), and for equilibrium we have = MH&mS. If we put

O = yMG cos 6, we get

y = ^tan^, (2)

where G is the quantity obtained by dividing the multiplier of cos 9
in the expression for the couple by My. G is sometimes called the

galvanometer constant. [The determination of G will be discussed

later. It is easy to establish (1) by direct integration.]
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7. Sine galvanometer. In a «ine galvanometer the coils are made
iii()vul)l«' rouini a vertical axis through the centre of the needle, and
when the needle is deflected the coils are turned until an equilibrium

j)08ition is obtained in which the needle and mean plane of the coiU

are again jmrallel. Thus cos in the expression for O given in last

chapter must be put equal to unity. The deflection 6 of the needle is

equal to the angle through which the coils have been turned, and is

usually measured by observing this angle by means of a finely divided

scale provided with verniers and reading microscopes. For such an
instrument we have instead of (2)

y = ^8in^ (3)

In the values of G for the different types of instrument given by the

various expressions contained in Chapter VI., the inclination of the

needle to the plane of the coil is of course to be put equal to zero.

An instrument capable of being used at pleasure either as a tangent

or sine galvanometer was designed by the late Professor G. F. Fitz-

gerald, and is shown in Fig. 104. Its distinctive peculiarities consist in

an arrangement of coils which permits the constant of the instrument

to be determined with the coils in position, and a very ingenious arrange-

ment for measuring the deflections of the needle and the coils from
the adjusted position for no current. The only drawback is that the

suspended system is somewhat heavy, so that a suspension thread the

torsional effect of which is considerable must be employed.

The coils are visible through a plate-glass casing and can be measured
in situ. The deflection of the needle is observed in the following

manner on the cylindrical scale shown in the figure. A pair of small

totally reflecting prisms, with their reflecting surfaces inclined at 45°

to the horizontal, are carried by the magnet, and give images of dia-

metrically opposite parts of this scale, and show on these images of one

and the same line or mark. These are seen at the same time in the

field of view of a microscojie which receives the light from the mirrors.

Thus the arrangement is equivalent to, but much more sensitive than,

a pointer playing round a graduated circle and read at both ends to

eliminate error from inaccuracy of centering.

The coils can be turned round to follow the magnet, and their position

observed on the same cylindrical scale ; so that a single scale serves for

the use of the instrument both as a tangent galvanometer and as a sine

galvanometer.

It has been noticed in 3 above that the ordinary method of using

the mirror and scale gives with a straight scale properly adjusted the

tangent of twice the angle of deflection. In Professor Fitzgerald's

instrument, besides the arrangement just described for reading the

deflection, a mirror is provided attached at 45° to the axis of suspension.

A vertical ray of light falling upon this mirror is sent out horizontally
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through one of the plate-glass sides of the case to a horizontal scale.

As the mirror turns round the plane of reflection turns with it, and

Fia. 104.

through the same angle, so that with a straight scale placed at right

angles to the undisturbed position of the ray, the readings on the
scale are proportional to the tangents of the actual deflections.
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8. T. Gray's sine galvanometer. Fig. 105 shows a sine galvanometer

designed by the late Prof. T. Gray. A single layer of wire is wound on
a tube of 10 cm (or preferably greater) diameter, and at least ten

diameters in length. If the coil be uniformly wound with n turns per

unit of length, and I be its half-length and a. its radius, the force /per

t

Fig. 105.

unit of current at the centre is (see VII. 14 above) 4'7rwZ/(a2 + Z^)*. This

becomes 47rn if I be great in comparison with a ; for example if I is ten

times a, the value of / is only J per cent, less than 47rn, as is shown by
the equation

1 a2 3 a^ _/= Airn (1 - - w +

^''''(^"
200 "^80000 ..) (/=10«).

Thus the very exact determination of the radius is not a matter of

very great importance, and if the coil be very uniformly wound over

the middle part, and very fairly regularly elsewhere, the value of /
will be given with great accuracy by the first two terms of the series.

The uniformity of the winding can be made almost quite perfect by
laying on the wire under a moderate tension by means of a self-feeding

lathe.

The coil is wound on the tube T (Fig. 105). The ends of the wire are

attached to pins p^, f^^ and a wire iv running parallel to the axis of the

coil connects j)^ to a third pin p^^ close to p^. A pair of flexible elec-

trodes well twisted together connects jpiP^ to a pair of terminals on the

platform P. The tube is mounted, as shown, on the circular platform

P, which is furnished with levelling screws L, L, L, and can be turned

round the vertical axis V, the supports /, / sliding on the platform and
maintaining the tube in a horizontal position. The scale S on the edge

of the platform enables the angle through which the coil is turned to

be measured.

The needle is suspended at the centre of the tube, and may be either

a light polished disk, or a plane or concave mirror with attached steel
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magnets. The arrangement preferred is as follows :—At one end of

tlie tube is a short scale s facing towards the mirror (which is plane) and

illuminated by light entering a small hole at that end of the tube, and

thrown on the scale by a reflecting prism or inclined mirror. At the

same end of the tube is a fixed mirror M, also turned towards the sus-

pended mirror m. By means of the telescope t at the other end of the

tube, fixed above the centre with its vertical cross-wire as nearly as may
be in the medial vertical plane of the coil, the scale s is seen by light

which has suffered two reflections, one at m, the other at M, and thus the

angle through which the needle has been turned can be obtained.

For the scale s may be substituted a narrow slit, or, preferably a wide

slit, or hole, crossed by a wire, in front of which within the tube is fixed

a lens, and for the telescope a sheet of obscure glass. An image of the

slit or wire is focused by the lens on the obscure glass, and the position

of this can be read from without on a scale fixed to or engraved on the

glass.

Or, the plane mirror m may be replaced by a concave spherical

mirror as in an ordinary Thomson's galvanometer, and the obscure

glass carried by a sliding tube which can be pushed out or in to give

a sharp image of the slit or wire.

The method of using the instrument is as follows : It is placed in

a well-lighted room, and the platform P is levelled by means of

the screws L. The coil is then turned until the central division of the

scale s coincides with the cross-wire of the telescope (or the zero of the

scale on the obscured glass), and the reading on the scale S is taken.

Then a steady current is passed through the coil, and the angle noted

through which the tube has to be turned to bring the central division

of s again to the cross-wire of the telescope. The current is then

reversed, and the scale s moved if necessary until the angles on the two
sides of zero are equal. If is this deflection on the scale S the current

is given by the equation

The angle 6 can evidently be attained with great accuracy by very

accurate division of the scale S, and reading it with a vernier and
microscope.

9. Theory of a tangent galvanometer. We now discuss shortly some
general propositions regarding the action of galvanometers, their

adjustment and sensibility.

We shall suppose to begin with that the forces acting are wholly

magnetic, and that the suspension is such as to prevent other than

horizontal forces from affecting the needle. When no current is flowing

the needle rests horizontal with its axis parallel to the permanent
magnetic field, or to its horizontal component. The needle will take up
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a new position making an angle with the plane of the coil. The angle

which the needle now makes with its initial position is ^ - a, say. The
couple, (), acting upon the needle is given by the equations set forth

in VII. 5. If M be the magnetic moment of the needle, and H the

horizontal component force of the permanent field, we have for the

return couple Mil .sin {0 - a). Hence

e = MHBin{0-a).

But we may write 8 = y^G cos 9, and therefore

^^G "cose"
^^^

G, as shown by (13), VII. above, in general depends on 0. If the

needle however be sufficiently short the terms depending on G disappear.

G is the galvanometer constant referred to in 6.

If it is zero (5) becomes jr

y = ^tan0, (5')

and if G is independent of the current is proportional to the tangent

of the deflection. Hence the name of the instrument.

It is to be observed that the magnetic moment of the needle is in

general affected by the earth's magnetic field, and also by the current

in the coil. When however there is equilibrium between the deflecting

and the restoring couple the magnetic moment of the needle enters

as a factor in both couples, and the condition of equilibrium is inde-

pendent of that magnetic moment. It is quite otherwise however in

the " ballistic " use of a galvanometer, and errors from this fact may
arise. [See 40 below.]

10. Adjustment of instrument. The instrument is generally set up

so that a is zero or very nearly so. This adjustment may be made as

follows. Supposing the stand of the coils fitted with a level by means

of which the coils can be placed in a vertical position, the instrument

is thus levelled and placed by guess with the mean plane of the coils

as nearly as may be parallel to the needle. The coil is then joined up

with a voltaic cell and reversing key so that a current can be sent in

either direction through it. A current is sent through the coils, and the

deflection of the needle is observed by means of the mirror or pointer

attached to the needle. The current is then reversed and the opposite

deflection observed. If this is the same as before the coil is properly

placed. If not let the numerical value of the first deflection without

regard to sign be 0, and of the second 0', and let a be the (unknown)

angle which the mean plane of the coils makes with the needle. Sup-

posing G the same in both cases, which it will approximately be if

is nearly the same as O'y we have, by (5),

sin(0-a)_sin(O' +a)

cos cos 6'
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^,. .

,
sin {0-6')

1 his 4{ives tan a = ^ y^ y., ,^ 2 cos cos 6

which shows that ii 6 > 0' the coil is turned through an angle a, in the

direction of the first deflection ; ii <.0' the coil deviates from the

position of the needle by an angle a in the direction of the second

deflection.

The actual value of a can thus be calculated, and if the coils can be

turned through any required angle the correction of position can at

once be made. If, however, there is no provision for turning the coils

through a definite angle, the correction must be made by guess from the

direction of the greater deflection, then the new position tested, and if

necessary corrected, and so on.

11. Coil at 45° to meridian. The galvanometer is sometimes set so

that a = 45°, and the current then made to flow so that the deflection

is towards the coil. Then by (5) (changing the sign of the right-hand

side to keep y positive)

y-G cose -2-g(^-^'^"^> ('')

It is to be noticed that here is to be taken positive when it is on the

same side of the coil as the initial position of the needle, and negative

when it is on the opposite side. The deflection of the needle may thus

be as great as 90° from the initial position. For this value of the

deflection the current is \f2H/G.

The adjustment to this position may be made by first placing the

galvanometer as described above so that its mean plane is parallel to

the undisturbed position of the needle, and then turning the instrument

round through exactly 45°. This mode of using the instrument, though

it gives a wider range, is attended with the inconvenience that the

deflection if considerable can only be taken in one direction.

12. Sensibility of galvanometer. The sensibility of a galvanometer

may be defined as the reciprocal of the current required to produce a

definite small angular deflection of the neadle, or, which comes to the

same thing, it may be taken as measured by the angular deflection

produced by a specified current, for example, a micro-ampere (one

millionth of an ampere). Frequently if the galvanometer be a reflecting

one it is regarded as inversely proportional to the current required to

produce a deflection of one division of the scale, but this of course is a

function of the arrangement of mirror and scale, and not merely of the

coil.

The sensibility can be determined by sending through the coil,

arranged as will generally be necessary with some considerable resistance

in circuit, and shunted, if need be, by a resistance the ratio of which

to the resistance of the coil is known, a current from a cell of known
electromotive force, calculating the current, and observing the deflection.
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The actual merit of the instrument cannot however be completely

determined by such a j)rocess, as that depends on length of period of

the iHM'dle, steadiness of zero, etc., which are not here taken account of.

13. Sensibility for different positions of needle. The sensibility of a

galvanometer,* for different positions of the needle, is the ratio of the

iFicrease of deflection to the increase of the current, or ()6/Sy. 'This is a

niuximum in the case of a tangent galvanometer for zero deflection.

When however the deflection is 45° a given percentage of increase or

diminution of the current produces a maximum increase or diminution

of deflection, that is to say 60/{oy/y) is then a maximum; and hence the

instrument is sometimes (erroneously) stated to be " most sensitive
"

when the deflection is 45°. The only importance in making the deflec-

tion 45° lies in the fact that with this deflection a given small error in

reading the angle will have a minimum effect on the estimation of the

current.

To prove these propositions we observe first that by (2)

dO^G 1

dy'Hl+tanH)'

and this is obviously a maximum when ^ = 0.

Again let the reading be in error SO when the deflection is really 0.

Then the current is estimated by (2), and if y is the true current the

estimated current is y±Sy, or y±dy/dO . SO. The error in estimation

of the current is Sy/y or dy/dO . SOjy. But

y do tan d

This is a minimum when (1 +isLn^0)/tsin ^ is a minimum, that is when
tan^ = l, or ^ = 45°.

14. Torsion of suspension fibre. In every properly constructed

absolute galvanometer the torsion of the suspension ought to be negli-

gible, and if a quartz thread, or a sufficient length of properly prepared

silk fibre be used, it will be negligible. The amount of torsion may
however be estimated as follows. Let the needle supposed initially

in the magnetic meridian be turned once or more times completely

round, and let its deflection from the magnetic meridian in its new posi-

tion of equilibrium be noted by means of index and divided scale, or

mirror and scale or telescope provided for the purpose. If a be the

angular deflection of the magnet from the magnetic meridian produced
by turning tlie magnet once round, the angle through which the thread

has been turned is 27r - «. The couple produced by this torsion has for

moment mH sin «. Hence by Coulomb's law of the proportionality

of the couple due to torsion to the twist given, the couple corresponding

* An elaborate ccunpaiison of sensibilities of galvanometers is given in a jmpcr
by Messrs. Ayrton, Mather, and Snnipner, Phil. M(i<j. Jnly 1890.
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to deflection is mH sin a. 0/ (27r - a). Thus if a current y produces the

deflection the equation of equilibrium is

yG cos =H {sin +- sin a),

^ ^ \ /i ^ sinaX ^^ ^ .„^
and therefore y=(\+- ^—^r ) — tan 6^ (7)

'^

\ 27r - a sin 6^/ (r

15. Bilateral and Unilateral deflection of a galvanometer needle by

alternating current. Before leaving for the present the subject of

galvanometers we give here a short discussion of the action of an

alternating current in the coil of such an instrument on the magnetic

needle. As suggested a long time ago by Lord Rayleigh, the mag-

netic moment of the needle must be altered more or less by the

current in the coil, to an extent depending on the deflection. As

stated above, this effect in no way influences the results of galvano-

meter measurements in an important class of cases. There are other

cases however in which it produces striking and more or less puzzling

phenomena. The first case we take is that of an alternating current of

fairly high frequency flowing in the coil, which would at first sight

naturally be expected to produce no effect.

Let 9 be the angle which the needle makes with the mean plane of the

coil at time t, Oq the initial value of 0. If y be the current in the coil,

there will be a component of magnetic force in the direction of the

needle which is proportional to y cos 0. The change in the magnetic

moment we suppose to be also proportional to y cos 0, so that the couple

on the needle due to this is Cy^ sin cos 6, where (7 is a constant. The

whole couple on the needle will therefore at time t be

MGy cos + Cy^ sin 6 cos Oy

where M is the magnetic moment of the needle and G the galvano-

meter constant. Hence if mk^ be the moment of inertia of the sus-

pended system about the suspension thread, k the friction coefficient,

and H the horizontal intensity of the field in which the needle

hangs, supposed to be parallel to the initial position of the needle,

the equation of motion of the needle is

mF^ + 2K0 + Afi?sin(6>-6>o) = Wycos6> + Oy2sin6>cos6> (8)

If the current in the coil be represented by y =A sin [nt-e), the

mean value of y^ is ^A^. Thus we may take A/V2i as the effective cur-

rent, y^ say. Hence the mean couple due to the periodic variation of

the magnetic moment of the needle is (7y^„ sin 9 cos 9. Let it be supposed

that the value of ^q is zero or very small. Let the value of y,„ be gradu-

ally increased, by diminishing the resistance in the alternating circuit.

At first there is little if any deviation of the needle from its zero position,

but its free period is increased. Thus at first, since the frequency is
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high, tlierc are only siimll values of 0, and cos is nearly unity. The
equation of the vibrational motion is

mk^S + 2k6 + {MH - Cyi,)0 = 0,

approximately. Thus the period, 27r{mk'^/(MH -Cyl,)}^ , increases as

y,„ is increased. Clearly, however, as Cy^^ approaches more and more
nearly to the value Mil, the equilibrium tends to become unstable,

and the spot of light finally moves off to one side or the other. Thus
there is bilateral deflection.

On the other hand, if Oq be of sensible amount 0-0^ must have the

same sign as 6^, since we sui)pose that cos Oq is positive. For while

y^„ is below the critical value, the spot of light will oscillate about the

j)osition determined by the two couples, which do not alternate in

direction, that is the position given by the equation

sin {9 -Oq) ^ o ri
\ ^

^' = Cyl cos 9
,

sin 9 ^

9-9,

9
or ^4-0=C/„., (9)

approximately. Hence, since ^ - ^o ^^^ ^ hsiva the same sign, and 9^
is always in the direction to make (7y'^ sin 9q have the same sign as

MH, the final deflection is in that direction. Thus we have unilateral

deflection, in the direction in which the needle has been turned initially

from zero.

The effect of the change produced by the current in the coil, in the

ballistic use of a galvanometer, we must leave until later in this chapter

we deal with that subject. Bilateral and unilateral deflection was
discussed by the late Professor Chrystal in 1876.* The reader should

consult this paper for further experimental particulars.

16. Electrodynamometers. We now consider absolute electrodyna-

mometers. The first instrument of this kind seems to have been
invented by W. Weber, and used by him in his researches on the mutual
action of currents. Electrodynamometers have advantages over

galvanometers (1) in having no magnet, and therefore avoiding alto-

gether uncertainty as to distribution of magnetism
; (2) in not involving

for the reduction of their indications any knowledge of the intensity

of the earth's field ; but they are inferior in point of sensibility, and as

the return couple is generally given by a bifilar or torsion suspension the

accurate estimation of its value may be a matter of some difficulty.

The galvanometer designed by Professor Fitzgerald and described

above could, as he has pointed out, easily be adapted for use as an
electrodynamometer. All that is required is the substitution of a

proper suspended coil, and a bifilar suspension for the needle. The

Phil. Mag. 2 (1876). See also a paper by Alexander Russell, Phil. Mag. 12
1906).
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same arrangement of mirrors and cylindrical scale would be available

to give the deflections.

Other electrodynamometers have since been made, and the con-

ditions for their accurate use are now better understood and realized.

Current weighers have also come into use as standard instruments for

accurate work.

17. B.A. Committee's electrodynamometer. We shall describe the

general arrangement and mode of using an electrodynamometer first

with reference to the instrument made by Mr. Latimer Clark for the

British Association Committee on Electrical Standards, and illustrated

in Figs. 106, 107. The design of this instrument was excellent in

several respects.

The first of these figures shows the general arrangement of the instru-

ment, the second the details of the suspension.

Fig. 106.

The bifilar consists of two wires the tension of which is maintained

the same by their being attached to a piece of silk thread which passes

over a pulley, as shown in Fig. 107. The distance between the threads

u adjusted by two guide pulleys which can be set at any required distance

apart. The current is led into the suspended coil by means of the

suspension wires. Arrangements are also made whereby the current

can be sent in either direction through each coil.

The instrument has both its stationary and movable coil systems

constructed on Helmholtz's plan of two equal parallel coils at a distance

apart equal to their radii. The suspended coil system is hung so that it is

concentric with the fixed coils, and when there is zero deflection their

planes are at right angles to one another.
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FIO. 107.

When the axis of the suspended coil makes an angle 7r/2 - <t> with the

plane of the fixed coil, the couple (J due to the currents and tending

to increase the deflection, 6^, has the ex-

l)ression given in (40) or (45), VII. 22, 23,

witli sign changed. Again the suspended

coil is acted on by a couple due to the

earth's magnetic force //, and tending to

diminish 7r/2-</>. Thus the equation (45)

just referred to gives for the former couple

\:Nnyy'G^q^ cos (7r/2 - </»), since ^Z\ = 1

;

and for the other couple 2ny'(j^ H sin O'y

where iV, n, y, y', are the numbers of turns

and the currents in the fixed and movable
coils respectively, and 0' is the angle which

the axis of the movable coil makes with

the magnetic meridian. Thus if L be the

return couple due to the suspension, and
the plane of the fixed coil make an angle a with the magnetic meridian,

and an angle [6 with the axis of the movable coil in the undisturbed

position, we have for equilibrium 9' = + /3+a, and

iNnyy'Gigi cos {0 + /3)- ^nyg^H sm{0 + /3 + u) -L = 0.

The value of L, if ^ be small, is proportional to sin Oy so that L= FsiD.9.

Fta.nO = iNnyyO^giicos /3 - tan 6 sin
ft)

- 2ny'giH{tSin 9 cos (a + /3) + sin (a + /8) }

,

and if a and ft be both small and 2ny'H. be small compared with F,

tan 9 = ipi^Nnyy'G^^ cos ft
- Iny'g^H sin (a + ft)

- ^^{IQNVyY^G^^gi'Bmft + SNnHyy'^G.gi')} (10)

18. Methods of using the instrument. Now a direction of the current

in the coils being assumed as positive, the currents are sent through the

two coils according to the adjoining scheme and produce the correspond-

ing deflections 9^, 9 2, 9^, 6^.

0,

y

+

V

+

e. - -

Os + -

0,
- +
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Thus we get by substitution in (10) and reduction

. 1 F
yy 4:4:NnGig^cosp

{tanO^ + t3inP2-tainO^-ta.nO^) (11)

If y = y' this gives the value of y^.

By this method H is eliminated, and it is the best method to adopt

when readings have to be obtained quickly, as when the current is

varying. If however the current is constant enough the head of the

bifilar suspension may be turned round until the suspended coil is

brought back to its original position after deflection. When this is the

case the angle through which the coil is deflected from its equilibrium

position is clearly equal and opposite to the angle ^y through which the

head of the bifilar has been turned round from the position of paral-

lelism with the plane of the coil. We have thus ^ = -
x- ^^^ equili-

brium we have the equation

i^ sin X = - 4:NnyyGigi + 2ny'g^E sin a.

Taking four deflections according to the above scheme, we get four

readings of the head of the bifilar /^j,

and so

*2J /^3' i^4 = ~ ^l» ~ ^2) ~ ^3» ~ ^4

i^sinxi

F^mX2

i^sinx3= - ^Nnyy G^g^^2ny'gJI &m a,

F sin X4 = - ^'^^yy'^i^'i - 2ny'^iJ^ sin a.

Hence '^^' " ~
iNnG^g}

^''' Xi + sin X2 - sin Xa - sin
X4). (12)

2<^=\/3a

in which again H does not appear.

19. The Gray absolute electrodynamometer. An absolute electro-

dynamometer may be constructed, as described above (VI. 25), of two

single-layer coils placed with their

centres in coincidence, as shown in

Fig. 108. If the ratio of length to

radius be as proposed above in each

case V3/I, the value of the couple

due to the action of the currents

will be as given in VI. 25 (76'),

{S7r^nnyy'a^x^/\/a^-\-x^}cos (7r/2 - <^),

where n, n' are the numbers of turns

per unit length in the two coils, ic, ^,

a, a, their respective half-lengths and

radii, y, yi' 'the currents in them,

and 7r/2 - the angle which the axis

of the movable coil makes with the

mean plane of the fixed coils. This

Fig. 108. with 7r/2 - </> replaced by ^ + ^ is to

t

^ v.

a 1 c/

i ; Qi/

/

^', r

/
f

/
/

f
/

/
/

/

v..

,a
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be used in the formulae given above, instead of

iNnyy'Gi(/iCO8(0 + l3).

Thus the equations replacing (11), (12) for this case are

, 1 FJc^T^
yy 4 87r*nn'a«a;^

1 Fji

(tan 9^ + tan 9^ - tan 6^3 tan 6^4), (13)

An instrument fulfilling the conditions set forth in VII. 25 has been

constructed with great care and skill at the Bureau of Standards, at

Washington, and used by Messrs. Patterson and Guthe, and Carhart

and Guthe, in determinations there made of the absolute electromotive

forces of standard cells. The instrument is shown in Fig. 109.

Fig. 109.

It consists of a cylindrical coil of thin wire wound in a single layer,

on a cylinder of carefully selected plaster of Paris, cast and ground
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accurately to shape, with a smaller coil hung in its interior. Two
smaller coils of different sizes were constructed, and were wound on
porcelain cylinders made at the Royal Porcelain Factory at Berlin,

and ground to exact size and shape at the Bureau of Standards. The
effective diameter of the stationary coil was 49-9624 cm at 25° C.

The two smaller coils made had at that temperature average diameters

9-93333 cm and 7-52157 cm.

The ratio of the radius of each coil to its length was made, for the

reason stated above, l/Vs. With this ratio of radius to length, and
coincidence of centres, the couple G exerted on the movable coil by the

outer one, when their axes are at right angles, takes the form

e = 27r2^'iV,iV2yiy2. (15)

where r is the radius of the suspended coil, c the half diagonal of the

fixed coil, or (a^ + 52^2 j{ ^ \^^ ^j^^ radius and 26 the length of the coil (that

is c = Vlaft), iVj, iVg are the numbers of turns in the fixed and sus-

pended coils, respectively, and yj, y<^ the currents in these coils. Of
course these may or may not be the same current.

With this arrangement all the terms in the series of products

K^k^-\-K^.^-\- ..., between the first and the seventh, disappear, and
the seventh and succeeding terms are only small correction terms, which
are not appreciable unless the suspended coil is made large., and can be

easily and quickly calculated in any actual case.

The following detailed account of the instrument follows the de-

scription and discussion given by Mr. E. B. Rosa, in the B.B.&M . 2,

p. 71.

20. Value of the couple in the Gray dynamometer. The expression

for the couple may be conveniently considered as the product of two
factors B.y^ and Ay^, where H = 2itN^jc, A = irr'^N^. The first Hy^ is

the magnetic force at the centre of the fixed coil due to the current y^
flowing in its windings, and A is the sum of the areas of the different

turns of wire in the suspended coil. Hence the couple is the same as

if the latter coil were hung in a perfectly uniform magnetic field of

intensity Hy^. As Mr. Rosa states, the field of the large coil is not

uniform, as the centre is a point of maximum intensity on the axis

and a point of minimum intensity for a line along the axis of the other

coil. The couple is, however, for a small coil half the radius of the other,

the same to 1 part in 27,000 as it would be if the field were perfectly

uniform and of intensity equal to that at the centre.

The instrument was found extremely accurate in precision work.

The quantity which had to be exactly measured, and which was there-

fore found most difficult of exact determination, was the couple ; and
we shall give here the results of Mr. Rosa's determination of the different

sources of error from the point of view of theory.
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21. Corrections. Calibration o! windings, etc. In the first place

we have to inquire, to what degree of accuracy the field H at the centre

of the coil due to a current sheet of n turns per cm is equivalent to that

produced at the same j)oint by the single layer of windings of wire of

Ni ( =26/i) turns of wire carrying the same current. We have

c

Suj)pose the coil of wire replaced by a single layer of flat thin strip of

breadth 26/iV laid round edge to edge, without actually touching, so

that there is the same current per cm of length at every jart of the

cylinder. As used by Guthe the instrument had about 20 turns per cm,
so that the covered wire had a diameter of 0-05 cm. Thus for a single

turn at the centre the axial magnetic force is

f025^4^ 0-5 27r

(a2 + a;2)*-l-025 a
(i + 00012)*

H, = 27r X 20r - •^—.1
'

"" = "^^ —
, =

^"^
X -9999995.

l-(a2 + a;V-l
"

A single turn of infinitely thin wire, at the centre of the coil, would give

a magnetic force 27r/a. A single turn of the strip would give a force

less tlian this by one part in 2,000,000. If the strip were 1 cm wide

the difference would be 400 times as much, but still only 1 part in 5000.

On the other hand, for the strip -05 cm wide, wound on edge, the

magnetic force per unit current is, if 2a be the breadth of the strip,

//^ .2.r^ J- = ?![/i 1 fLV 2_!r , 1 .0000003.

Thus the force in this case is greater than ^irja by 1 part in 3,000,000.

Thus the effects of thickness of the wire in giving breadth to the

equivalent strip, and in giving increase of diameter, are opposite, and
together make the field of one turn differ from that of a single turn of

infinitesimal thickness, and radius a, to less than 1 part in 1,000,000.

A-€^

FIQ. 110.

Similarly the difference between the magnetic field at the centre due

to a turn of wire round one end of the coil and the field due to the

corresponding part of the current sheet is inappreciable (about 1 part in

5,000,000), and moreover, if necessary, all these differences could be

allowed for. It is to be observed that the current-sheet length of such

a coil is the overall length of the winding, including the insulating

covering [see Fig. 110]. This amounted to about 1 part in 5000 in

excess of the length ab.

CA.M. ^c
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The coil was calibrated for the possible irregularities of winding, by
measurements of the breadths on the cylinder covered by each 50 turns

;

and was divided into corresponding sections of which the magnetic

fields were computed by the formula (derived from Fig. Ill)

2irnH=

Fig. 111.

i2)i (a2 + x.^)\

where w = 50, and (for the end section) Xi = 21-6382, a:;2 = 19-1437,

a = 24-981 2, all in centimetres. The other sections were dealt with in

a similar way. There were 17 sections of

50 turns each and one of 22 turns, 872

turns in all.

The magnetic force at the centre of the

coil was 165-992 c.g.s., while the assump-

tion of uniform winding would have given

165-778 c.g.s. The difference was about

1 part in 800. This of course is an error

to which all coils are subject.

The effect of the spirality of the wind-

ing was also computed, for it will be seen

that one half of a given winding is on the

whole nearer, and the other half farther,

from the centre than the mean distance.

The effect was found not to be more than 1 part in 2,000,000.

It is easy to show that the error dH/H in the magnetic field is - ida/Uj

where da/a is the error in measurement of the radius, and the correspond-

ing error from inaccuracy in measuring the length of the cylinder is

-^dhjh. The error in field due to 0-1 millimetre error in a was 1 part

in 8,750, for the same error in h, the error in field was 1 part in 10,100.

For the plaster of Paris cylinder on which the coil was wound the

effect of 1° C. change of temperature was 1 in 40,000 ; for marble it

was found to be 1 in 100,000. The error in field due to change of

temperature is numerically the same as the error in linear dimensions

caused by the change.

An outside value of the effect of displacing the wires to provide an
opening for the suspension was found by considering the displacement

of four wires through a distance of 2 millimetres on each side of the

central plane and half a millimetre radially in order that they might
be above the adjacent wires. The effect was 1 part in 150,000,000 of

the whole force for the lateral displacement, and 1 part in 2,000,000

for the radial displacement.

With regard to the couple 9, the error due to inaccuracy in the measure-

ment of r, the radius of the smaller coil, was ^drjr, since the couple is

proportional to the square of r. It was therefore important to measure
r with great accuracy, and to allow in every way for wire thickness,

irregularities of winding, etc., as in the case of the fixed coil. Two
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smaller coils of different dimensions were made as stated above, to

give a check on the nieasurenients.

Further particularH, as to the mode of using the instrument, are to

be found in the Physical Review in the account there given of the work
of (Jut he, Piittrrsoii, and ( arhart on the «'Iectroinotive forces of c'(?11k.

22. Non absolute galvanometers and dynamometers. Choice of

gauge of wire. Galvanometers and electrodynamometers which by

tlu'insclves are not capable of giving measurements of currents in

absolute units are very frecjuently used. Such instruments are " cali-

brated " by some reliable method, so that the absolute valuers of the

currents corresponding to any given deflections are known. In general

they differ very much from the so-called absolute instruments in the

arrangement of their coils, etc., which in non-absolute instruments

has had chiefly in view the attainment of the greatest possible sensi-

bility.

We shall distinguish between instruments which have in their coils

a great many turns of fine wire, so that the resistance of the coil system

amounts to at least several hundred ohms, and those instruments the

resistance of which is comparatively low. The former are frequently

called " potential " instruments or voltmeters from their use in deter-

mining the difference of potential between two points in a circuit at

which the terminals are applied ; the latter are called low resistance

or ** short coil " instruments, and sometimes (when their resistances

are so low that one of them can be placed in series with the working

circuit without materially increasing its resistance) ** current meters
"

or amporemeters.

First taking galvanometers, we shall establish some general theorems

regarding the arrangement of their coils, then very shortly discuss their

graduation for absolute measurements, and finally deal with graduated

electrodynamometers.

In the first place, let the galvanometer have a certain cylindric

channel which is to be filled with wire, and let it be required to find the

gauge of wire with which it ought to be wound if it is to be used in circuit

with an electrical generator of given electromotive force and resistance.

Let a be the radius of cross-section of the wire employed, c the thickness

of the covering, and S the cross-section of the channel made by a plane

through the axis. The portion of the cross-section occupied by each

turn will be {2a + 2c)^ if the turns are arranged in square order in the

cross-section, and (2a + 2c)2V3/4 if they are arranged in triangular order.

This includes the space occupied by the covering and th(? vacant spaces

between the spires.

Considering at present the first case only, we see that the number
of turns is /S/(2a + 2c)2, if any inaccuracy introduced by its being im-

possible to fit an exact number of turns into a complete layer is neglected.

If r be the mean radius of the cross-section of the channel, the whole

length of wire is approximately 27rr/S/(2a + 2c)2. But p denoting the
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specific resistance of the wire, the resistance per unit length is p/'Tra^y

and the whole resistance R of the coil is \prSI(a + cfa^. For a given

current the magnetic force at the needle is proportional to the number
of turns, and the magnetic force parallel to the axis may therefore be

written ASyl{a + c)^, where ^ is a constant. If E be the electromotive

force of the generator, and R' the resistance of the generator and wires

connecting it to the galvanometer bobbin, we have

E
y = o '

+A

and for the axial component of magnetic force

f: ^^ (16)

Since the numerator is constant, this has its maximum value when

the denominator is a minimum. Calculating in the usual manner the

necessary condition, we find the equation

«^+«*5 =^, (17)

a biquadratic for the determination of the corresponding value of a.

But for the reciprocal 1/R of the resistance of the bobbin we have the

value 2{a + c)^af/prS, and this used with the last equation gives

IL^J^^ (18)

or the resistance of the bobbin should have to the resistance of the

generator and connecting wires the ratio of the radius of the wire when
bare to its radius when covered.

If the spires are arranged in triangular order, the equation of con-

dition corresponding to (17) is

a^+m3^?^;f,, (19)

and since, in this case, l/R = j3a^{a + c)^l2prS, we have the same result

as before.

It may be remarked here that the magnetic effects of a given bobbin

wound with wire of different gauges, the thickness of coating in which

bears a constant ratio to the diameter of the wire, and traversed in

each case by the same current, are proportional to the square root of

the resistance of the coil. For we have then {a + c)/a = k, or a-hc = ha.

Thus, by what has been set forth above, the magnetic effect is

proportional to l/a^, and the resistance to l/^^a* ; hence the magnetic

action varies as JR.
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It is very carefully to be observed that this comparison of magnetic

effects holds for a given current in the coil. The matter may be looked

at also as follows. For a given ratio of diameter of wire to thickness of

insulating coating, the number of turns on the coil is directly propor-

tional to the length of wire in the coil, which is inversely proportional

to the cross-section of the wire. But the resistance of the coil is

directly proportional to the length of the wire and inversely projmrtional

to the cross-section, that is the resistance is proportional to the square

of the length of the wire. The length and therefore the number of

turns of wire are thus proportional to the square root of the resistance.

It is obvious that this is also true when the thickness of the covering

is so small us to ho nogligihlo,

23. Best shape of section of bobbin. The best shape of cross-section

for the bobbin of an ordinary galvanometer is shown in Fig. 112. The

curve forming the external boundary of

the cross-section is given by the equation,

r^=2>^s\ne, (20)

where r is the distance of any point P of

the surface from the centre of the coil,

the angle POM which OP makes with

the axis OM, and p a constant.

To prove this, note that the axial mag-
netic force due to a single turn of wire of

radius a, is proportional to a/r^, that is

to sin 0/r^. Let now this turn be trans-

ferred to any point outside the surface,

fulfilling equation (20), on which it lies.

Then whatever the radius of the circle

into which it is now bent, the length of

arc which it furnishes is the same as

before, and so the axial magnetic force

is proportional to the new value of

sin O/r^. But for every point of the cross-section outside the boundary
fulfilling (20) the value of sinO/r^ is smaller, and for every point

within the boundary is greater, than for a point of the surface.

Thus a given length of wire produces a greater or less axial magnetic
force according as it is wound within or without this surface. If then
a coil be wound of any shape of cross-section the external boundary
of which does not fulfil (20), by removing the wire from one part of the

coil to another, the cross-section may be brought to this shape, and the

axial magnetic force increased.

Fig. 112 shows curves for different values of p, and the two parallel

dotted lines indicate a cylindrical chamber left for the needle.

24. Effect of grading the gauge of wire in bobbin. In the investiga-

tion given in 22 above of the best gauge of wire with which to fill

Fio. 112.
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a given channel, when the bobbin is to be used with a generator of

known electromotive force, it has been assumed that the wire must be

of uniform thickness ; and we have just seen what is the best form of

cross-section to give a coil which is to contain a given volume of wire.

When a coil is wound, however, each additional turn of wire, though it

increases the axial magnetic force for a given current, also increases

the resistance in circuit, and thereby diminishes the current produced

by a given electromotive force. We shall now inquire whether by
winding the outer layers of thicker wire the effect of increased resistance

can be reduced to a minimum.
The volume of the coil supposed without chamber for the needle is

STT^xlf r^dO,

where y is the distance of the mean point of the cross-section from the

axis. Now r c
Ur^smOdrdO

y-^^ ,

iy^do

the limits of integration being and ^(sin 6y for r, and and tt for 0.

Hence, on the supposition already made,

volume of coil = firp^ \s\n^ OdO

=i^y, (21)

if iV = 27rl sin^O dO, which does not depend on the dimensions or shape
Jo

of the coil. The chamber containing the needle should be made as

small as possible,* as the part of the coil immediately surrounding the

magnet is the most valuable ; but it will always cut away a part of

the coil depending on p, which may be denoted by f{p). The actual

volume of the coil is thus }^Np^ ~f{p)-
25. Theory of a graded coiL If now dl be an element of length of

the wire composing the coil, and p the parameter of the generating curve

of the surface on which it lies, then since 1/p^ = sin O/r^, the axial mag-
netic force at the centre is, by the law of magnetic force due to elements

of the circuit, y^dl/p^
(^
= yG, say), where p is a function of the whole

length, I, of wire in the coil from some chosen point, say the inner end,

to dl. We shall suppose the wire to be of a different gauge at different

places in the coil. If its radius at dl be a, the thickness of the covering

there c, and the winding be in square order, the volume occupied by

dl is dl{2a + 2c)^, so that the whole volume is 4Jc^?(a + c)2, where a

* For the manner of winding the space close to the magnet see 26 beJow.
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(and c if not constant) is a function of /, and the integral is taken through-

out the whole length of wire in the coil.

Let the coil be considered as made up of layers each fulfilling the

equation r'^ = j)'^ Mn , but each for its own value of f, so that a is a

function of p. We have thus for the volume of the space between the

layers corresponding to 'p and p + dp the expression

Np^dp -f\p) dp = (2a + 2c)«(ii,

if dl be now put for the length of wire in this space. Thus

dl = {NpHp -f'{p)dp)l{2a + 2c)\

and we got (since we have put G= \dllp>'

''^^•=;^fr^^^-

-

^2^)

If the generator have as before an electromotive force E^ and R'

denote as before the resistance of the generator and connecting wires, we
have y = EI{R + R')8ind yG = EGI{R + R'). To make yGoTG/{R+R')
a maximum by properly grading the wire, we have to choose the

diameter for each layer so that the contribution of the layer to GI{R + R')

shall be as great as possible. Now imagine any layer to be taken

away from the coil, everything else remaining the same. G becomes

G - dG, and R, R- dR. Thus G/iR + R') changes by

{{R + R')dG-GdR}l{R + R'f.

If we make the thickness of the layer very small, G/iR + R') will be

the same whatever layer is removed, and may in that case be regarded

as a constant for all parts of the coil, and as we are considering only

the effect of a particular layer we consider R + R' as a constant. We
have, then, to find the value of a + c for which the effect

dG-GdR/iR-i-R)

is a maximum. If a + c be denoted by u the necessary condition is

du R + li du

-J- dR ,, ,v
du R+R

du

Performing the differentiations on the values of dG and dR given in

(22) and (23) above, we find

PP^/, uda\ R-\-R ^ ^ ,„..
^^o( 1 +-- J )

= —7^— = constant (24)
TTtr \ a duj G
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If the radius of the wire and the thickness of its covering have always

the same ratio, that is if u/a is constant, we have

a/u = da/du or u/a . da/du = 1

.

Hence in this case a is in simple proportion to p.

On the other hand, if the thickness of the covering is always the same,

da/du = 1, and we have j)'^{2a-\- c)la^ = constant.

On the first supposition, denoting a by wp and a + c by /?a, where a

and j^ are constants, and putting -N/g for the integral of the term

depending on the chamber in which the mirror hangs, we find from (22)

''iSpirp)'
(^'•^)

where p is the greatest parameter used for the coil. In general q
depends also on this value of p, but, as will be seen from Fig. 112, is

nearly constant if the chamber is not large. It is a quantity of the

order of magnitude of the internal dimensions of the chamber, and
may be regarded as the parameter of the curve which would generate

by revolution round the axis a volume equal to that of the needle

chamber. The resistance has the value GpJTra^.

We see from (25) that very little is gained, when this mode of winding

with graded wire is adopted, by making p large in comparison with q.

26. The needle and needle chamber. If the chamber in which the

needle hangs is cylindrical and runs right through the coil, the needle

Fig. 113.

is shorter than the diameter of the smallest spires, and every spire in

the coil produces an effect in the same direction on the needle. If
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however the space in which the needle hangs is not made cylindrical,

the shape of it is of some importance, as it is possible to place spires in

positions in which they produce a magnetic effect opposed to that of

the coil generally.* To see this it is only necessary to consider the

diagram of lines of force (Fig. 1 13) due to a single turn of wire of radius

OA . Take any line of force and draw a tangent, PiV, to it at right angles
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Fig 114.

to the axis. Then it is clear that a uniformly magnetized needle at

right angles to the axis, half of which is represented in position and
length by PiV, will not be acted on by any couple, since the force on

each pole is in the direction of the length of the magnet. If however
the magnet be at a greater axial distance, the force upon it is in the same
direction as it would be if the needle were very short. Thus on a

needle of the length and in the jDOsition here specified two turns, one

smaller, the other larger in radius than the turn shown in the diagram,

and in the same plane with the latter, would, if traversed by currents

in the same direction, produce oi)posite couples. The smaller turn

* This is pointed out in Messrs. Ayrton, Mather, and Sumpner's paper, Phil. Mag.
July 1890.
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would however produce a couple in the same direction as the larger,

if carried off to a sufficient axial distance from the needle.

For a needle of given length it is easy to draw a curve of limiting

positions for the spires. For draw the line APQ through the points of

contact of tangents perpendicular to the axis, then the axial distances

ON
I,
ON 2 of these tangents from the plane of the spire are the limiting

distances of the spire from magnets of the half length N^P^, N2P2, etc.

Then by supposing the scale of the diagram reduced in the ratio of

Nj^P^ to N2P2 we shall have a spire of radius OA x N^PJN2P2 ^^ *^e

position to exert zero couple on a needle of half length N^P^ when at an
axial distance ON 2 x N-J^-^IN2P2i and so for other points.

It is therefore clearly undesirable to fill with spires wound in the

same direction as the rest of the coil the space near the needles, beyond
the limits indicated by these considerations. Figure 114* shows the

form of the cavity which ought to be left. If it is possible to fill any
of this space with wire, it should be done, but the spires made to run

in the opposite direction, so that the couples due to their magnetic

action may be in the same direction as that due to the rest of the

coil.

27. Wiedemann's aperiodic galvanometer. A form of galvanometer

very convenient in many respects is that invented by Wiedemann j"

(Fig. 115). A circular disk, or ring, of steel about 2 cm in diameter,

magnetized parallel to a diameter, is suspended with its magnetic axis

horizontal and forms the needle of the instrument. This needle is

attached to the lower end of a bar of aluminium, which also carries

the mirror (made of thin glass) ; and is hjmg within a damping
chamber of copper, by a cocoon fibre, from a torsion head above, by
means of which the effect of the torsion of the fibre can be estimated.

The mirror is fixed so far above the needle that it is clear of the coils,

and is viewed through a telescope in the ordinary manner. The
suspension fibre, aluminium bar, and attached mirror are protected by
means of a glass tube and case fixed above the damping chamber.

A pair of coils is arranged, one on each side of the damping chamber,

with their axes in line through the centre of the needle ; and are at-

tached to sliding pieces so that their distances from the needle can be

increased or diminished and the sensibility altered accordingly. The
openings in the coils are large enough to allow the bobbins to slide over

the damping box close up to the needle, leaving, in the closest position,

between them only the narrow space necessary for the tube down which
passes the fibre.

Two or three sets of pairs of coils suitable for different purposes are

provided with the instrument. When the needle moves in the damping
box of copper its motion is resisted by the action of the induced currents

* From Messrs. Ayrton, Mather, and Sumpner's paper, Phil. Mag. July 1890.

t Die Lehre v. d. Elektricitdt, vol. iii. p. 289.
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produced, ho inucli ho that it hardly oseillates about a new ponition of

equilihriuin.

•*

Fig. 1

28. Siphon-recorder arrangement used for galvanometer. In the

late Lord Kelvin's siphon-recorder for registering signals sent through

a submarine cable, a coil of wire is suspended between the poles of a

magnet so as to be free to turn round a vertical axis passing through its

centre [Fig. 116]. Within the coil is fixed an iron core which serves to

concentrate the field of the coil. When the coil is in the undeflected

position the planes of its spires are parallel to the direction of the

magnetic field, but when a current is sent through the coil it turns, in
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a direction depending on that of the current, so as to increase the

magnetic induction through its circuits. A return couple is provided

for the recorder by means of a bifilar suspension. The magnet is either

a permanent horse-shoe magnet, or an electromagnet excited by a local

current. The current from the sending station passes round the coil,

which, turning in one direction or the other according as a " dot " or
" dash " is being indicated, actuates the writing siphon.

The ordinary dead-beat reflecting galvano-

meter invented by Lord Kelvin for cable sig-

nalling and ordinary testing is described in the

chapter above on the comparison of resistances.

The application of the siphon-recorder arrange-

ment as a galvanometer was referred to in the

original patent of the instrument and was pointed

out in the first edition of Maxwell's Electricity

and Mag7ietism, and has occurred to and been

used by several experimenters. MM. d'Arsonval

and Deprez have however brought such instru-

ments into general use for several purposes

connected with practical electric work. The
coil is hung by or rather strung on a stretched

metallic wire, by which the current enters and
leaves, and the torsion of this wire gives the

required return couple. A core of iron is some-

times used within the coil as in the siphon-

recorder. This, if used at all, should be quite

independent of the coil, so that the coil may be

adjusted relatively to the core and pole-faces

of the magnet. A mirror attached to the coil

enables the deflections to be measured in the

ordinary way.

This form of galvanometer possesses some
advantages. It can be made very sensitive by
increasing the intensity of the field, and the

coil possesses dead-beat quality in a high degree

in consequence of the damping action of the

induced currents produced in it when it is moving
in the field. (See Chap. XV. 14.) It is moreover

only to a slight extent directly affected by external magnetic bodies,

since these, unless very highly magnetized, can only slightly affect the

field in which the coil is placed. Its action in different cases how-
ever requires very careful consideration. Some of these cases will be

examined below.

An improved form due to Messrs. Ayrton and Mather is shown in

Fig. 117. The coil is enclosed in a silver tube hung by a flattened wire of

phosphor-bronze, with spiral of phosphor-bronze for lower connection.

Fig. 116.
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It is dosinible tlitit the magnetic field of such a galvanometer should

be as little disturbed as possible, in a manner at least which cannot be

conij)letely taken account of, and hence the use of iron cores in the

suspended coils is inadvisable. Messrs. Ayrton, Mather, and Sumpner*

a. Coil Tube
and Mirror : full

si/.u.

Gonoral view of instrument,
showing circular permanent mag-
net with gap between poles for
coil.

Fig. 117.

b. Outer brass
tube : full size.

found it possible to make such a galvanometer give deflections pro-

portional to deflections by dispensing with the iron core, and fitting

iron pole-pieces to the stationary magnets, so shaped that the moving
coil cut lines of force always at the same rate as the deflection varied.

29. Best shape of coils in moving coil galvanometers. It has been

pointed out by Mr. T. Matherf that in instruments such as this in which

suspended coils are used in magnetic fields, these coils should be long

and narrow, and that the cross-section at right angles to the axis should

be two equal circles touching on the axis. To prove this, it is to be

observed first, that if the magnetic moment contributed by any portion

of the wire be made greater by increasing the breadth of the spire in

which it is placed, the moment of inertia of that part is increased in a

greater ratio, and thus the period of free vibration of the coil is increased.

The period of the coil is generally limited by practical requirements,

Phil Mag. July 1890. t Phil, Mag. May I89a



414 ABSOLUTE MEASUREMENTS IN ELECTRICITY chap.

and we have therefore to consider what the form of the coil should be,

so that for a given moment of inertia there may be a maximum magnetic

moment, or for a given magnetic moment a minimum moment of inertia.

The solution is the same for both these cases. Consider (Fig. 118) an

^ element E, of area dS, of a cross-

.i" '_?.!". section in a plane at right angles

A number of turns per unit of area.
y

j^ ^ 1^^ ^^^ current in each
y. -- ---- , ^jjg current crossing dS is yndS.

The couple round the axis exerted

on unit of length of this part of the coil parallel to the axis is

yndS . Hr sin 0, where H is the intensity of the magnetic field, r

the distance of the element from the axis, and the angle between

AE and H. If p be the average density of the coil, the moment of

inertia of unit length parallel to the axis, and having the section dS,

is pr^dS. The ratio of coi^le to moment of inertia for this part is thus

ynH sin 0/pr, and this is to be made a maximum for every element of

the coil. Thus sin O/r is to be made a maximum, since the other

quantities are constant. The ends of the coil are ineffective as

regards magnetic action, and hence so far as they are concerned it

is desirable to make the distance of each element from the axis as

small as possible. It is also desirable that the poles should be close

in order to ensure with ordinary magnets as intense a magnetic field

as possible.

Consider now the curve the equation of which is

r = csin6>, (26)

where c is a constant. A family of such curves can be drawn for

different values of c, and they are all circles touching in the point A.

Now let an element of wire be carried from the surface fulfilling this

equation to a point lying outside. For such a point sin O/r has a smaller

value. For a point lying inside sin 0/r is greater. Thus, if the cross-

section of the coil be filled up within any circle r = c sin 0, a diminution

of the value of sin 9/r would be pro-

duced by transferring any portion

of the wire to any other unoccupied

position. / Y

.

The coil should therefore be made
long in the direction of the axis,

and have the form of cross-section

shown in Figure 119, namely, two yig. ii9.

circles touching on the axis at the

point A. The pole-faces should also be correspondingly long, and be

broad enough to give a nearly uniform field at the coil, if they are not

shaped so as to accomplish the object stated above.
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30. Suspension of coils. The passage of the current along the sus-

pension wire is apt to a fleet seriously the constant of the instrument,

by altering its torsional rigidity. Suspensions made of twisted strips

of thin phosphor-bronze were used by Professors Ayrton and Perry in

several of their instruments. These have small torsional rigidity and

great radiating surface, and are therefore peculiarly well adapted for use

as torsion suspensions which at the same time act as conductors.

It was pointed out in this connection by Messrs. Ayrton, Mather,

and Sumpner that by making both coil and suspension of platinum-

silver comjjcnsating effects as regards changes of torsional rigidity are

produced. If the rise of temperature were the same both in the coil

and the suspension there would be exact compensation, since the per-

centage increase of resistance of platinum-silver is nearly equal to its

percentage diminution of torsional rigidity.

Moving coil galvanometers should have their constants redetermined

at fairly short intervals, for the magnetization of the field magnets

and also the elastic constant of the suspension arc subject to change.

They should also be calibrated for a range of currents, to take account

of any change of magnetic field that may result from the action of

currents in the coil on the field magnets.

The temperature variation of resistance is very slight in the case of

the alloy called platinoid, now much in use for galvanometer and other

coils, and on this account Mr. Mather* strongly recommended its use for

the suspended coils of D'Arsonval voltmeters,

and of rheostats for use with such coils.

The " ballistic " use of moving-coil galvano-

meters will be considered later in the present

chapter.

31. Astatic galvanometers. In order to obtain

sensibility, galvanometers are frequently made
with astatic needles, that is suspended needle-

systems which, in a uniform field, are either in

equilibrium in any position or experience only a

comparatively slight directive action. An astatic

system generally consists of two similar horizon-

tal needles of equal magnetic moment arranged

parallel to one another with their poles turned in

opposite directions, as at ^, Fig. 120, so that the

resultant couple on the system is zero or very

nearly so. Most commonly the needles are

placed horizontally, as nearly as possible in the

same vertical plane, with their centres in the same vertical line. In

general however the needles are not quite parallel, and the system

behaves like a needle of very small magnetic moment with its axis

parallel to the line bisecting the obtuse angles between the projections

* Electrician, Jan. 8. 1892.

/* 5

5 n

Fig. 120.
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of the needles on a horizontal plane as shown at B in Fig. 120. It has

therefore been supposed that this is the manner in which an astatic

system properly acts, but this is absurd, for if it were so the sensibility

no. 121.

of the arrangement would^^be entirely a matter of accident. Moreover

when the system is so used it is affected by the slightest external

magnetic influence, and is a source of great trouble through the

difficulty of maintaining a definite zero position.
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An astatic system when quite accurately made has the needles

exactly in one plane, and has almost perfect astaticism in a uniform field,

and the sensibility is obtained by producing, by means of a magnet

placed at some distance, a resultant magnetic field which is not uniform

over the needle-system, and therefore gives a differential action which

furnishes the necessary directive force on the needles, and which can

be made of any desired amount. An astatic galvanometer with directing

magnet is shown in Fig. 121.* The instrument illustrated is a form of

astatic reflecting galvanometer usually attributed to the late Lord

Kelvin. The details of the supports of the coils, needles, etc., will be

clear from the figure : the coils, as will be seen, are hinged so as to turn

back to allow the suspended system to be easily got at. Each needle-

system is a group of short needles, and there are two sets of coils, one

containing each group of needles, and joined in such a way that the

actions on the needles conspire.

Sometimes a single coil only is used

enclosing one of an astatic pair of

needles. In this case, although the

coil exerts couples in the same direc-

tion on both needles, the principal

turning action is exerted on that

which is inside the coil.

32. Gray's astatic galvanometer.

Another arrangement of astatic

galvanometer is shown in Fig. 122.

It is a slight modification of one

adopted by Prof. T. Gray and the

author for a very sensitive galvano-

meter constructed for the deter-

mination of the specific resistance

of glass.f The needles are a pair of

horseshoes of hard steel as shown in

Fig. 123, and are arranged in two
parallel vertical planes so that the

poles of one enter the cores of one

pair of the four coils C, C, the poles

of the other the cores of the other

])air of coils. The four coils are fixed

in a plate with their axes parallel,

and their faces in one plane ; and
the horseshoes are connected by a curved bar of aluminium so that one

enters from one side of the coil system, the other from the other side as

This cut has been kindly supplied by the Cambridge Instrument Making Co.

t Proc. R.S. No. 230, 1884. A similar arrangement of needles has, it appears,
been used also by Herr Rosenthal and by Lord Rayleigh. See Ayrton, Mather,
and Sumpner's paper, loc. cit. supra,

G.A.M. 2l)

FIG. 122.
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shown by the horizontal section in Fig. 123. The instrument is sup-

ported on a plate of vulcanite standing on vulcanite feet to give insula-

tion, and the coils were wound on vulcanite bobbins. The coils are

joined so that when a current passes both horseshoes are dragged

further into their coils, or both pushed

out at the same time. The needle-

system is thus turned, and the deflec-

tion is measured by means of a mirror

and scale in the usual manner. The
total resistance of the four coils was
approximately 30,000 ohms ; and the

highest sensibility obtained when the

instrument was set up was such that a current 1/10^^ ampere produced

a deflection of 1 division on a scale at about a metre distance. The

period of the coil was however for many purposes inconveniently long.

A very elaborate instrument on this principle was made for the Central

Institution, London, from drawings made by Prof. Ayrton in consulta-

tion with Prof. T. Gray.* A full description will be found in the paper

of Messrs. Ayrton, Mather, and Sumpner above referred to.

The chief advantage of the arrangement of coils and needles described

above is that a great portion of the wire of the coils is placed very near

to the poles of the needles, and in a very favourable position for exerting

the electromagnetic action required. The instrument, particularly the

form shown in Fig. 122, is very easily made, and it does not cost more
than an instrument of the ordinary kind. Of course a single horseshoe,

or ^ or Z shaped bar, might be placed horizontally, and acted on by a

pair of coils, and the principle thus applied to a single-needle non-astatic

instrument. In astatic instruments, however, of this form it is decidedly

preferable, as shown below, to use vertical needles.

33. Vertical astatic needles. It seems to have been pointed out

first by T. and A. Gray {Proc. R.S. 36, 1883-84, p. 287) that if the

line joining the poles or centres of gravity of magnetic polarity in

each horseshoe be vertical, the system is always very nearly perfectly

astatic for a uniform field, for each vertical horseshoe is itself perfectly

astatic. If the needles are equal straight bars placed vertical with a

rigid connection they are perfectly astatic, as each needle is perfectly

astatic. The pair of horseshoe needles can thus be adjusted to have

as nearly as may be perfect astaticism in a uniform field, and thus made
to preserve a nearly constant zero when under directive force, a result

which it is exceedingly difficult to obtain in the ordinary arrangement

of horizontal needles, and which certainly rarely exists when a horizontal

magnet or magnets placed above or in an unsymmetrical position

relatively to horizontal needles is employed to regulate the sensibility,

as then one of the needles must be magnetized and the other demag-

netized to a greater or less extent, depending on the position of the

* See Phil Mag. July 1890.
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iiiaj^net. According to tliJH latter arrangement, if we supiiose the

needles to be parallel or nearly so, and H to be the magnetic field in-

tensity at the upper needle, H' that at the lower needle in the same
direction, m the magnetic moment of the upper needle, m' that of the

lower needle, y the current flowing, the deflection produced, and K
a constant, we have

y = A , tanf/ (27)

The sensibility of an astatic instrument with horizontal needles as

measured by the tangent of the deflection-angle for a given current is

thus very great, as Hm - H'm' can be made, and is generally, very small.

According to the values of m, m\ H, H', the instrument may or may
not be seriously affected by external magnets, accidentally displaced

in the neighbourhood of the instrument, or by slight changes otherwise

caused in the magnetic field. It has been argued that since H, H'

(which are nearly equal) have each a considerable value, any slight

magnetic disturbance producing only a very small percentage of change

in each of these quantities cannot sensibly affect the value of the

sensibility.

This however is a fallacy, as when the instrument is very sensitive,,

and Hm-H'/«' is therefore very nearly zero, an exceedingly feeble

magnetic disturbance changing H and H', as it will generally do, by
nearly the same absolute amount, and hence in very slightly different

proportions, may suffice to alter Hm - H'm' by an amount comparable

with its former value. The equilibrium position of the needles, for

zero or any given current, will thus be subject to variation.

Slight changes in all or any of the quantities m, m\ H, H' may, there-

fore, affect the constant of the ordinary imperfectly astatic instrument

very seriously, and as a matter of fact its constant has to be continually

redetermined, for it is very sensitive to magnetic disturbances in the

neighbourhood.

34. Advantages of vertical needles. In the case, however, of horse-

shoe needles adjusted to be accurately vertical these disadvantages do

not exist. The needles retain their astaticism for uniform field and

cannot be affected in the same way by directing magnets. Then H,

H' being the horizontal field intensities at the upper and lower ex-

tremities of the needles, y the current strength, the deflection of the

needles, and K a constant depending on the coils, we have approximately

y = /i:(H-H')sinf? (28)

The sensibility of the instrument can, therefore, be increased to any
desired extent by placing the magnet M (Fig. 122) at a greater distance

from the needles (or by counteracting its action by a smaller magnet

placed nearer to the needles) so as to make H-H' sufficiently small.

Further, variations of the strength of the horseshoe needles produce
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no effect unless they consist of changes of magnetic distribution, which

may produce a deviation from perfect astaticism. When the instru-

ment is properly adjusted and the needles are as nearly as possible

uniformly magnetized, but little disturbance of this kind can be pro-

duced by the magnetizing action of the coils, since both poles of each

have their magnetism augmented or diminished at the same time in

the arrangement of Fig. 122, or both poles of one are magnetized more
intensely in some degree, and both poles of the other weakened if both

needles enter the coils from the same side.

Another possible arrangement of this system of needles is with like

poles above and below. The system will still be perfectly astatic if

properly adjusted ; and to give a return couple towards a zero

position a magnet may be used, placed, for example, horizontally

in the vertical plane at right angles to the front of the instrument, in a

line passing through the suspension thread. If this magnet be placed

nearer to say the lower ends than the upper ends of the needles, and the

polarity of the end turned towards the needles be of the sa7ne name as

that of the nearer ends of the needles, they will have a position of

stable equilibrium when no current is flowing, with a horizontal line

joining a pole of each needle at right angles to the direction of the

magnet. The accurate law of variation of deflection with current is,

however, in this case more complicated, and the instrument in some cases

might have to be graduated by experiments with known currents of

different amounts. Any change also of the magnetic distribution of

the controlling magnet would affect the indications of the instrument.

It is to be observed that, in consequence of the horseshoe needles

being placed in these instruments at a considerable distance from the

axis of suspension, a very small value of H - H' is sufficient to give the

needle system such a directing force as to prevent any great error due
to the rigidity or the viscosity of the suspending fibre.

The needle system may be hung in a uniform field and a small needle

rigidly connected with it, but placed so as not to be perceptibly affected

by the coils, used to give directive force to the magnetic system. This

small needle may be hung in such a way that it can be turned round
a horizontal axis at right angles to its length, and also round a vertical

axis, so as to enable both the sensibility and the zero of the instrument
to be adjusted. When the galvanometer is not intended for ballistic

experiments, the frame on which the small needle is mounted may
conveniently be immersed in a liquid and made to act as a vane for

bringing the needle system quickly to rest. This arrangement, of

course, would not be astatic, but would give great sensibility on account
of the leverage of the horseshoe needles as arranged.

Thus if m denote the magnetic moment of the small needle, H the

horizontal component of the earth's magnetic force, h a constant de-

pending on the coils, </> the strength of pole of each of the horseshoes

(supposed of equal strength), and d the distance of these poles from the
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siisjx'n.sion tlin-iul, we have, since the deflection is Kmall, for the turning

couple exerted by the coils 4C'X;</y/, and for the return couple mliO^ and

^=4it/,rf
^^>

Of course this arrangement is applicable whether like or unlike poles

are turned in similar directions. It has the disadvantage that any
change of m or </> or of both would affect the constant of the instrument.

The sensibility of any of these arrangements might also be increased

by bringing out a very light arm, say from the middle of the cross-bar

connecting tlu' horseshoes, or from any other convenient point, and
hanging the mirror by means of a bifilar, one thread of which is at-

tached to the outer extremity of this arm, and the other to a near fixed

point. The distance between the fibres being small in comparison with
the length of the arm, small deflections would be greatly multiplied.

This device would, no doubt, render a greater degree of skill and
delicacy of manipulation necessary in the operator or experimenter,

but it or some similar plan might in some cases be adopted, and the

construction of these instruments renders its application to them very
easy.

35. Astatic system with straight vertical needles. The astatic galvano-

meter described above may be modified as follows. Instead of a set

of four coils with hollow cores and horseshoe needles as described, eight

coils are used—one set of four arranged in rectangular order in a
vertical plane facing a second set of four similar coils in a parallel plane

at a small distance from the first. Two straight needles of thin steel

wire connected together as rigidly as possible by very light bars of

aluminium are so chosen as to length and so arranged that they hang
from a single silk fibre with their lengths vertical and a magnetic pole

as nearly as may be in the line joining the centres of each mutually
opposite pair of coils. A magnet giving a differential field at the

needles, if their like poles are turned in dissimilar directions, or any
other arrangement may be used to give directive force, and a current

sent through the coils in any desired way by means of a distributing

plate or otherwise.

Astatic galvanometers of the usual pattern are generally made with
two coils, one above the other, split into four by a narrow vertical space

in which the needle system is suspended, and which admits of the ready
removal of the needles for adjustment. In this space may be hung,
in a plane nearly parallel (when no current is flowing) to the two coils,

two thin magnetic needles of steel wire side by side, kept with their

lengths accurately vertical, and at a short distance apart (say J or f
of an inch) by light aluminium, or other non-magnetic bars. Such a

system of needles with unlike poles turned in similar directions would
plainly experience a similar magnetic action to that exerted by the coils

on the needles in the ordinary so-called astatic combination. But two
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straight vertical needles would plainly be perfectly astatic in a uniform

magnetic field , and this astaticism for uniform field would not be liable

to disturbance from any arrangement of magnets applied to give direc-

tive force to the system, as, for example, one or more magnets directing

the system by means of a more powerful action at one end of the needle

system than at the other, as shown in Figs. 121 and 122, or magnets

arranged symmetrically with respect to both ends of the needles. An
instrument with such a system of needles ought therefore to be subject

to but slight, if any, disturbance in ordinary circumstances of sensibility

when masses of steel or iron are being moved about at some little dis-

tance, and would we think be found useful in such cases, as for example

in cable testing rooms.

36. Ballistic galvanometers. A ballistic galvanometer is an instru-

ment designed for the purpose of measuring the whole quantity of

electricity which passes in a current of short duration. It is so called

because the moment of inertia of the needle-system is made so great,

and consequently the free period of vibration so long, that the current

has begun and ended before the needle has sensibly moved from its

initial position
;
just as in a ballistic pendulum the change of momentum

of an impinging bullet has entirely taken place before the massive bob
(though set into motion) had time to be deflected from the position

of stable equilibrium which it has under the action of gravity.

The arrangement of needles takes many different forms. For ex-

ample Professors Ayrton and Perry constructed a ballistic galvano-

meter in which the needles were each a built-up sphere of small magnets,

and therefore had a considerable moment of inertia ; the form of

galvanometer referred to in 32 above was constructed for ballistic

use, and several others on the same principle have been made for

the same purpose ; in other cases the needle is a disk of steel carefully

polished to serve as mirror, and magnetized parallel to a diameter

which is made horizontal when the needle is suspended.

The coil should always be set up so that the needles rest exactly at

right angles to its axis. This enables the needle if the deflection is kept

small to be only slightly affected by the magnetizing action of the

current in the coil. This adjustment is extremely important for ballistic

use of the instrument, as will be seen from the investigation given

in 40 below.

The arrangements of coils is the same as in galvanometers for steady

currents, except that on account of the influence of induced currents

produced by the moving magnets the coils should be made with non-

metallic cores or tubes ; or if metallic tubes are used they should be

slit longitudinally from end to end.

The siphon-recorder (or d'Arsonval Deprez) arrangement may also

be used for ballistic purposes.

37. Approximate theory of the ballistic galvanometer. Let a be the

initial angle which the needle makes with the plane of the coil, and 0^
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the an^le which the needle would make with its initial i)08itiou at the

extremity of its deflection if there were no damping action. If fi be

the magnetic moment of the needle, supposed short, and Gy the magnetic

force at the needle produced by a current y in the coil, the turning couple

on the needle is /mOy cos a. Hence if mk^ be the moment of inertia of

the needle, we have, when the current is y and the deflection from zero

M-^^" ''">

if we neglect for the present the action of the current in the coil in

changing the magnetic moment of the needle.

If the whole current passes before there is any sensible deflection, we
have, integrating over the whole time during which the current lasts,

dS /jlGcobuC j, fiG cob a ^ ,^..

*;.„= rf-"]v'''=-^i«-'? (^1)

if Q be the whole quantity of electricity which flows in the transient

current.

Hence tl^e kinetic energy given to the magnet is [/u = magnetic moment]

dtJe=o~^ mk^ ^ ^ ^^

This kinetic energy, as the magnet swings round and comes to rest

in the magnetic field of horizontal intensity H, not necessarily that of

the earth, is changed into magnetic energy of amount (see p. 54 above)

IJiH(\ -cos^i). Equating this to the value of the kinetic energy just

found, we get ^ ,or,/, ^ .^
^_ 2iHk^lJ{\-cose^

)
^

juiG^coa^a "

If T be the complete period of free vibration of the needle, we have

T = 2Wnik^l/iiH, or mP/^ = HT^I\ir^. Thus the last equation becomes

HTsm^
TTtr COS a

38. Damping of oscillations by air-friction. To take into account the

damping action exerted on the needle by the air, etc., and by the

induced currents produced in the coil by the motion of the needles,

we may proceed by the following direct method of observation which

has suggested itself to almost all experimenters with galvanometers.

Let successive swings of the needle towards the two sides of zero be

^i> ^2» ^3» ••• b® observed. Then it will no doubt be found that,

approximately, 0^102 = JO ^ = ...=r. We have then r02= 9^y ^^3 = ^2>

or r^O^ = Oi, and so on. Thus r = {9j0s)^ = {0j0^)K.. , and the un-

damped deflection is, nearly, 0^{9j9^y. The usual theory of damped
small oscillations is, however, as follows. We suppose the deflection

to be small enough to allow the sine of the deflection to be taken as
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equal to the angle, and take the retarding couple as proportional to the

angular speed, as it will be if the velocity is not too great. This theory

will be sufficient, as the angular deflection can always be kept small,

and nevertheless be read with accuracy ; its smallness moreover pre-

vents the angular velocity from becoming too great.

Let then the magnet make a small oscillation in the field of intensity

H, and under the influence of the damping couple KdOjdt. The equation

of motion is
^i^q dO ^^.H
dt^ '^^rik' dt ^mk^^-^' i.

^'^^^

or if we write k for KJ^mk^ and n^ for jULH/mk^,

'^,2k§^»^0^O, (34')

of which the solution, if T^ be the observed period under the influence

of the damping, is 9
e^Je-''sm~t, (35)

if t be reckoned from an instant when ^ = 0, and the vibrator is passing

through the undisturbed position in the positive direction. The
period T^ is given by

27r

'~{n^-k^)^

39. Logarithmic decrement of ballistic deflection. Equation (35)

indicates simple harmonic motion of range diminishing in geometric

progression as t increases by successive intervals each equal to JTj.
The Naperian logarithm of the ratio of any one amplitude to that which

succeeds after an interval JTj is ^kT^. This is called the logarithmic

decrement of the motion, and is generally denoted by A.

From (35) we obtain

dO . -A-,/27r 27r, , . 27r.
r^Ae " 777- c« s TjT- 1 - A; sm 777-

/

dt \J\ 2\ 1\

or -TT = «?- sec € . e^*'^ cos ( ^ / 4- € j,
(o7)

where tan € = kTJ2'7r.

Now if there were no damping the period would he T = 27r/n. Hence

2\ = T —j = rsec€ (38)
(7^2 _P)*

But, by (31), when t = 0, deidt = MGQ/mk\ for a=0, so that the last

equation gives «r?/-^ rn

'^""^
.

1=^'—-"-(fj^-) (^«)
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Putting in tlii« iWjdt^O, we got the value of / when the first deflection

(or ''throw") 0^ has just been completed. Thus t= Ti(Trl2- €)l2'rr.

Hence (35) becomes for this value of t

^ , y, MCQ // TT \
. 1

1\ MGQ / X, ,7r\ ,,„,
= 27rW.^M-x'"" X)"'«^

^'^>

But if the oscillation were unretarded, and T the free i>eriod, we
should have

^j^ ^^, ^^, i
, 2 ^2.

4(^2 +\2)

Substituting this value of mk^ in (40), and solving for (?, we get

finally
//?', g,- A, .^N

This gives the first actual elongation ^1'. If the damping be very

slight so that X is very small, we get approximately from (41) or directly

from first principles, the equation

e = 2^^(l+JX)e,' (41')

We shall have in chapters which follow numerous examples of

correction of observations of the eiTccts of damping.

40. Uncertainty oJ ballistic action. Theory of its cause. It is to be

noticed that there is some uncertainty as to what the action of the air

actually is when the needle of the ballistic galvanometer is suddenly

set into motion. Also any magnetizing or damagnetizing action on

the needles must be as far as possible guarded against in the arrange-

ment and use of the instrument. The deflection, on this account, ought

to be always kept as small as possible, so that on the one hand the

needle may never deviate far from the direction of the permanent

field in which it is placed, and may on the other be always nearly at

right angles to the axis of the coil; and thus only slightly exposed to

magnetizing action in the direction of its length.

The following brief discussion illustrates the great importance of

having the needle at zero virhen exactly in the mean plane of the coil.

Let us suppose that a condenser of capacity K is discharged through

the galvanometer. Though theoretically the current falls off expon-

entially, so that the time of discharge is infinite, the whole charge to

within a very small fraction has, in all ordinary cases, passed through

the coil in a small fraction of a second, before the needle has undergone

any appreciable displacement. Now in the discharge the energy of



426 ABSOLUTE MEASUREMENTS IN ELECTRICITY chap.

the charged condenser is transformed into heat in the coil of the galvano-

meter, with the possible exception of a very small portion which may be

spent in the needle, in eddy currents or otherwise. We shall assume
this latter part to be zero. Thus if the whole charge of the condenser

be Qy we have the equations

•^1„^'*=S' ^=f^*'
(*^)

where R is the effective resistance of the discharging circuit.

Now going back to (31) above, multiplying by dt and integrating

over the time of discharge, which we suppose so short that we may

put |^cZ< = 0, we get for the angular speed o) with which the needle

IS started,
^^^^.2^ ^ ^^^^ ^^^ ^^ ^ ^(^ sin Oo cos ^o (43)

The second term on the right arises from magnetization effect of the

current on the needle, as already explained in 15 above. • It is

even possible that the presence of this term may render w zero, so that

the needle does not move. This will occur if

. . UlGll ....
sm0o= -"a V' ^ ^

where V = QIK, the difference of potential to which the condenser

was charged. The sign of V may be positive or negative ; hence it

is imperative, if no such effect as that here discussed is to occur, that

^Q should be zero.

Dr. Alexander Russell has determined for various galvanometers

values of ^q, for which with chosen values of R the " throw " is zero.

These he calls the " dead points " of the instrument. [See his paper,

Phil. Mag. 12 (1906).] As he suggests, the positions of the dead points

give a means of determining the internal resistance of a condenser.

If i?i be this resistance, and F be that of the galvanometer and leads,

J

CO

y^dt = Q^I2K. Let the dead point, when only the

^
. .

resistance T is in circuit, be at a distance Dj from the symmetrical

point, and at a distance Z^g when a resistance R is in series with T.

Then R^ = RDJiD^ - D^) - V. The reader should consult Dr. Russell's

paper for further particulars and results.

41. Elimination of constant, etc., for ballistic galvanometer. The
value of the ratio HG may be found by sending a steady current of

known amount y (determined by electrolysis as explained in p. 464

below, or by a standard galvanometer, or current balance) through the

instrument and observing the deflection of the needle. If the indica-

tions follow the tangent law, and be the deflection, then HjG= y/tan 0.

If the indications do not follow the tangent law the instrument can be
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calibrated by sending steady currents of different values through the

coil, observing the deflections and interix>lating for other currents by

means of a curve plotted from the observations, or otherwise.

A condenser of known capacity C charged to a difference of potential

V measured by some proper arrangement, may be discharged through

the galvanometer and the deflection observed. This gives a known
value of Q, and the value of UTJG can therefore be obtained by (41)

or (41').

These methods and others will be exemplified below, especially in

Chapters XVI. and XVll.

42. Observations by the method of recoil. In cases in which the

transient current can be repeated when desired, successive observations

may be made without waiting for the needle to come to rest, by using

the method of recoil proposed by Weber. The current is first sent in the

positive direction round the coil, and the needle thereby caused to

swing to its maxinmm deflection in the positive direction, then through

zero to the negative side and back again to zero. At the instant when
the needle arrives at zero the second time, the transient current is

Fia. 124.

repeated but in the negative direction, thus reversing the motion of

the needle, which swings to a maximum deflection on the negative

side, then back again through zero to the positive side. When the needle

returns to zero from the positive side, the transient current is repeated,

but in the positive direction and so on, a fresh impulse being given in

the opposite direction to motion every time the needle arrives at the

zero position after a complete free swing from side to side. The angular

deflections are shown in Fig. 124.

By equation (40) the first deflection 0^ is given by the equation

Oi = ^^^^'+^^^^v(-^tiiu-^l) = I<Q (45)

When the magnet swings over to the other side, the numerical value

of the deflection O2 will be given by

By (39) the angular speed with which the needle starts is MOQ/ynk^i

and that with wliich it returns to zero is MGQe-^/mk^. Hence its

(positive) angular speed, when it returns to zero the second time, is
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MGQe-'-^/mk'^. The negative angular speed given then is MGQI?nk^, so

that the speed is now numerically MGQ{\ -e~'^^)lmk^ in the negative

direction. This will give a deflection in the negative direction of

amount 6^3, where 9^ = KQ{\ -e'"-^).

The next following amplitude will be positive, and will have the value

e^ = KQ{\-e-''^)e-K

Lastly, the velocity with which the needle returns to zero from the

positive side is MGQ{1 - e--^)e--^lmJc^, and the positive velocity then

imparted being MGQ/mk^, the velocity towards the positive side is

MGQ{1 -(1 -e-^^)e-^^}/mk'^, and the deflection 6^5 is given by

e, = KQ(\-e-''^+e-^^)e-\

and so on.

43. Combination of results of method of recoil. We have for the

first group of four deflections

|^^ = e-\ (46)

and the same thing will be given by every succeeding group of four

deflections. Hence, taking all such groups into account, we find

W,-W,
= e-^ (47)

which gives the logarithmic decrement.

Again, from the values of the deflection found above, we have

Hence AT^(1 + e-^) = (0^ + a,)e-2^ + 0, + 0„

KQ(l + e-^) = (03 + 0,)e-2A +6,-^ 0^,

supposing 4n deflections to be observed. Adding the last set of equa-

tions, we obtain

47iKQ{i +e-^) = 2 {i%-s+Oj-,+ej-, +ej){\ +e-'-^)-e, - e,
'^'

-(04n-i+Me--A}, (48)

which enables Q to be found from a combination of all the observations

made.

It is to be observed that this method cannot be conveniently used

if the damping of the needle is very small, as then a regular repetition

of successive sets of nearly the same amplitudes would be difficult to

obtain. By observing the successive pairs of free elongations any
change of zero which takes place during the experiments can be followed.
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Formulae are easily obtained for taking into account the interval

occupied in the passage of the current, if that is in the least comparable

with tlie free period of the needle ; but, as these are rarely necessary,

we shall only give them if the need arises in connection with any electrical

measurement described below.

We only note further here that when a galvanometer is used for the

measurement of a steady current, it may sometimes be desirable, in

order to eliminate any variation of zero due to variation in the direction

of the earth's force, to read the galvanometer as follows. The current

sent round the coil of the galvanometer in the positive direction deflects

the needle, which swings about the new position of equilibrium. The

first, second, and third elongations are observed ; then contact is broken

for about half a whole period, so as to let the needle swing beyond zero,

next the current is sent in the opposite direction to that in which it was

sent at first, and the three first elongations on the other side observed
;

then the contact is broken, the current reversed, and so on as before.

If the numerical values of the first six deflections are 0^, ^2» ••• > ^e
we have for the deflection due to the steady current

^~
4

"
4

or 8(9 = ^1 + 2a, + 03 + ^4+ 2(95+^6, (49)

and so for any such scries of six deflections.

Some account of methods of measuring currents, differences of potential,

etc., in alternating circuits will be given in a later chapter. Many
particular devices and arrangements which might have legitimately

found a place in this chapter will be much more conveniently described

in connection with the experiments in which they were originally used.

44. Moving coil galvanometers with iron cores in the coils. The

reader is reminded that in the above discussion of the ballistic action of

galvanometers, the moving coil instruments are supposed to have no

iron cores in their coils. If they have iron cores the relation of current

to deflection may be such as to modify the formulae given. If the

rectangular coil have a cylindrical iron core and symmetrical cylindrical

pole pieces on the magnet the field will be nearly radial, so that for a

steady current on the coil the couple will be independent of the deflec-

tion. The return couple is due to torsion of the suspension. In a short

time dt a quantity dQ of electricity passes through the coil. This is of

course y dt, and if Gy be the couple on the coil the angular momentum
produced in dt is CdQ. Hence C dQ=mk^dw if mk^ be the moment of

inertia and du) the increment of angular speed.

For a deflection the return couple is rd, where r is the torsion

constant. Hence the period of oscillation of the coil without current

in it is 2'7r\^mk^lT. Moreover when equilibrium has been reached

at deflection 9 the work done on the coil is all represented by ^t€^.
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and so Jr^^ = JmFw^. If be the steady deflection due to a constant

current y in the coil Cy= rep, and so

mk^ TrO TO
Q

2irC 2ir4>
.(50)

The other form of moving coil galvanometer, in which the coil has no
iron core, has been discussed above. If there is an iron core the instru-

ment requires more exact calibration for use with currents of consider-

able strength than seems to be contemplated in the above discussion,

which is that given in a paper by Prof. H. A. Wilson, Phil. Mag. 12

(1906).

45. Current weighers for the absolute measurement of currents. We
shall now give an account of the absolute measurement of currents by
the form of electrodynamometer in which the force between two coils,

a fixed coil and a movable one, is determined from the weight required

to equilibrate the latter in a certain zero position, and the dimensions

^
and windings of the coil. This method
seems to have been first used by Joule.

Lord Rayleigh and Mrs. Sidgwick have

used in their researches on the electro-

chemical equivalent of silver a form

of electrodynamometer balance, or

current-weigher, in which the fixed

and movable coils were placed with

their axes coincident, and in such

relative positions that the pull along

the axis exerted by one coil-system on

the other was a maximum. The fixed

coils were the large coils of the British

Association electrodynamometer de-

scribed above, and between these was

placed a coil of silk-covered wire wound on a ring of ebonite. The
arrangement is shown in Fig. 125, which explains itself. We shall

show that this coil placed midway between the two fixed coils was

in the position to have maximum force exerted upon it by each of the

latter coils.

The use of a current-weigher such as this has some advantages over

either the galvanometer or ordinary electrodynamometer. As here

arranged, the accuracy of the constant depended, in the main, only on

the determination of the ratio of the radii of the coils ; the necessity

for finding H and taking account of its variations is avoided ; and no

difficulty as to the elastic or bifilar constant of suspensions exists.

The actual observation of the indications is, however, a somewhat more
elaborate process than in these other instruments, involving as it does

an exact weighing. It can, however, be carried out with great accuracy

by a skilled experimenter.

Fig. 125.
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46. Attraction between two parallel coils. The mutual electro-

kinetic energy T,n of a system of two coils carrying a current y is given

by the equation

T^^nuYM, (51)

where n, n' denote the numbers of turns in the two coils, and M denotes

for the present the mean mutual inductance of a pair of turns one in

each coil. Thus if x is the distance between the coils, the force F exerted

by one on the other is given by

F=nnY'^ (52)

It is well to notice here that dM/dx is a mere number, and depends

therefore only on the ratios a/a, x/n, (or x/a), of the radii of the coils,

and of the radius of either to their distance ai)art. Thus if we write

|f=/(«.«.^). (53)

/ is a homogeneous function of zero dimensions in a, a, x. Thus we have

'f't^^t^^f/^' <^'')

with, by Euler's theorem of homogeneous functions, the condition

rt:/-+a^+a;;f=0 (55)
da da ox

If the coils are so placed that the action between them is a maximum
?//?a; = 0, and (55) gives

"l-af^ <^«)

Thus by (54) equal (proportional) errors in the estimation of a and a

produce no effect on the value of/ provided the coils are in this position.

Hence dfj^x being zero there is (to quantities of the second order) no

effect produced by errors in the estimation of ic, and therefore the

action between the coils depends only on the ratio aja. This ratio

as will be explained below, can be determined electrically, without

direct measurement of either a or a.

The value of M for different arrangements of coils is given in Chaps.

VI. and VII. above. We shall use at present the expression given in

VI. 21 (63) for the mutual induction of two coaxial circles of radii

o, a, and distances x, ^, from a fixed point on the axis. We have thus

o^ ?•* y r ,a ^

+^.i-^''^J^(e -{<•')+]> (57)
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where r^=^a^-\-x^. Here a, ^ are supposed to belong to the small coil,

and to be considerably less than a, x, respectively. Thus if aja is not

large, the value of 9ilf/9^ will be given to a high degree of approximation

by the first term alone of this series. Thus writing /' for dM/d^ we
have, taking the first term only,

and therefore ;/- = 1 . 2 . Sir^a^a^ .—
ox r

Thus y/dx vanishes and the force is a maximum if a" = ix^ or 2x = a,

that is when the distance between the circles is half the radius of the

larger.

Neglecting the second and third terms in (57) which involve ^, and
taking into account the part of the third term which involves a^,

differentiating and putting x^ = Ja^ in all factors multiplying a^, we get

as a second approximation to the value of x for a maximum,

^=^<^-r6«0 <•''>

47. Force on movable coil between two fixed coils. For two fixed

coils at equal distances on opposite sides of the suspended coil the odd
terms vanish, and we have (still supposing that the coils can be regarded

as circles) for the action between one of the fixed coils and the movable
one,

The coils might then be arranged so that x^ = ^a^, and thus to terms

of the fourth order in a, f, the value of dM/d^ would be given by

dM , ^ ,2V3 «a2 „2_ -1.2.3^^^7ra^ = -2l375x67r2\ (60)

On the other hand, if, as was actually the case, x = \a,

^=1.2.3^7r2" =-2862x67r2%, (61)

a considerably larger value. This equation multiplied by y^ gives a

rough estimate of the force which would be produced by a given current

with two single turns, and therefore of the force to be expected between

one of the fixed coils and the movable coil.

By equation (57), when a = 2x, we have, including two terms so as to

find the effect of ^^ when this is not zero,

f=-2862x6<:(l-3-2g) (62)
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In the current-weigher used a was 25 cm, bo that ^=1 mm, and

neglected could only give rise to an error of about 1/20,000. Thus

the instrument with ordinary care as to adjustment could be regarded

as quite free from error due to inaccurate placing of the suspended

coil.

48. Force on movable coil in terms of ratio o! coil-constants. As the

ratio of the galvanometer constants was determined experimentally,

and therefore was used in the calculations, we write down here the

approximate expression for the force between one fixed coil and the

suspended coil in terms of this ratio and the numbers of turns. Putting

/:^ for the value of the ratio we may write approximately

R-^ _« a
'^~ n'~ n' a

or
fi w ,2-

Thus approximately, by (62) and (52),

/''= -2862x6x2-^2^2,
?t

An error in the estimation of n, the number of turns in the suspended

coil, or, what is the same, any defect in the insulation of that coil, is

thus of greater importance than a similar inaccuracy in the estimation

of n.

The ratio ^ enabled the mean radius of the suspended coil to be

calculated. The attraction between the coils was then found by an

expression easily obtainable by differentiation from the value of M
given in elliptic integrals in VI. 10 above, for two coaxial circular

conductors. Thus we have

^xr =—/— {2^-(' +-sec2,;)//}, (63)

where sin t] = k. G and H have been calculated by Legendre, and were

used by Lord Rayleigh in the formation of a table of values of

-TTx sin ;; {2(7- (1 + aec^ri)H}

for values of t] proceeding by intervals of 6' from 55° to 70°.

The value of dM/dx was then found for the actual coils of axial

breadths 26, 2(3, 2d, 26 by employing the following formula of quadra-

ture,* and multiplying by nn' the product of the numbers of turns.

* This formula, it may be here remarked, is applicable not only to M/x, but to

any function of a, a, the mean radii. Thus it is used in XIII. 31, to give M for

two coils for which /(a, a, x) denotes its value for the mean radii.
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Thus /(a, a, x) being the value of dM/dx for a pair of mean turns, we
have for the whole coils,

dx
nil <

f(a + d, a, x) +f{a - d, a, x)

-hf{a, a + S, x) +f{a, a - S, x)

+f{a, a, X -\- b) +f{a, a, x-h)

+f(a,a,x-\-l3)+f(a,a,x-^)

- 2f{a, a, x)

.(64)

[Maxwell, El. and Mag., § 706, App. 2 ; see also XIII. 31 below].

49. Tests of insulation and particulars of coils. We can now proceed

to give an abstract of the experimental processes and results.

The suspended coil, C, of the current-weigher, which had been care-

fully wound with silk-covered wire on a ring of ebonite, was tested for

insulation. The method adojited first was to make as nearly as possible

an exact copy of the coil, then to place the coil and its copy side by
side with their axes in coincidence, and join them in series so that

a current could flow through them in opposite directions. A galvano-

meter with a needle of long period of free vibration was included in

their circuit One pole of a very long steel magnet was then thrust

suddenly through the opening of the coils, and produced in them opposite

induced currents, which, if the insulation had been perfect in both

coils, ought to have together produced no effect on the needle of the

galvanometer.

It was found however that the copy decidedly preponderated in

magnetic effect ; a result which pointed to faulty insulation in the

ebonite coil. A comparison of the ratios of the self-inductions of

the separate coils to the mutual induction of the pair in a fixed

position confirmed this conclusion, and the coil was thereupon

rewound.

After rewinding it was tested for insulation by a Hughes' induction

balance. This consisted of two pairs of coils, one pair at some distance

apart in one horizontal plane being joined up with a source of variable

current in a primary circuit, the other pair in positions opposite the

primary coils, and at distances finely adjustable by means of screws,

being joined up with a telephone as a secondary circuit. When the

coils had been adjusted to exact balance the introduction of a small

circlet of copper -004 inch in diameter between a primary and a secondary

coil gave a very distinct sound.

The ebonite coil placed between one of the primary coils and its

opposite secondary gave an audible sound, but much less than that

occasioned by the copper circlet. When the ends were joined by a

megohm of resistance the increase of sound was quite distinct ; which
showed that the insulation-resistance was decidedly greater than a

megohm, and therefore amply sufficient,
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The particulars of the 8U8))ended <n\] wor" ;>< f<.l!nwM :

Number of turns - - - 212.

Jladial depth 2o 9690 cm.
Axial breadth 2/!^ 1-3813 cm.
Mean radius, found electrically as described below - 10-2473 cm.

The coil was made of copper wire insulated with silk saturated by
paraffin wax. Its resistance was about lOJ ohms.
The particulars of the fixed coils, C^, Og, as derived mainly from a

record in Clerk Maxwell's handwriting in the Cavendish Laboratory
note-book, were as follows :

Number of turns in each . . . . 225.

Mean radius, a ----- - 24-81016 cm.
Distance of mean planes, 2x . . . 25-000 cm.
Radial depth, 2c? 1-29 cm.
Axial breadth, 26 1-50 cm.
Resistance of each coil (about) - - - 14J ij.a. units.

By measuring the distances from outside to outside, and from inside

to inside, of the grooves filled with wire, the distances of the mean planes

was found to be 25 cm exactly. The half-difiference between these

distances gave 26 = 1-5024 cm. The mean radius and number of turns

could not be verified, but the recorded value of the former agreed with

the outside circumference, and the check on the counting of the number
of turns given by the device adopted when the coil was being wound,
of at the same time winding string on a drum turning with the coil,

almost absolutely ensures the accuracy of the number given.

50. Experimental determination of ratio of coil-constants. The
ratio of the radii was found as follows. One of the dynamometer coils,

and the suspended coil, were made
concentric and coaxial with their

planes vertical in the magnetic meri-

dian, and a small needle was hung
at the common centre. A diagram-

matic sketch of the arrangements is

shown in Fig. 126. D is the dynamo-
meter coil, E the ebonite coil, N a

resistance box. When the thick copper ^
piece P was made to join the mercury ^1

—

cups F, H, the current from a cell A
was divided between the two coils, which were joined so that the
current flowed round them in opposite directions. The reversing key
B enabled the current to be sent first in one direction then in the
other through the double arc.

By means of N the resistances of the arcs CDP, CEP, joining C and P,
were adjusted so that no deflection of the needle took place. It was
found that the resistance taken from N which gave balance could not
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be exactly determined, owing to inductive effects produced by the

reversal of the current. Readings of the deflections of the needle were

therefore taken for imperfect adjustments, with values of the resistances

on opposite sides of the required value, and the value for balance

was obtained from these by interpolation.

The ratio of the resistances of the double arc was then obtained by
making the two arcs adjoining branches of a Wheatstone bridge. This

was done by withdrawing the copper piece P, which had the effect of

converting the arrangement into a Wheatstone bridge of which one

pair of adjoining branches were D and E, N, connected at C, the other

pair a series of three resistance coils (composed of two single units and
a 24-unit coil) and a coil of 10 units with its terminals connected by
a high-resistance coil K. These branches were connected with one

another at L, and with the other pair at the cups F^ H. The battery

terminals were attached at C, L, and those of a sensitive testing galvano-

meter, g, at F, H. Thus the ratio of the resistances was determined,

and for one dynamometer coil was found to be on three different occa-

sions 2-60087, 2-60098, 2-60113, or a mean of 2-60099. The same coil

tested with another set of resistances gave on two occasions in like

manner 2-60046, 2-60026, or a mean of 2-60036. The mean was thus

2-60067. For the other coil 2-60072 was found.

If Gi, Gi be the galvanometer constants of the two coils, y, y', the

currents flowing in them when their conjoint magnetic effect at the

centre was zero, we have nG^y and n'G-^y' for the magnetic effects due
to the coils, and nG^ln'G{ = y'/y- ^^^ ^^ -^j -^'j b® ^^ resistances of

the branches, y/y' = E'lR^ and therefore

But using for each coil the value of G^ given at p. 386 above, putting

x = 0, ^' = 0, since it is the magnetic forces at the common centre that

are in question, we find

^ a \ 6 a' 2 a-/

^ a \ 3 a^ 2 a^

anR ^3a^-2a^
.gg^

"^
3 a2 2 a2

Now the known values of a, b, d, jS, S, and the approximately known
value of a gave at once the value 1-001296 for the second fraction on
the right of the last equation. Hence

225
« = 2^ X 2-60070 X 1-001296 xa = 2-42114a ..(07)
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51. Adjustment of suspended coil. Final result. The suspended

coil was adjusted in position in the current-weigher by first suspending

it in a horizontal position, and then levelling and otherwise adjusting

the positions of tlie dynamometer coils. A movable piece stood on three

feet on the top of the upper dynamometer ring, and in every position

touched its inner cylindrical face in other two joints. This piece was

moved round the coil, and carried with it a pointer which thus described

a circle coaxial with the fixed coils. When the latter were properly

placed the pointer just played exactly round the outer surface of the

suspended coil.

The level of the suspended coil was adjust^ by carrying along the

upper face of the upper dynamometer ring a straight rule provided with

a pointer which just reached down and touched the upper surface of

the suspended bobbin when that was in the proj)er |)08ition. The
level of the dynamometer coils was changed until this point when
moved about just scraped over the upper surface of the saspended

coil.

The value off{a, a, x) was tt x 1 044576. From this, by the table of

values of the elliptic integral expression referred to above, the terms of

the expression on the right of (64) were calculated and gave

?^=7r?m'x 1-044627, (68)

where w, n' are the total numbers of turns in the two coils.

If in any experiment the current was y, the attraction or repulsion

between each fixed coil and the suspended coil was nn'y^f. If m denote

the observed difference of the weights applied before and after the

reversal of the current,

4?m'yy=W5rx -99986,

where -99986 is the correcting factor for the air displaced by the weights

m, and g is the acceleration produced by gravity at the place of experi-

ment. This was taken as 981-2822 in centimetre-second units. Hence,

m being taken in grammes,

2_ 981-2282 X -99986 m
'^ " 4 X 225 X 242 x 1 044627 tt

or y = -037048x/m (69)

52. Current balance of the Bureau of Standards. A very exact

Rayleigli current balance has been made at the Bureau of Standards

at Washington, and is described in the Bulletin of the Bureau, 8 (1912),

in a paper by Messrs. Rosa, Dorsey, and Miller. The chief parts of the

balance and its arrangement are shown in Figs. 127, 128, 129. The
balance was a 2 kg precision balance by Rueprecht with a 30 cm beam.

Certain magnetic portions of the balance were removed and replaced
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by brass or phosphor bronze. All parts of it were tested and found to be

non-magnetic. The weight of the moving coil and suspension system

was about 1 kg, and with this load the time of a single swing was

15 seconds. It will be seen that only one suspended coil placed in the

position for maximum force between two fixed coils was used. It

occupied one side of the balance, the scale pan for the weights occupied

the other side.

The coils were all wound on brass bobbins with enamel insulated wire.

The section of the fixed coils is shown in Fig. 127. The winding was

Section of

Fixed Coil

Fig. 127.

bifilar (or double) to enable the insulation to be tested by a determina-

tion between the two windings, and to allow the coils to be joined in

series or in parallel, so that different currents might be used with the

same heating effect, and, finally, to allow the coils to be set against

each other, so that the full heating effect could be produced without

any magnetic action.

Three pairs of fixed coils were made. The details of one section

are shown in Figs. 129, 130, 131. In each of the larger coils were

36 layers of 18 double turns in each layer, and in each of the smaller

coils 28 layers of 14 double turns. The enamel insulated wire was of

uniform thickness and could be wound as regularly as bare wire. When
the coil was dry the insulation was very good. At first the coils were
not sealed airtight ; the channels for the wire were lined with paper

attached with thin shellac, and each coil was covered with a strip of

glazed paper -05 mm thick. Finally, the outer paper covering was
saturated with melted paraffin, and wrapped round first with muslin

then with binders' cloth, all saturated with melted paraffin, so that the

coils were effectually sealed against the absorption of moisture from
the air.



Fig. 130.—Section of snmll fixed coil

sbuwing first form of terminal block.
A is water channel, B the channel for
the wire.

FlO. 131.—Section of large fixed coil

showing second fonu of terminal block.
Ck>unectiou8 arc made by drops of solder.
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53. Particulars of coils. Four moving coils were built at various times.

Like the fixed coils they were all wound double, on brass bobbins finished

Fig. 132.—Moving coil, showing the leads, the star, and the tripod.

dead black, and had the form of section shown in Figs. 130, 131,

which also shows the mode of connection between the windings and
the leads. Three of the coils were wound on bobbins of cast brass,

the fourth was wound on a bobbin of rolled brass. The windings in the

latter were not uniformly distri-

buted, but were crowded towards
the two sides of the channel. Hot
paraffin was painted on and into

each layer. The construction of

the moving coil ring is shown in

Fig. 132.

The Rayleigh form of balance has

the great advantage that it is

possible to provide both fixed and
movable coils with channels, behind

the slots filled with wire, through

which water can be made to circu-

late. Water cooling was provided

x.,^ .oo r. * , , .
ill this way for all the coils, and

Fig. 133.—Form of moving coil showing '' '

third form of terminal block. Connections Water WaS forCcd thrOUgh the
are made by drops of solder. A are stiffening i i i, i i.

• ii j •

flanges, B is channel for wire. channels by an electrically driven

turbine pump, with three pipes,

supplying the coils in parallel. The temperature of the water was
thermostatically controlled, and it was found that the temperatures
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of all tliree coils could be kept practically the Kaine, and constant.

During the weighings the moving coil was surrounded with a cylindrical

copper jacket double walled at the sides, closed at the bottom and
covered with a lid with a hole about 1 cm in diameter at the centre

through which passed the tube from which the moving coil was
suspended. The space between the walls of this enclosing cylinder

was filled with circulating water.

The coils were enclosed in a case resting on a marble slab, 152 by 76

by 7-5 cm, supported by heavy oak piers standing on the floor. White
enamelled brick, instead of oak, was tried at first, but was found, as

also the sand in the cement, to be slightly magnetic. The iron in the

floor construction was found to produce no effect on the measurements
of currents.

The two windings of each fixed coil were connected in parallel by a

pair of enamel insulated wires, closely twisted, which passed halfway

round the outside of the coil : a similar pair of leads ran from the nearer

terminals to binding posts set in the wall of the coil case, and connected

with a commutator on the outside, by which the coils could be joined

up in any desired way.

54. Theory of the balance. Comparison of coils. The theory of such
a balance as that described is exactly the theory given above for Lord
Rayleigh's instrument. The ratio of the galvanometer constants G^, G^
of the two coils was determined by the method described in 50 as

used by Lord Rayleigh, with one modification. The link used by
Rayleigh to convert the resistances of which the ratio is desired into two
adjacent arms of a Wheatstone bridge was omitted, so that a simul-

taneous balance of both the bridge and the magnetometer (the small

needle hung at the centre as described above, he. cit.) was obtained.

Thus at the instant of balance the ratio of the resistances in the coil

arms was exactly that of the other two arms of the bridge. These had
to be of low resistance, as they carried the full currents in the coils,

have a low temperature coefficient, and be capable of fine adjustment.

To meet the difficulty of fulfilling these conditions, an arrangement was
made for quickly transferring the coil arms, to a second bridge in which
they could be measured against precision resistances. This process

however was found slow, and trouble was given by heating in the coils,

and the current being alternately on and off, never allowed the coils

to attain a stationary temperature. Consequently the ratio of the two
currents was measured finally by the potentiometer method. This

will be found described in the chapter on the Comparison of Resistances,

where the method used for this balance will be given for illustration,

and all the needful adjustments will be described in detail.

55. Calculation of forces. The calculation of the force for the coils,

supposed arranged at the distance for maximum force according to

46 above, was carried out as follows. Two assumptions were made
in the computation, (1) that the coils were equivalent in their action
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to coils of square cross-section and of the same mean radii and
sectional area as the actual coils, (2) that any such coil produced the

same effect as the " equivalent circular current " as defined by Lyle

(see XIII. 32 below). That is to say, each coil-current was regarded as a

circular current in the mean plane of the coil, having a radius A^ given by

^e = A + j^ (70)

where A is the mean radius and 2b, 2d are the dimensions of cross-section.

Fig. 134.—General view of current balance as used in the final measurements.
The moving coil is suspended from the pan of the balance.
A is the water jacket surrounding the moving coil.

B is the tank containing the thermostat which controls the temperature of the
water.

The forces were computed for all the combinations of coils used, and
are given in the paper, and variation coefficients were calculated for

slight deviations from the maximum force positions, and for errors in

sectional dimensions, etc. For the results reference must be made to

the paper.

56. Manipulation and weighings. In the manipulation of the balance

the weight was changed, and the current reversed, without arresting the

balance, to avoid slight changes of zero. The weight was lifted and
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placcul in position witliout opening the balance case, the current reversed

by a circular reverHing switch with which the balance was provided, and
the beam acted on by an air-jet produced by squeezing a rubber ball,

all in such a way that the balance received no jar in the process. Any
vibration of tlie scale pan and coil was stopped by touching with a

canicl's hair brush the tube by which the coil was suspended from
the pan.

Weighings were made with the weight alternately on and oflF, for the

current in the fixed coils alternately in one direction and in the other.

This eliminated error from drifting of zero due to temperature changes,
and the effect of the earth's force on the moving coil. The effect of

the earth's field was thus reduced to a slight permanent displacement
of the zero of the balance. The drift was eliminated by noting the

successive rest -points, which generally lay on two parallel straight lines

slightly inclined to the time axis.

Weighings were' made for at least three positions of the movable
coil, of which two were nearly equidistant from and on opposite sides of

the position corresponding to the maximum force. Electrostatic force

due to the differences of potentials on the coils was avoided by con-

nection of the windings to the water jacket, by a wire from the com-
mutator, so that the jacket and the metal framework were all kept at

one potential.

67. Value of g. Accuracy of current measurement. The value of

g was known from its value at the gravity pier of the United States

Coast and Geodetic Survey, which had been carefully compared by
means of pendulum observations with the value of g at Potsdam, so

that the value of g at the Bureau was referred to Potsdam. It was
estimated that at the balance in the Bureau Laboratory the value of
.^r was 981-091 cm/sec2.

The double force required for reversal of the current was, with one
set of coils, 1/1^ = 6000 c.g.s. for -84 ampere; with another set of

coils, i>j^ = 6000 c.g.s. for -7759 ampere.
To obtain an idea of the accuracy of the work it may be stated that

the electromotive force of the mean Weston cadmium cell as constructed
at the Bureau, was found to be 1-01822 semi-absolute volts, that is

1-01822 X the difference of potential between the terminals of an
international ohm when that carries a current of one absolute ampere.
The probable error was estimated as about 3 parts in 1,000,000. It is

believed by the authors that a cautious estimate of the uncertainty
might be 2 parts in 100,000. See Standard Cells in the Appendices.
The ratio of the radii of the coils in the current balance, or rather of

their galvanometer constants, was determined by a potentiometer
method, which we shall here sketch as an example of potentiometer
working. In the diagram the connections of the coils for the measure-
ment are shown. The two coils—moving and fixed—are denoted by
M and F. They are of course really coaxial and concentric, being
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arranged as if they were galvanometer coils, with a needle hung at

their common centre. R^, R^ are two standard resistances from which
leads run to the potentiometer by which the currents are compared.

[The elementary theory of a potentiometer is supposed to be under-

stood. A current from a service battery is sent through a series of

known resistances arranged to be varied by switches working round
dials. Consequently there is a fall of potential along these resistances.

chVWvA-

VnAA

Fig. 135.

If the difference of potential V^^ between two points A, B, say, of that

series is known, then from that difference and the resistance intercepted

between the points the current C flowing can be determined, in absolute

measure, since we have CR^B=V^ji. The difference of potential is

generally determined by means of a standard cell, the electromotive

force of which has been determined. This cell has its terminals applied

Sit A, B so that its electromotive force is opposed by V^j^. The resist-

ance is varied until it is found that no current passes through a sensitive

galvanometer in the derived circuit which the cell forms on AB, Care

is taken of course by guarding the cell with a high 'resistance, and only

tapping down for a moment the key which brings the cell into action,

that no appreciable quantity of electricity is allowed to traverse the

standard cell.]

From the resistance R2, which was in series with the fixed coil,

auxiliary leads were carried to a second potentiometer, by means of which

and a continuously variable resistance in circuit with F, the current

in R2 and F could be made of any required value and kept constant.

C2 is a commutator which interchanged R^, R^ with reference to M
and F, r, r^, r^ were adjusting resistances, C^ was a commutator which

reversed the current through the coils. A main switch opened the

circuit before and opened it after C^ was altered, so that large deflections

of the galvanometer were avoided.

The coils M and F, being wound on metal bobbins, have each when
alone a considerable time-constant [see VIII. 11, 16 above]. The field
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in M in the experiments now being considered was to a great extent

neutralized hy F \ on the other hand, the field outside M and inside

F was enlianced by M. Thus a deflection of the magnetometer needle

hung at the common centre of the coils occurred whenever the current

was started or stopped.

A large inductance L was placed in the moving coil circuit (at a

considerable distance from the magnetometer needle to avoid direct

effect) to reduce the violent deflection of the magnetometer needle

caused by change of induction when the circuit of F is closed

through M.
The procedure was as follows. The adjusting resistances r, fj, r^

were made to give fields in M and F approximately equal, and of such

a strength that the sensibility of the magnetometer was such as to give

a change of 1 mm in the reading for reversal with a difference of fields

of about 3 parts in a million. The current was left running for an hour

with water at the proper temperature circulating through the channels

in the fixed coil. The resistances of the coils were measured, the ther-

mometers in the coils read, one observer then kept the fixed coil current

at the desired value, another connected a potentiometer across the

standard resistance on F, and adjusted for the nearest balance with an

even setting of the potentiometer dials, while the want of exact balance

was measured by the galvanometer deflection and could be allowed for.

This observer then placed his potentiometer across the standard resist-

ance of the moving coil circuit, adjusted the current, " and then allowed

it to drift slowly towards his potentiometer balance, while a third

observer damped and read the magnetometer." This third observer

signalled the instant of reading the magnetometer, and the second

noted the galvanometer deflection at that instant, while all this

time the first observer had held the current through i^ at a constant

value.

The currents were then reversed on the two coils, and the operation

repeated. After several pairs of such sets of operations, the second

observer put his potentiometer on the standard resistance of F^ and
observed the deflection with the same setting of the dials as at first,

and the first observer's indicating apparatus is balanced as at first.

The slight difference between the new balance and the former one was
due to change in the circuits during the time observation and was allowed

for in the reduction. Then the thermometers were read, C^ reversed

so as to interchange the standard resistances on the coils M and F,

and the operation repeated. The mean of these observations eliminated

the values of R^ and R^^ and it was unnecessary to know these values

exactly.

58. Current balance o! the National Physical Laboratory. A current

balance constructed with great care and accuracy was completed for

the National Physical Laboratory in 1907. We give here also a short

account of this instrument,
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At the Toronto meeting of the British Association in 1897 it was
agreed by the Committee on Electrical Standards that it was " a matter

of urgent importance that the general question of the absolute measure-

ment of electric currents should be investigated." At the following

meeting—at Bristol in 1898—it was reported that preliminary experi-

ments with this object in view had been made during the year by
Professor W. E. Ayrton and Professor J. V. Jones, on a form of current-

weighing apparatus with single-layer coils, such as had been used by
Jones in his Lorenz apparatus, which promised to give results of great

accuracy. Accordingly a grant was made in aid of the construction

of the proposed balance, and the work put in charge of a committee

with Lord Rayleigh as chairman and Mr. R. T. Glazebrook as secretary.

The elaborate new current balance now in use at the National Physical

Laboratory was the result of the work of the following nine years.

Prof. J. V. Jones died in 1901, and the work during the following years

was a good deal delayed by the ill health of Professor Ayrton. A
full account of the instrument was communicated to the Royal Society

in 1908 by Professor Ayrton, Mr. T. Mather and Mr. F. E. Smith,

under whose care the instrument had been constructed in the workshops

of the National Physical Laboratory [Phil. Trans. R.S.,207, 1908].

69. General description of the balance. The diagram of Fig. 136 shows

the arrangement adopted. Below each extremity of the balance, which is

Fig. 136.

a special balance of great strength and delicacy constructed by Oertling,

and capable of carrying 5 kilogrammes at each end of the beam, are

placed two pairs of fixed coils wound in opposite directions and connected

as shown in the diagram. As will be seen, the upper and lower coils

on each side are oppositely wound, while the windings in the two pairs

are also opposed. Hung from the ends of the balance are two smaller

coils, each consisting in the actual instrument of two helices, which in

their zero positions are each symmetrically placed with respect to the

pair of outer fixed coils. The action was therefore, when the current

flowed as shown by the arrows, to lift one coil and depress the other.
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The couple deflecting tlie coils was balanced by the action of weights

placed in scale pans independently supported on the balance, and the

couple on the movable coils was thus obtained always for the same zero

position.

The coils were all wound on hollow cylinders of marble, in double-

threaded screw grooves cut on the surface, as shown in the diagram

Fig. 137. —Complete cuncnt weigher (.sides ui e;iHCS removed).

on the right of Fig. 136. In these were wound two helices of wire

—

one shown by a full line, the other by two thin lines—which were usually

connected together in series to act as one coil, but which could be dis-

connected at any time to enable an insulation test to be made between

them. The marble used for the coils had been very carefully tested

for the possible presence of magnetizable matter, and found to be
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practically free from any such substance. This was done by quickly

inserting the cylinders when received from the marble merchants as cores

of the secondary of an induction coil, and observing the deflection of a

galvanometer in the secondary circuit.

Since each fixed cylinder carried four helices, two upper and two lower,

and each suspended cylinder carried two, there were twelve helices in

all. These in the normal use of the instrument were connected in series

by concentric cables, carried to a plug board and commutators, ar-

ranged outside the balance case. The connections to the suspended

Fig. 138.

coils.were made by flexible conductors. It was possible, by means of

the commutators, to reverse the current at will in any of the coils.

If in the use of the instrument the current is reversed on the fixed coils

the forces on the suspended coils are reversed, and a measure of the

double forces is obtained, which is proportional to the square of the

current.

To give an idea of the dimensions of the instrument it may be stated

that the axial length of the suspended cylinders is about 13cm, their

diameter rather more than 20 cm. Each suspended cylinder had 184

turns. The diameters of the fixed coils are about 33 cm, and each

half of these has a length of about 12-7 cm, so that the whole length of

a cylinder is about 254 cm. Each half of a fixed cylinder contained

163 turns.

The whole apparatus is very solidly supported on an adjustable

pedestal of phosphor bronze which can be exactly levelled.

Fig. 137 shows a front view of the instrument, and will give an idea of

its appearance. The beam is 20 inches (50-8 cm) long, constructed so

as to carry 5 kilos at each end, and turns with ^V of a milligramme. A
rider beam divided into 100 parts is carried on each side. All the

knife edges and bearing planes are of agate. The scale pans hang

from separate planes on the same knife edges as support the cylinders,

and weights can be placed on, or removed from the scale pans without
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disturbing the levelling of the suspended cylinders. The detail is

shown in Fig. 138.

60. Calculation of constants of balance. It is not possible to give

here any details of tlie trsts made of the materials employed in

the construction of tlie current balance, of the methods of making the

various adjustments, or of the measurement and calibration of the

cylinders and helices. We shall only indicate how the constants of

tlie balance have been calculated, and give m <l"«rt iua^unf of results

obtained in its use.

The positions of the coils are shown diagrainiuaiK ally in Fig. 139.

In the first place it is to be noticed that the use of two pairs of fixed

:«,'

jrt,

^<

—
i«.

FIO. 139.

coils with corresponding suspended coils introduce cross actions between

the coils. The vertical forces due to these were approximately cal-

culated, and could also be measured, and were allowed for. A careful

test was made for the effect of horizontal cross forces, but none was

observed.

The force between a suspended helix and the fixed current sheet

within which it hung is given by

where y/j is the current in the helix, y that in the current sheet, and

ilf
J,
Mg the mutual inductances of the helix and the two ends of the

current sheet. This formula has been proved in IV. 17 above. The
error introduced by applying the formula, which is true for a helix

and a current sheet, to two helices of fine pitch, made of wire of sensible

thickness, such as were here used, was considered and found to amount
to about 17 parts in 10,000,000.

The value of M^-M^, say for the left-hand coils in Fig. 139, was

computed as follows. The mutual inductance of one of the two helices,

say BC wound on CD, and the circle a^, was calculated. This was

approximately half the inductance between CD and a^. Then two

mutual inductances were found—that between a\, and (1) the helix JD,

(2) the helix JC, and taking the difference. There were thus three

mutual inductances, which were denoted by il/e, -^e,* -^e,) ^^^ ^^e

value of i/g - Ml for the two helices on CD was given by

M2-Mi=2{2Me-(Me,-Me,)}.
G.A.M. 2r
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For the same current sheet a^, a\, and the helices on GH, M^ - M^
was found from M@, M©,, M©.^, by allowing for small differences in

dimensions by the equation

dM& dA da dx ,^,,

lge=5^+'-^ + ^x' (^')

where A is the radius of the helix, a that of the circle, x the length of the

helix, and q, r, s, coefficients which were determined, as explained

above, p. 431. The sum of the two values of Afg-Mj thus obtained

gave the total for the left-hand system, and was denoted by M^.
The value of Mj^ (the force for the right-hand coils) was determined

from Mj^ by applying the correcting equation. The whole force there-

fore, when the two sets assisted each other, was then

F = y,^y(M^ + M^)=7n^, (72)

where tn was the balancing mass in the scale pans.

61. Results obtained. It was found that for one ampere

^, 01x184 51922-47 ,^„.

since there were 184 turns on each suspended cylinder and the axial

length of each cylinder was 12-983 cm. The value of g was taken as

981-2 : a more exact determination is probably necessary.

The forces between, for example, a^, a\ and CD, GH were called

direct forces, the vertical force between a^, a\ and CD' , G'H' was
called a secondary force. It will be clear that the coils could be joined

so that the electromagnetic force in action was the sum of the direct

and secondary forces (D + S), and also so that the secondary forces

opposed the direct forces D-S. Two sets of observations, a {D-\-S)

and a (D-S), were made to eliminate the secondary forces.

The change of mass in the scale pans on reversal of 1 ampere in both

sets of coils was found to be 14-99928 grammes.

By taking the sum of the balancing masses obtained in a {D + S)

observation and a, {D-S) observation, with the same current, and calling

it m', the equation for the number of amperes flowing was

amperes = \/m729-99856.

The mutual inductances were calculated from the equation [given

and fully explained in VI. 11 above]

ilf = e(^+a)^y{?^,-^+i^-^'(G-n)} (74)

It is to be remembered that y here denotes the modulus of the

elliptic integrals. The elliptic integrals were calculated in three ways,

(1) from Legendre's tables by interpolation, (2) by successive quadric

transformation, (3) directly by series. The values of the elliptic

integral of the third kind, II, were obtained from the expression given
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for it in terms of incomplete elliptic integrals of the first and second

kinds, Gy H.

The electromotive force of a cadmium cell was found by measure-

ments of current by this balance to be 1-01830 semi-absolute volts, that is

I 01830 times the difference of potential in an international ohm when
an absolute ampere is flowing through it. If the international ohm
may be taken as 1-00041 x 109 c.g.s. units, the cadmium cell is to be

reckoned as having an e.m.f. of l-0187i x 10*^ c.g.s. units.

It is reckoned that the value of the ampere is given by this balance to

1 in 300,000. There is (or was) however some uncertainty in the value

of g and as to the measurement of the axial lengths of the coils.

62. Lord Kelvin's standard current balances. Lord Kelvin con-

structed current-weighers or balances for use as standards for current

measurement in practice, and as instruments on the principle of the

balance have been adopted for the same purpose by the Board of

Trade Committee on Electrical Standards (see their Report in Appendix)
we give here a short account of the most generally useful form of these

balances. They are not instruments for absolute determinations, but

have to be calibrated by comparison directly or indirectly with absolute

instruments; and for the exact determination of currents it is necessary

to have recourse to the use of a standard cell and a potentiometer

[57 above].

They are based on the principle, set forth in Chap. V. above, of the

mutual action between the fixed and movable portions of a circuit

carrying a current. Each of the mutually influencing portions consists

in most of the instruments of one or more complete turns or spires of

the conductor, but in some cases consists of only half or part of a turn.

In all cases in what follows we shall call each portion a ring.

In each of the balances, except that for very strong currents (the

kilo-ampere balance), the movable portion of the conductor consists

of two rings, carried with their planes horizontal at the extremities of a

balance beam free to turn in the ordinary way round a horizontal axis.

Above and below each ring on the beam is a fixed ring with its plane

parallel to that of the movable ring. The rings are (except in what is

called the Composite Balance used for measuring power) all joined in

series, and the current to be measured is sent through them so that the

mutual action between the movable ring at one end and each of the two
fixed rings there is to raise that movable ring, while the mutual action

of the other group of three rings is to depress the corresponding movable
ring. The action is therefore to turn the beam round the horizontal

axis on which it is pivoted, with for any given position a couple varying

as the square of the current flowing.

Fig. 140 shows diagrammatically the rings and the course of the current

through them : a, e, 6, /are the two pairs of fixed rings, c, d the movable
rings. The current entering by the terminal T passes round all the rings

in series, in the two movable rings in opposite directions, and returns to
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the terminal T^. Since each movable ring is in general in a magnetic

field, terrestrial or artificial, which has a horizontal component, it

tends to set itself so that the greatest number of horizontal lines of

force may pass through it and therefore is acted on by a couple which

tends to turn the beam round its axis. But since the current passes

round the movable coils in opposite directions, and these are very

approximately equal, the two couples are nearly equal and opposite,

and the instrument is practically free from disturbance by horizontal

magnetic force.

The turning couple produced by the mutual action of the fixed and
movable rings is balanced for the horizontal or " sighted position " of

the beam by an equal and opposite couple produced as described below
by a stationary weight at the end of the beam, and a sliding weight
placed, steelyard fashion, at a suitable point on a graduated bar attached

to the beam. The amount of the current flowing in the rings is deduced
from the amount of the equilibrating couple thus applied, or rather

from a number proportional to it, by means of a table of reckoning.

63. Centi-ampere balance. Most of the constructive details will be
made out from Fig. 140 which shows the Standard Centi-ampere Balance,

and illustrates the arrangement of the beam, the graduation, and the

mode of applying the equilibrating couple, for all the instruments.

The beam is hung on two trunnions, each supported by a flat elastic

ligament made of fine copper wires, through which the current passes

to and from the movable rings.

The horizontal or sighted position of the beam is that in which the

pointers on the extreme right and left are at the middle divisions of

their scales. This position, in all the instruments in which a movable
ring is acted on by two fixed rings between which it is placed, is not that

midway between these two rings, as that would be a position of minimum
force and therefore of instability. For stability it is so chosen that the

movable ring is nearer to the repelling fixed ring than to the attracting
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rin^ by sucli an amount as to give about i per cent, more than the

niiniinuin force.

Fixed to the beam and parallel to it is a finely graduated bar, and

above thin is a horizontal fixed scale, called the Inspection^! Scale, less

finely divided. Both ^graduations begin from zero on the extreme left

and have numbers increasing towards the right. A carriage is moved
along th(i graduated bar to any required position by a sliding piece

controlled by a cord which can be pulled from either end, and this

carriage, by itself or with an additional weight, forms the movable

weight referred to above. The position qf the carriage is indicated by

Fig. 141.—Standard Centi-ainpere Balance.

a pointer which moves along the lower scale. Each additional weight

has in it a smajl hole and slot which pass over conical pins in the carriage.

This ensures that the weight is always placed in a definite position.

The balancing weight is moved along the beam by means of a self-

releasing pendant carried by the sliding piece above referred to. To
this pendant is attached a vertical arm (seen in the figure) which passes

up through the recess in the front of the weight and carriage and so

enables the carriage to be moved with the sliding piece. The stationary

weight is placed in the trough shown at the right-hand end of the

instrument. The trough is V shaped, and the weight cylindrical, with

a cross pin which passes through a hole in the bottom of the trough.

The weight is thus placed in a perfectly definite position and always

has the same leverage. It is so chosen as just to keep the beam
in the sighted position when the sliding weight is at the zero of

the scale.
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Since the mutual action of the rings is to bring the beam towards

the sighted position when displaced by the weights, and the equilibrating

couple is that due to the displacement of the sliding weight from zero,

the latter couple increases as the current increases, and hence motion

of the sliding weight towards the right corresponds to increasing currents.

The use of the stationary weight gives a scale of double the length

which would be obtained without it.

In the top of the lower or finely graduated scale are notches which
correspond to the exact integral divisions in the upper fixed scale.

Thus the reading in the fixed scale is got when the pointer is at a notch,

without error from parallax due to the position of the eye. The reading

when the pointer is between two notches is easily obtained by inspection

and estimation with sufficient accuracy for most practical purposes.

When however the greatest accuracy is required, the reading is taken

on the lower scale, with the aid of a lens, and the current strength

calculated from a table of doubled square roots.

Four pairs of weights are given with each instrument. Of these one

set is for the sliding platform, the other set are the corresponding counter-

poises. The weights of each set are in the ratios 1 : 4 : 16 : 64, and are

so adjusted that, when the carriage is placed with its index at a division

of the inspectional scale, the instrument shows a current of an integral

number of amperes, half-amperes, or quarter-amperes, or some decimal

subdivision or multiple of one of these units of current.

The accurate adjustment of the zero is effected by a small metal flag

as in a chemical balance. This flag is set in any required position by
means of a fork moved by a handle beneath and outside the case of the

instrument. The sliding weight is brought to zero with the correspond-

ing counterpoise in the trough, and then the flag is turned to one side

or the other until the pointer of the beam (seen on the extreme right

and left in Fig. 141) is just at zero.

When necessary for transit or otherwise, the beam in the centi-

ampere and deci-ampere balances is lifted off its supporting ligament

by turning an eccentric by a shaft under the sole-plate of the instru-

ment. In the other balances the beam is fixed for carriage by placing

distance pieces between the upper and lower parts of the trunnions and
screwing them together by milled headed screws kept always in position

for the purpose.
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Section n.

Measukkmkm of Currents anu Graduation of Instruments

RY KlKCTROLYSIS.

64. Determination o! the electro-chemical equivalent of silver. We
shall now giv(! a sliort account of detenninations of the electro-chemical

equivalent of silver. We take first that made by the late Lord Ray-

loigh and Mrs. Sidgwick. The arrangement of apparatus is shown in

Fig. 142. A circuit was made up of a battery A in series with three

silver voltameters, a tangent galvanometer D (which gave a rough

measurement of the current), the current weigher F, Gy described

in 45 above.* The voltameters were each composed of a platinum

bowl which served as kathode, and an anode of pure silver plate sus-

pended horizontally above the bowl in the electrolytic liquid, which was

a solution of pure nitrate of silver. To prevent disintegrated silver

from falling from the anode the plate was wrapped round with pure

filter paper secured at the back with sealing wax. The electrolyte

was in general a neutral solution of 15 parts by weight of pure silver

nitrate in 100 parts of water. The area of deposit in two of the basins

was about 37 square centimetres, and 75 square centimetres in the other.

FIQ. 142.

After a number of trials of the addition of acetate of silver in small

quantity to the pure nitrate solution, it was found that, while the acetate

had the desired effect of giving a firmly coherent deposit of close texture,

the very closeness of its texture rendered very difficult the after freeing

of the deposit from retained s^lt or other impurity tending to increase

its weight. It was therefore decided to use pure nitrate solutions,

which it was found after all gave deposits coherent enough for the

subsequent treatment.

65. Details of an experiment. The procedure in an experiment was

as follows. The current roughly regulated to the desired value was

allowed to pass through the current-weighing apparatus for half an hour,

but not through the voltameters. The copper conductors of the circuit

heated somewhat, and thus the current slightly fell off during this

time. The voltameters in the meantime were charged with the solution,

and the anodes fixed in position. Then when all had been adjusted

the current was, at an instant observed on a chronometer, sent through

the voltameters arranged in series ; and the weights then required to

* The rest of the arrangements shown in Fig. 142 have no relation to the electro-

chemical determinatii>n. They were required for the experiments on Clark cells

described in 77 below.
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bring the pointer of the suspended coil to zero were observed. At
intervals the current was reversed, and the change of weights observed.

For one direction of the current, of course, the electromagnetic action

assisted gravity, in the other opposed it.

The following table gives the result of a series of experiments made
on March 10, 1884. The two sets of numbers are the weights which

had to be added to give equilibrium according as the current was in one

direction or the other.

Time of Weighing. Weight in Grammes.

H. M. s.

4 19 30 7-694

4 25 6-795

4 32 15 7-698

4 40 20 6-791

4 42 50 7-699

4 50 30 6-790

4 53 10 7-699

4 56 30 6-789

5 1 15 6-789

Current sent through voltameters at 4h. 17m., interrupted at 5h. 2m.

Difference of weights = 2 x Force on suspended coil.

The curves. Fig. 143, show these results for each position of the key.

^
1

X
"^

_

"+

4.40

FIG. 143.

The current was integrated by dividing the whole interval of 45

minutes during which the current was flowing into 9 intervals of 5

minutes each, and the magnitude of the current at the middle of each

interval was taken to represent its value during the period.

The differences of the ordinates of the curves of Fig. 140, at the middles

of these intervals, give the difference of weights, and therefore twice

the force exerted by the fixed coils on the suspended one. These differ-

ences and their square roots are shown in the following table. The mean
of the square roots is the square root of the difference of weights which
would have been shown by the mean current.
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Time DUrerenoe of 84. Soot of
Welghte. Difference of Weights.

H. M. s.

19 30 •897 •9471

24 30 •900 •9487

29 30 •904 •9508

34 30 . •906 •9518

39 30 •908 •9529

44 30 •908 •9529

49 30 •909 •9534

54 30 •910 •9539

59 30 •910 •9539

Mean -95171

The 45 minutes' interval during which the experiment lasted was
corrected for the time taken to work the reversing key. This was done
by carrying the main current, between the battery and the key, round
a reflecting galvanometer consisting of a few turns of wire. The
momentary stoppage of the current caused the needle to fall back to-

wards zero, and from the observed amount of the corresponding motion
of the spot of light, and the period of the needle, the time of duration

of the interruption could obviously be found. The correction rendered

necessary was -083 second for each operation. This brought down the

whole interval by -6 second, or to 2699-4 seconds.

The deposits were washed immediately after formation first with

alcohol, then with boiling water, and lastly with cold water. They
were then left to soak in water overnight, then rinsed and put to dry
in an air-bath at 160° C. After cooling over a desiccator the deposits

were weighed, then were heated nearly to redness over a spirit lamp to

drive off traces of adhering salt, then cooled and weighed again.

66. Results of a series of experiments. The following table gives

the results of the weighings for the set of experiments already referred to :

March 10, 1884.

Large bowl. I.

Pure Nitrate.
Normal Strength.

Large Bowl. II.

Pure Nitrate.
Double Strength.

Small bowl. III.

Pure Nitrate.
Normal Strength.

Before deposit -

After deposit,

first weighing -

80^4490 grms.

81-5138 „

17-2958 grms.

18-3628 .,

21-8789 grms.

22-9434 „

Gain 10648 „ 1-0643 „ 1-0645 „

After strong

heating - 81-5135 „ 18-3627 „ 22-9433 „

Gain 1-0645 „ 1-0642 „ 1-0644 „

Mean gain 10644 grammes.
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Thus the amount of silver deposited per second is 1 •0644/2699-4.

Dividing the mean square root of the difference of weights by this we

get v/m/(rate of deposition) = -95171 x 2699-4/l-0644 = 2413-7.

The mean result of several series of experiments was to give instead

of the last found number 2414-45. From this the value of the electro-

chemical equivalent of silver was deduced. We have seen that if m
is the difference of weights, we have

y=-0370484N/m.

67. Electro-chemical equivalent of silver. If w be the electro-chemical

equivalent of silver, we have for the rate of deposit wy. But

^' = 2414-45.
toy

Hence, as final result,

2414-45 y 2414-45 x '0370484 ^

as the weight of silver deposited on a kathode plate by the passage of

one c.g.s. unit of electricity.

It is stated in the paper that the strength of the nitrate solution may
be considerably varied without affecting the result if the current does

not exceed \ ampere for the 37 sq. cm area of deposit. In this case a

4 per cent, solution may be used. If the currents are comparatively

strong, the solutions should be from 15 to 30 per cent, in strength.

Too weak a solution would give a somewhat loose deposit. Currents

not exceeding \\ amperes can be conveniently measured by running them
for about a quarter of an hour through a strong solution.

68. Measurement of currents by electrolysis of copper sulphate.

The graduation of instruments for use as standards in practical elec-

tricity can be carried out with all needful accuracy by means of the

electrolysis of copper sulphate. The behaviour of this substance as an

electrolyte, and hence the conditions necessary for obtaining consistent

results in its use, and the ratio of the electro-chemical equivalent of

copper to that of silver, were carefully investigated by the late Prof.

T. Gray,* who was for some time in charge of the graduation of

Lord Kelvin's standard instruments, and a short account of his results

is here given.

A form of cell very convenient for use with solutions whether of

nitrate of silver or sulphate of copper, when the current strength is not

greater than 10 amperes, is shown in Fig. 144. It consists of three parallel

plates of pure silver or pure copper, suspended from spring clips in a

glass vessel containing the proper solution. This form of cell has the

* See a paper on the " Electrolysis of Silver and Copper," T. Gray, Phil. Mag.
Oct. 1886, from which the details here given are mostly taken. See also a paper
by A. W. Meikle, Electrical Engineer, Mar. 23, 1888.



xn GALVANOMETRY 459

advantages of giving light jilates, wliicli facilitate the accurate weighing

of the amount of Iosh or gain of metal, and allowing, when silver is used,

and the size of tlu; plates is properly proportioned, the loss from the

anode to be used as a check in estimating the gain on the kathode.

There is of course the obje(;tion which attends the use of vertical plates

that the solution becomes less dense near the kathode, but the only

practical effect due to this has been found to be a slightly greater

thickness of deposit in the lower part of the plate due to the greater

density there.

Lord Rayleigh used, as explained above, as voltameter a platinum

bowl as kathode, and a silver plate as anode. This cell, though it

had several advantages, was found, according to Prof. T. Gray's ex-

perience, more difficult to manipulate than that here described.

Fig. 144. FIG. 145.

The form of clip or plateholder, as illustrated in Fig. 145, almost

explains itself. It is made of stiff platinoid or brass wire. A piece is

taken of the proper length, bent into a close loop at the middle, then

each half wound two or three times round a rod of metal to form springs

as shown, and the two ends bent round to meet side by side, and there

soldered to a stiff back-piece of brass. The springs when soldered in

position should cause the loop to press firmly against the back-piece

so as to form a firm clip.

The stems of the two outer clips when in position are connected by a

cross-piece a of copper. Both are insulated from the inner clip by a

block of vulcanite through which its stem passes. This whole arrange-

ment of cross-piece and insulating block is fixed on the top h of the

wooden framing shown in Fig. 144.

The two plates attached to the outer clips form the anode of the

electrolytic cell, and the plate between them the kathode. The kathode
thus gains on both sides, and as it is safer to use the gain than the loss



460 ABSOLUTE MEASUREMENTS IN ELECTRICITY chap.

FIG. 146.

of metal in estimating the current, the weight of the plate itself is thus

made as small as possible in comjjarison with the alteration in weight
to be determined.

The form of cell shown in Fig. 144 was improved by the substitution

for the cover & of a rectangle of wood, well soaked in paraffin or varnished,

which carried on one side the clips for the

anode, and at the middle of the opposite side

the single clip for the kathode.

When currents of over 10 amperes are to be

used the form of cell shown in Fig. 146 is

preferable. An insulating rim rests on the

top of the cell, which for the larger sizes is

conveniently made of earthenware and of

rectangular shape. A groove in the rim fits

the top of the cell loosely so that the rim with

its attachments can be easily removed and
cleaned. To the rim are fixed on opposite sides two sets of spring clips,

each made as shown in Fig. 147, by soldering flat strips of springy metal
to a stiff base-piece which can be screwed to the insulating rim of the

cell. To make the effective area of the plates as great as possible in

comparison with the ineffective part, the part above the

liquid is cut away to two narrow strips connecting the

lower part to an upper cross bar c, d. One end c of this

cross-bar rests in a clip, the other in a notch in the insu- ^j^ ^47
lating rim. Anode plates and kathode plates alternate

with one another, and there is one more of anodes than of kathodes,

so that each kathode is between two anodes. In large cells where
the plates are close and liable to touch, they are kept apart by two
U-shaped glass tubes hung over each alternate plate.

69. Preparation of plates. With regard to the size and preparation

of plates it was found that in the cases of both silver and copper there is

a certain density of current (current strength per unit of area of plate)

which gives the most adherent and, in the case of silver, most finely

crystalline deposit. When silver is used there is a tendency, if the

plate be too large or too small, for the crystals of deposited silver to

grow out branch-like from one plate to the other, an effect which is

most marked where there is a sharp edge or corner. Hence the plates

must have their edges and corners rounded off to prevent the formation
of these " trees," which cause great risk of loss of silver from the plate

in its treatment before being weighed.

The best deposit has been found to be obtained with a solution made
with five parts by weight of nitrate of silver to 95 of water, and a kathode
plate giving not more than 600 sq. cm nor less than 200 sq. cm of active

face to the ampere of current. If a stronger solution be used, the

density of current may be somewhat increased, but the strength should
not be less than 4 per cent, nor greater than 10 per cent.
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The anode plates should be considerably ^eater in area than the

katliodo j)late8 if their surface is to remain bright and moderately hard
so as to admit of the plates being weighed if necessary. The density

of the current for them should be less than one ampere to 400 sq. cm.
If the anod(5S are of rolled sheet silver the surface skin should be

poli.slicd of! with fine silver sand, and the plate washed in distilled water

before being used ; as otherwise the silver would be dissolved away
from under the skin, which would hang as a loose sheet ready to break

away when the plate was moved. A plate of silver becomes soft and
inelastic by repeated use as an anode, owing to solvent action going on
below the surface, and to remedy this, after being used each time,

should be heated to a red heat in the flame of a spirit lamp.

The following mode of treating silver plates has been found very

successful. The plate cut from the new sheet has its corners first rounded
and smoothed, then is ])olished with fine silver sand in water, rubbed
on with a soft clean pad of cloth, so as to remove the skin above referred

to, and still leave a smooth surface. A gentle stream of clean water is

then run over the surface from a tap to remove the sand, next the plate

is washed, first with clean soap and water, then with water alone, then

immersed for a few minutes in a boiling solution of cyanide of potassium,

and finally washed thoroughly in a stream of clean water. The plate

is dried in a current of hot air, for example before a clear fire ; and
great care must be taken in handling it after it has been cleaned not to

touch it with the fingers, otherwise the parts which have been in contact

with the skin will receive no deposit. Of course the plate must be

allowed to cool before it is weighed to obviate risk of disturbance from
air currents in the balance case.

When the silver deposit is to be washed and weighed, the plates are

gently removed by easing the springs to prevent risk of rubbing off

metal by the friction of the clips, then dipped gently in clean, recently

distilled water contained in a glass vessel, so that any small crystals

which may fall from the plate may be detected. The adherent nitrate

solution is thus to a great extent removed ; and the plates are then

laid in the bottom of a shallow glass tray containing clean distilled water,

and washed by gently tilting one side then the other of the tray so as to

make the water flow gently over their surfaces. Then they are washed
in a second tray in the same way, and allowed to soak for a quarter of

an hour before being dried.

To dry the plates one corner is laid on a pad of blotting-paper and
the greater part of the water drained off. The plate is then dried by
holding the upper end in a spirit flame.

70. Electrolysis of copper sulphate. The electrolysis of copper sul-

phate with copper anode, and kathode gives results which for very high

accuracy in standardizing are but little if any inferior to those obtained

with silver : for most practical purposes results quite accurate enough
can be obtained with much less experimental skill on the part of the
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operator. Repeated experiments made in the Physical Laboratory

of the University of Glasgow,* showed that under certain easily fulfilled

conditions the method of standardizing by the electrolysis of copper

sulphate is perfectly accurate and trustworthy.

The size of plates is not of so great importance as in the case of silver,

but the kathode plate for the best results in long-continued electrolyses

should have about 50 cm of active surface or upwards per ampere.

When the current is of small density deposits are obtained which are

much more solid and adherent than those of silver, and therefore much
more easily dealt with. As in the case of silver the anode should be of

much greater area than the opposed surface of the kathode. With a

density of current of upwards of ^^ of an ampere per sq. cm the resistance

at the anode becomes variable and very considerable, sometimes almost

stopping the current, which after a little, with evolution of gas at the

anode, regains nearly its former strength.

It was found by Prof. T. Gray in the experiments above referred to

that satisfactory and concordant results could be obtained with a solu-

tion of any ordinary pure commercial copper sulphate made with pure

water, provided the density did not fall below 1-05, and the solutions

were made slightly more acid than in the normal state. An addition

for example of ^jy per cent, of sulphuric acid to different solutions, which

gave results differing among themselves, brought them into complete

accordance. The loss of weight which is well known to take place when
a copper plate is left standing in a copper sulphate solution, was also

carefully investigated. This loss it was found seldom exceeds ^^^ of

a milligramme per sq. cm per hour, or about
5 oVo ^^ ^^^^ which would

be deposited by a current of one ampere per 50 sq. cm. When the

current density is smaller than this the loss is nearly the same as when
no current flows. The effect seemed to have a minimum for a density

of solution between 1-10 and 1*15, and seemed for this density to be

rather retarded than the reverse by the addition of a small percentage

of free acid.

71. Treatment of copper plates. The kathode plate having been cut

and rounded at the corners is polished with silver sand in the same

manner as the silver plate. It is then placed in the cell and a thin

coating of copper deposited over it, while the current (if a large current

is to be used) is adjusted to its proper strength by placing resistance in

the circuit. The plate is then removed, washed in clean water and

dried before a clear fire without being sensibly heated. Any defect

in the first cleaning will be shown by the deposit, and if no such defect

is shown, the plate is weighed and replaced in the cell for the con-

tinuation of the electrolysis. If feeble currents are to be used this

preliminary adjustment is hardly necessary, as it is preferable then

to use a larger number of cells than are absolutely necessary to produce

* See the Ref. in 68 above. The remarkable concordance of standardizings

made at different times is illustrated by results quoted in Mr. Meikle's paper.
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the current, and bring down the current to the necessary strength by

adding an amount of resistance which can be easily enough estimated.

After the electrolysis the plates are carefully removed and at once

dipped in ordinary (not necessarily distilled) clean water, containing

two or three drops of sulphuric acid per litre, then washed in a tray

like the silver plates. The plates are then rinsed in clean water without

acid, and dried first in a clean, pad of white blotting paper, and then

before a fire or over a spirit lamp. If this is carefully done and the

deposit be fairly good no copper will be lost and there will be no gain

of weight by oxidation. The plates may be weighed after having been

allowed to cool down to the ordinary temperature.
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Fio. 148.- Abscissae give area of kathode in square centitns. per ampere, Ordinaies
are electro-chemical equivalent, multiplied by 10,000.

The anode plates are treated in a similar manner (except as regards

the drying in a blotting-pad, which might cause loss of silver) without

loss of copper, or gain by oxidation, but owing to loss of weight in the

solution etc., they give much less satisfactory results than do the

kathode plates.

The arrangement of the circuit for electrolytic experiment consists of

a battery of large surface Daniells, or other constant cells joined in series

with the electrolytic cells to be used, a sensitive galvanometer, and
a rheostat (or other readily variable resistance) by which the current

is to be regulated. The current is adjusted so that a convenient deflec-

tion is obtained, which is restored by slightly turning the rheostat in

the proper direction if any alteration takes place. The conduct of an
experiment will be understood from the description of the process of

standardizing given below.

72. Electro-chemical equivalent of copper. From Lord Rayleigh's

result for the electro-chemical equivalent of silver (see 65 above),

namely that a coulomb deposits -0011179 gramme of silver, very nearly.

Professor T. Gray has determined by comparison the electro-chemical

equivalent of copper, and found it to be very approximately -0003287

(or for practical purposes -0003290) at ordinary temperatures, and with
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a current density of one ampere per 50 sq. cm of active surface of

kathode. This number can be corrected for other current densities

by the dotted curve given in Fig. 148.

The results from which this curve has been plotted are given in

the following table :

Amounts of Copper deposited by. the same Quantity of
Electricity on Kathode Plates of Different Areas.

Area of plate in
sq. cm.

Amount of deposit
in grammes

(first experiment).

Amount of deposit
in grammes

(second experiment).

3 •3534 •3534

5 •3530 •3529

11 •3528 •3530

18-5 •3526 •3527

36 •3524 •3521

73 •3503 •3502

The effect of variation of temperature * on the amount of copper

deposited has been found by Mr. A. W. Meikle to be very slight at

ordinary temperatures ; for a change from 12° C. to 28° C. it is a diminu-

tion for a given size of plate of only yV per cent.

At temperatures rising above 20° C. the effect of variation of size

of plate becomes more and more important.

73. Graduation of standard instruments by electrolysis. The applica-

tion of electrolysis to the standardizing of instruments will now be

illustrated by a short account of its application to the determination

of the proper weights for use in the Kelvin standard current balances

described above. The arrangement of apparatus is shown in Fig. 149,

which may be taken as a plan of the standardizing table with instru-

ments in position. (7, C, C, C, C, C are six of the Electric Power
StorageCo.'s secondary cells, shown joined in series, by being connected to

a series of mercury cups, m, m, ... which are connected across by
thick copper rods as indicated by the full and dotted lines. (These

cups are on a vulcanite base, and have bottoms of thick copper to

ensure contact.) When however currents of great strength are required

for the graduation of low resistance instruments, these cups are joined

in parallel by two rods of copper which have teeth at the proper distance

apart to fit into the cups, so as to join all in each row together. The

battery fully charged and thus joined in parallel will maintain a current

of 200 amperes for 10 hours.

The terminal cups of the commutating board are shown joined to

a distributing board provided with cups, 1, 2, ...12, by which the

* See Ref. in 68 above.
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battery is put in series with a rheostat /?, in parallel arc with a set

of conductance bars A a galvanometer G, a pair of large electrolytic

cells joined by a movable cup M, and

finally the balance 5to be standardized.

The conductance bars are constructed

as shown in Fig. 150. Rods of plati-

noid of thickness according to the

conductance required are bent into

U-shape, as shown, and the limbs held

at pro])er distances apart by wooden
blocks at intervals, or by a strip of

wood running along their whole length,

according as the rods are thick or

thin. The length of rod in each U is

about 4 metres, and the thickness is

chosen such that one or two volts

difference of potential produces very

little heating of the wire. The troughs,

t, t (Fig. 150), are made with bottoms

of thick copper and contain mercury

in which the ends of the rods (or thick

copper pieces soldered to the wires if

thin) rest pressed down by their own
weight. The different Us beginning

from one side are graduated so as to have conductances nearly in the

ratios 1:1:2:4, etc., so that the total conductance in the set may be

increased at will by a step equal to the lowest conductance (since each

conductance is that amount greater than the sum of all

that precede it in the series). When any bar is not in use

its lower ends are lifted out of the troughs as shown in

the figure. The rheostat, which has a least conductance

rather less than that of the smallest bar, furnishes an

auxiliary variable bar by which the conductance can be

gradually altered. Its wire is of stranded copper and can

carry 10 amperes without damage.

The current balance has previously had its scale graduated

and attached as described above, and it remains only to

show how the constant of the instrument is determined, or

in other words the weight which placed on the beam will

enable the current to be obtained from its indications in the

manner already described (63 above). A chosen arbitrary

counterpoise weight is placed in the trough, and another,

which then just brings the beam to the sighted position

without current when at the zero of the scale, is placed

on the beam with the index at some division near the right-hand

end so that a current of, say, 10 amperes (more or less according

o.A,M. ijc

FlO. 150.



466 ABSOLUTE MEASUREMENTS IN ELECTRICITY chap.

to the instrument) is required to bring the beam to the sighted

position. The electrolytic cells are then arranged to give about

500 sq. cm of kathode surface, and are joined up with a conductance

sufficient to give nearly the required current. The balance will

come nearly to zero, and is brought to zero exactly by adjusting

the current by means of the rheostat. These adjustments having

been made, the kathode plates are removed, washed, weighed, and
replaced. At an instant observed on an accurate time-keeper the

circuit is closed, and any deviation of the current corrected by means
of the rheostat. The current is brought to its correct value in from

five to ten seconds, and hence in an electrolysis of say an hour (the

usual duration of an experiment) the error due to its deviation from

the final constant value for this short variable period is quite imper-

ceptible. Any variations of the current strength are observed on the

instrument itself, or if (which rarely happens") that is not sensitive

enough, on a more sensitive galvanometer G (Fig. 149), which is intro-

duced when required, and kept out of circuit at other times. Any
sufficiently sensitive instrument which can have its (not necessarily

known) constant changed by any required amount by varying the

field at the needle, or by using an instrument provided with two parallel

coils with the needle midway between them, and arranged to permit

the distance of the coils apart to be altered at pleasure, is convenient

for this purpose.

The electrolysis having thus been carried on and completed, the

circuit is broken, and the plates washed and weighed. The current

is calculated from the result by dividing the gain of copper on the

kathode expressed in grammes, by the electro-chemical equivalent of

copper (-0003287, or, as explained above, the proper value for the

density of current), and the result by the number of seconds during

which the electrolysis has lasted. Let C be the current for the position

of the weight on the beam as given by the table of doubled square

roots, w^, w^, the corresponding counterpoise and beam weights respec-

tively, C the current given by the electrolysis, w\; w' ^ the counter-

poise weight and beam weight applied, then we have

where d^, d^ are constants. But wjw^^w'^jw' 2 ', hence this equation

Thus w^, W2 are found by multiplying the ratio C^/C'^ by w\, w'^

respectively, and the determination is complete.

74. Arrangement for strong or weak currents. When a very strong

or a very weak current is required, as in the graduation of a hekto-

ampere or a centiampere balance, it is desirable in the former case to
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allow the whole current to flow through the instrument, and only a

convenient part through the electrolytic cell, and in the latter case

to use a considerably greater current through the electrolytic cell than

through the instrument. The current must therefore be divided in

both those cases into two parts whose ratio is accurately known, and

this may be done by the conductance bridge shown in Fig. 151. A
set of parallel straight wires of platinoid are each soldered at one end

to a thick terminal bar of copper h, and have soldered to them at the

other ends thick terminal pieces of copper by which they can be con-

nected in two groups by means of mercury troughs ftj, b^- In the figure

they are shown in two groups of 10 and 1 respectively.

The wires are adjusted so that when they are in position they have

all precisely the same resistance. Between the troughs b^, b^, a sensi-

tive reflecting galvanometer [XI. 1] g is joined which indicates no

current wlien tj, b^ are at the same potential. The electrolytic cells

Ej E'y and the instrument G to be standardized, are placed as shown

in the figure when the standardizing current must be greater than that

E E

^
R'

B
Fig. 151.

which the cells can carry, and the positions shown are interchanged

when the reverse is the case. The currents arc adjusted to balance

in both cases by the rheostats R, R'. The currents are of course

in the ratio of the conductances of the groups r, / of the wires of the

bridge.

Section III.

DkTEKMI NATION OF ELECTROMOTIVE FOUCES OF CeLLS AND
Graduation of Voltmeters.

75. Potential measuring instruments or voltmeters. When a current

known in absolute measure flows through a known resistance the

difference of potential between the terminals of the resistance is also

known. By means of this known difference of potential, which may
be varied at pleasure, a voltmeter may be graduated. A voltmeter

of any type is an instrument, the resistance of which is so high that

the attachment of its terminals to two points in a conductor carrying

a current does not perceptibly change the difference of potential formerly

existing between these points. Of course every absolute galvanometer,
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electrodynamometer, or standard balance measures differences of

potential, for, if its resistance is known, the difference of potential

between its terminals can be calculated from Ohm's law ; but the

convenience of a voltmeter especially made with a high resistance coil

is that its terminals may be applied at any two points in a working

circuit, and the difference of potential, thus calculated as existing

between these two points while the terminals are in contact, may, in

most cases, be taken as the actual difference of potential which exists

between the same points when nothing but the ordinary conductor

connects them. For, let V be this actual difference of potential in

volts, let r ohms be the equivalent resistance of the whole circuit

between the two points, without the voltmeter, and R ohms the

resistance of the voltmeter. Then (VI.) by the application of R,

V is diminished in the ratio of R to R + r, and therefore the difference

of potential between the ends of the coil is now VR/{R + r). Hence
the current through the galvanometer has the value V/R{l-hrlR).

If r be only a small fraction of R, r/R is inappreciable, and the differ-

ence of potential calculated from the equation C^V/R will be nearly

enough the true value. So far, it is to be observed, r is the equivalent

resistance between the two points, and the result stated holds, however

the electromotive force may have its seat in the circuit, if only R be

great in comparison with r. If, however, either of the two parts of the

circuit between the two points in question have a resistance r' small

in comparison with R, then, as can be easily proved, the value of the

difference of potential between the terminals of r is practically un-

changed by the addition of R as a derived circuit.

76. Graduation of a voltmeter. The voltmeter has its terminals

attached to those of the resistance through which the current is flow-

ing ; or, if the standard measuring instrument is sensitive enough,

the measured current is sent through the voltmeter itself ; and readings

of the needle or other indicator are taken. In either case the readings

are proportional to the difference of potential between the terminals

of the instrument, but in the former arrangement the difference of

potential is equal, in volts, to the current in amperes flowing through

the resistance multiplied by the value of the resistance in ohms, in the

latter the difference of potential is equal to the measured current

through the voltmeter into the resistance between its terminals.

If the scale of the instrument does not follow any known law, it is

necessary to determine by direct experiment the electromotive force

corresponding to different deflections and thus, so to speak, calibrate

the instrument. To do this the most convenient plan is to divide the

scale accurately into equal divisions and to number these from zero

at the position of equilibrium with no current. Then the current

measured by the standard galvanometer is varied conveniently by
introducing resistance into the circuit by a rheostat, and the deflec-

tion observed for several different values. The corresponding differences
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of potential arc tlien plotted on scjuared pajxT as ordinaten for which

the nunih(!r of divisionK of the deflections are the corresponding abscissae.

A curve is then carefully drawn through the extremities of the«e

ordinates, and th(^ ordinate of this curve drawn for any chosen abscissa

will be th<' difference of ])otential for that deflection.

77. Clark's standard cell. For verifying the accuracy of the gradua-

tion of tlu' potent iiil ir)strunjents wh<*n j)erformed by either of these

methods, or for actually performing the graduation when other methods

are not convenient, some form of voltaic cell of known electromotive

force may be used.

As the result of many careful experiments made by Lord Rayleigh

and others, it has been found that the most reliable standard cell is

that proposed by Mr. Latimer Clark. When certain ])recaution8 are

taken in its prej)aration the electromotive forces of different specimens

are very nearly the same, and remain constant for a long time provided

care is taken to j)revent more than a very feeble current from ever

passing through them.

The cell may be made in a reliable and handy form in the following

way, which includes the precautions that Lord Rayleigh's experience *

has shown to be necessary. The vessel is a

weighing tube, or for small sizes merely a test-

tube, with a platinum wire sealed through the

bottom, and rests on a suitable stand as shown
(Fig. 152). This wire makes contact with mer-

cury, which occupies.the bottom of the cell and
forms one of the plates. The mercury must be

pure, and it is desirable to ensure its being so

by redistilling in vacuo good clean commercial

mercury. On the mercury rests a paste made
by adding to 150 grammes of mercurous sulphate

5 grammes of zinc carbonate, and sufficient

saturated zinc sulphate solution to give a stiff

pasty consistency.

The zinc sulphate solution should be made
from pure zinc sulphate dissolved under gentle

heat in distilled water so as to make a saturated

solution, and, after having been allowed to stand

for some time to precipitate any iron which
may have been present in the sulphate, filtered

in a warm place into a stock bottle. When required the solution

is gently warmed, and drawn off by a siphon from just above the

* See Lord Rayleigh and Mrs. Sidgmek's paper on the " Electro-Chemical
Equivalent of Silver ' already cited {Phil. Trans, part ii. 1884, Collected Papers, ii.),

also Lord Rayleigh on the " Clark Cell as a Standard of Electro-motive Forces
"

{Phil. Trans, part ii. 1885). These papers contain particulars of the method of
determining the electromotive force of Clark cells, and the latter especially details
of the mode of constructing them, of which an abstract is given below in the t^xt.

Fl«. Ii
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crystals at the bottom. The paste is made by placing the mercurous
sulphate and zinc carbonate in a mortar and rubbing in the zinc sulphate

at intervals during two or three days, to give time for all carbonic acid

to pass off.

A rod of what is called "redistilled zinc " resting in the paste, and
held upright in the vessel by a notched ring of cork, forms the other

plate. The zinc is cleaned before putting it in position by dipping it

in sulphuric acid and then washing it in distilled water. Connection

with it is made by a gutta-percha-covered copper wire soldered to it,

and passed up through a cork which closes the cell and nearly fills

the upper part of it, so that very little air is included. The cork is

flush with the top of the tube, and the edges of the tube and the whole
upper surface of the cork are covered with marine glue to seal up
the cell.

A cell thus made, if used with only the feeblest currents, never

short-circuited, nor exposed to great variations of temperature will

have a constant electromotive force E in volts at temperature t° C.

given according to Lord Rayleigh and Mrs. Sidgwick's determination

(if 1 B.A. unit = '9866 ohm) by the equation

J5; = 14345{l--00077(«-15)} (76)

78. Determination of e.m.f. of Clark ceU. Potentiometer method.
The method employed by Lord Rayleigh and Mrs. Sidgwick in the

determination of the electromotive force of the Clark cell, and the

method of using the cell for purposes of graduation, will be understood

from Fig. 142. (For convenience Fig. 142 is here repeated.) Two
Leclanche cells M, and two resistance boxes N, 0, were joined in circuit.

Fia. 142.

At two points in were attached two wires, in one of which was placed

the Clark cell P, which was to be tested. These wires formed with a

resistance R a derived branch of the circuit of M including a mercury
reversing key Q, a reflecting galvanometer T, and a resistance S of

1000 ohms.

In the earlier experiments the galvanometer had in its coils a resist-

ance of about 200 ohms, but in later determinations it was provided

with a coil containing a much greater length of wire, so that a higher

sensibility was obtained.

The other arrangements connected with the circuit are the battery

A, the voltameters, and the current weigher as described in 50 above.

One extremity of A was connected to earth at L.
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The main current from A after traversing the voltameters and current

weigher i)a88e8 through the resistance R back to ^. To prevent undue
heating by the electrolysing current, which was about J ampere, the

resistance R was constructed of bare german silver wire wrap[>ed

round a frame of two parallel ebonite rods kept apart by wooden bars,

and was provided with stout coj>per terminals which rested on the

copper bottoms of cuj)8 //, K filled with mercury. The resistance

was 400699 B.A. units at 17°'6 0. This was corrected for the difference

between 17° 6 C. and the temperature of the atmosphere, and also

for heating j)roduced by the current. It was found that a correcting

factor 1-00041 had to be api)lied to take account of the latter effect.

In the first determinations the battery M was not used and the

electromotive force of P was balanced by the difference of potential

existing between its terminals H and K. The adjustment to balance

was made by i)lacing a high-resistance box in j)arallel with R, between

H and K, and unplugging resistance until with the current flowing

through the voltameters, no current passed through T when the derived

circuit was thrown in for a moment.
The difference of potential between H and K was then obtained from

the resistance of the double arc now constituting R, and the absolute

value of the current given by the electrolysis. The value of the current

at the instant when P was balanced could be obtained from the curves

(Fig. 143) showing the results of the two current weighings ; and thus

several determinations of electromotive force could be made in a short

time.

In later determinations the balance was finally adjusted by including

in the derived circuit with P a part of the electromotive force of the

pair of Leclanche cells. An independent comparison of the electro-

motive force of the Leclanches with that of the Clark cell, was made
by balancing the Clark cell, in the manner just described, by the

difference of potential between two points of a resistance in circuit

with the Leclanches. This enabled the part of the balancing electro-

motive force supplied by the Leclanches to be found from the known
resistance intercepted between the terminals of the derived circuit

and the whole resistance in N and together, which was kept at

10,000 ohms.

The following values have been obtained by other experimenters

for the electromotive force of a Clark cell at 15° C. :

Carhart 1*434 volts.

Kahle (Zeitschrift f iir Instrumentenkunde) . . 1*4341 „

Glazebrook and Skinner, Proc. /?.^. 54 (1892) . 1-4342 „

79. Graduation of voltmeter by standard cells. Standard cells of

known electromotive force being available they may be used for the

graduation of voltmeters by the same compensation method. A circuit

is made of a battery A (Fig. 153) of storage or Daniell's cells, in series
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with resistances R, S, and the voltmeter G to be graduated. A battery

of a suitable number of standard cells has its terminals applied at the

extremities of the variable resistance R, and its circuit contains a sensi-

tive galvanometer D, and a key K. Along with D should be included

a resistance large enough to ensure that only a small current can ever

flow through the standard cells in the process of testing. Clark cells

should never have any sensible current passed through them. R or

S is adjusted until no current flows through D when the key K is

tapped down for an instant. When this is the case the electromotive

force of is balanced by the difference of potential at the two ends of

R produced by B. Hence the difference of potential in volts then

existing between the terminals of G is given (for a Clark's cell at 15° C.)

by the equation ^
' F = 14345^. (77)

By this method, which is an application of Poggendorff's method
of comparing the electromotive forces of batteries, balance is obtained

when no current is flowing through the standard cell, and disturbance

from polarization is altogether avoided. It has been found very easy

and convenient in practice. Special forms of apparatus with attached

resistances and contact-marking devices, and called potentiometers,

are now available for all tests of this kind [see 57 above].

80. Standard Daniell cell. Some form of Daniell's cell is easily set up,

and though less trustworthy is convenient for use as a standard when
Clark cells are not available. A small current through such a cell does

no harm. A well-known form is Raoult's, which has the zinc and

copper solutions in separate vessels connected by a tube filled with

zinc sulphate and tied over the ends with bladder. This, when made
with a plate of pure zinc amalgamated with mercury and a plate of

electrolytically deposited copper, was found by Lord Rayleigh to have

an electromotive force of approximately -7703 of that of a Clark cell.
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A standard Daniell's cell was used by Lord Kelvin, which consists

of a zinc plate resting at the bottom of a glass vessel in a stratum of

saturated zinc sulphate, and a copp<'r plate in a solution of copper

8ul])hate of density 1-02, which has been so gently placed on the stratum

of zinc sulphate as to leave a clear surface of sej)aration. The copper

sulphate solution is introduced by means of a glass tube dipping down
into the liquid and terminating in a fine point, which is bent into a

horizontal direction so as to deliver the liquid with as little disturbance

as possible. This tube is connected by a piece of indiarubber tubing

with a funnel, by the raising or lowering of which the sulphate of

copper can be run into or run out of the cell. By this means the sulphate

of copper is run in when the cell is to be used, and at once removed
when the cell is no longer wanted. The solutions should be kept in

stock bottles and the cell set up fresh when wanted.

The standard Daniell's cell is very conveniently used along with a

Daniell's battery in the manner represented in the diagram (Fig. 154).

C is the standard cell, and B a battery of from 30 to 40 small gravity

M'M-l-iH.
Fig. 154.

Daniells.* A circuit is formed of a resistance box, the galvanometer
G to be graduated, and the battery B joined in series with the standard
cell C. A sensitive galvanometer D, which may be a reflecting galvano-
meter, or any very sensitive galvanometer of low resistance, has one
terminal attached at a point M between the battery and the standard
cell, and the other terminal through the key K to an intermediate
terminal L of the resistance box. The resistances in the box, on the
two sides of L, are adjusted until no current flows through the galvano-
meter D, when the key is depressed.

* These can be very easily made by using large preserve-pots as containing
vessels, and placing at the bottom of each a copper disc of from three to three
and a half inches in diameter, in a stratum of saturated copper sulphate solution,
and a grating or plate of zinc a little below the mouth of the vessel immersed in
a solution of zinc sulphate, of density 1-2. The copper sulphate may be kept
saturated by crystals dropped into a glass tube passing down through a hole in the
zinc plate to the copper. A copper wire well covered with guttapercha should
be used as the electrode of the copper plate.
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Let R be the resistance in the box to the right of L, r the resistance

of the cell (7, and G the resistance of the galvanometer. Then if F be

the difference of potential, in volts, between the terminals of the

galvanometer, p
F = l-072^ (78)

In practice a resistance of from 300 to 400 ohms is generally required

for R. The electromotive force of the standard cell was determined

by Prof. T. Gray and found to be 1-072 volts at ordinary temperature.

[A determination of the electromotive force of the same cell has also

been made by Lord Rayleigh, who found it to be '743 of a Clark cell,

the electromotive force of which was 1-4542 B.A. volts, nearly, at 15°.

This would give very approximately 1-068 true volts for the Daniell

cell.] It was taken as 1-072 volts, as, notwithstanding the large battery

in the circuit, the total resistance is so great that there is very little

polarization. This method in fact is peculiarly well adapted for the

Daniell's cell, as the slight current flowing through serves to keep its

plates in a constant and fresh state. It is known as Lumsden's and
also as Bosscha's method of comparing electromotive forces.

The difference of potential, the magnitude of which is thus obtained,

is chosen such as to give a convenient deflection on the instrument to

be graduated.

Note. The Weston cell, in which the chief difference is that

cadmium is used instead of the zinc of the Clark cell, has a lower

temperature coefficient, and is now generally used for exact work.

Full particulars are given in Appendix VII. [See also 57 above.]



CHAPTER XIII.

CALCULATION OF INDUCTANCES.

1. Geometric mean distance— g.m.d. The calculation of inductances

is facilitatod in various inqjortant cases by a knowledge of what Maxwell
called the geometric mean distance of a straight uniform conductor,

of given form of cross-section, from a parallel conductor of the same
or a different form of cross-section. Let us consider the self-inductance

of a circuit consisting of two long parallel wires, A and B, carrying

equal currents which flow in opposite directions. Unless the current

is alternating and of high frequency, we may suppose that it is uniformly

distributed over the cross-section of the wire. If the strength of the

current be y, and S^, S2 denote the areas of cross-section of A and B
respectively, the current per unit area of cross-section is y/^Sj in Ay
and y/zSg in B. We may suppose each wire made up of the same number,
n, of equal slender uniform filaments, having their lengths parallel to

the direction of flow, and each carrying a current of strength y/n. By
taking n large we can make the value of y/n as small as we please.

2. Theory of circuit of two long parallel conductors. We calculate

first the energy of the system per unit length of the conductors. In

order to do so, we suppose, what is most frequently the case, that the

magnetic permeability is everywhere unity, and then take into account
the permeability of the conductors when that has a different value.

In dealing with this circuit we shall consider the parallel conductors

as practically infinitely long, that is, such that lengths of the con-

ductors which are great in comparison with the distance between them
lie opposite to one another, so that the influence of the cross conductors

at the ends may be neglected for any element considered. Thus, we
shall calculate only the induction, and corresponding energy, for a

portion of the circuit intercepted between two parallel planes per-

pendicular to the conductors and at unit distance apart.

Let the distance between the conductors be measured in a plane

at right angles to the two conductors, from a convenient point in one
cross-section made by that plane to a convenient point in the other,

and be denoted by 6. Then let these points be taken as origins of

rectangular coordinates, x, in the direction in which b is measured,

475
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and y, at right angles to that direction, by which the position of the

cross-section of any particular filament can be specified. We denote

the coordinates of a filament in A by iCj, y^, of a filament in B by

072, y2> ^^^ shall indicate a particular filament by its coordinates enclosed

in brackets, as (a^j, y^) or (ajg, 2/2)-

Now let {x\, y\) denote a second filament in A, dS\ its area, r' its

distance from any point in the plane of its cross-section, r^^ its distance

from the filament {x^, y^, and r'^g its distance from the filament

(^2, 2/2) ^^ ^- '^^® induction produced by {x\, y\) through unit length

of the circuit formed by the two filaments {x^, y^), (xg, 2/2) i^ ^7 above,

d/S^r^^-df db\
,

(1)

Hence the total induction dB^, per unit of length, through this fila-

mental circuit, produced by the current in A, is given by

dB^=^^^^dS\{\ogr\^-\ogr\,), (2)

where the integral is taken, as indicated, over the cross-section of A.

To this must be added the induction through this circuit due to the

filaments of B. According to the notation adopted above, we denote

the distances of any filament {x'2, y'2) of B from (Xg, y^) and {xj^, y^)

by r'22 and r'21 respectively. Thus, if Bj^ denote the numerical value

of the induction specified,

dB^J^^dS\{\ogr\,-\ogT',22) (3)

3. Electrokinetic energy of a current. Geometric mean distances.

The electrokinetic energy of the circuit is half the product of the induc-

tion by the current in the circuit. The value of the current may be

written y dSJSi or y dS2lS2- Using the second form in the first term

of the integral in (2) and the second term of the integral in (3), and
the first form in the remaining two terms of these integrals, we get

+ ^J^^'S'2log/2i-^-2£^'5'2logr^ (4)

Hence we get the total electrokinetic energy by finding the values

oi dT for all the circuits which can be formed. Thus we have only to

integrate each of the terms of (4) over S-^, or over S^, as the case may
be. Thus

^^^'{>S^2L \}''^''.^'^^^'^^^-E}\^
^\ogr\,dS,dS\

-h\ ["^ogr^^dS^dS^. ...(5)
^^2 JB }b
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If we write iSj^Sj log /?,2= I I logrjgc/iSif/iS'j,

JBJD

5,Mog/?„=JJ^logr'„rf5irf5'„

iSg log /?22=1 lo^r'ziffSzdS'z,
J B J U

(6)

then /ifj2« ^ii» ^^22 ^^® called f/comdric mean distances, /f,2 of the area

Sy from /S'g, II
yx ^^ ^i ^roni itself, and 7^22 ^^ ^^2 ^^^'" itself. We shall

denote (H'oini'tric mean didattce by g.ni.d.

4. Self-inductance of a circuit. The determination of the self-induct-

ance of a circuit composed of two long straight parallel wires, is thus

reduced to the calculation of the g.m.d.s of the cross-sectional areas

from themselves (each from itself) and from one another. The con-

ductors may have any form of cross-section, and the calculation of

their self-inductions is of course theoretically possible. Its evaluation,

however, except in a few comparatively simple but important cases,

is a tedious and troublesome operation. We shall consider these cases

presently ; in the meantime we can infer from eleetrical results already

obtained the required g.m.d. for two right circular conductors whether
tubular or solid, subject to the conditions stated in 7.

In the first place, the g.m.d. of the conductors from one another is

equal to the distance between their axes. As we have seen in V. 12

above, the magnetic force at any point external to either of the con-

ductors, A say, and due to A, is the same as if the whole current in

that conductor flowed in a filament along the axis. Thus the induction

through any external area may be found by supposing A replaced by an
axial filament carrying the same current. The electromagnetic action of

the current in A on unit length of an external parallel filament, carrying

unit current, is 2y/r, if r be the distance of the filament from the axis

of A. We infer therefore that the action of the filament on A is the

same as would be exerted on an axial filament replacing the latter.

Thus the total action of the conductor i5 on ^ is the same as it would
be if the conductors were replaced by filaments coinciding with their

axes.

It follows from this that the expression for their mutual electro-

kinetic energy must be the same as it would be if the conductors were
replaced by axial filaments, that is, the g.m.d. between the conductors
is equal to the distance between their axes. A direct analytical proof

of this theorem will be given presently.

The reader may establish the following results from the formulae
given above for the g.m.d.

5. Examples of the use of g.m.d. (1) The self-inductance of a straight

tape of length I and hreadth b, and of negligible thichiess [see 14 below].

This is approximately equal to the mutual inductance of two parallel
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straight lines at distance apart, Rj equal to the g.m.d. of the section

of the conductor from itself, which, since the thickness is negligible,

is given by (6),

log i2i = log 6.-1, (7)

or i?i = 0-223136.

Thus, for the self-inductance L^ we obtain the approximate value [see

also (9) below]

i, =2;(log|-l) = 2i(logf + l)
(8)

If the thickness is not negligible a more exact formula must be

employed. The self-inductance of a straight bar of length I, and rect-

angular section of breadth 6 and thickness c, is given by

^i = 2/Aog^-f-| + 0-2235-|-) (9)

For the mutual induction of two thin tapes of length I laid closely

together side by side in the same plane, as in Fig. 155, without touching

Fig. 155. Fig. 150. Fig. 157.

at the edges, we have, if R be the g.m.d. of one tape from the other,

that is 0-892526,

M,
;

= 2/AogI -l)=2ZAog 1^-0-8863) (10)

If a return circuit is made up of these two tapes the self-inductance

is clearly 2X1 - 2M, where L^ is the self-inductance of a single tape

and M is the mutual inductance of the two tapes. Thus we get, by

(7) and (10),

L = 2L^-2M =u{\og^ = mogi, (11)

if R2 denote the g.m.d. of one tape from the other, and R^ the g.m.d.

of either tape from itself. This self-inductance is thus independent

of the breadth of the tapes.
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If, as in Fig. 156, the near edges of the coplanar tapes are at a distance

b apart equal to the breadth of the tapes,

722 = 1-956536, L = S6Sbl.

If the tapes are not in the same plane, but are parallel and opposite

to one another, as shown in section in Fig. 157, at a distance apart

equal to their breadth we have log(7?2/^i) = l""^*
^^^

L = ilxl'7r = 2'7rl (12)

The self-inductance is thus 2'n- per unit length of the double conductor,

and for this distance apart is independent of the width. One-half of

the strip conductor is here a return for the other half, an arrangement

often made by doubling a strip conductor on itself to diminish the

inductance. We have then an easily remembered rule for the residual

inductance.

If the tapes have their planes i)arallel and opposite and at a distance

d apart the g.m.d. between them is given by

Iog/22 = Jlogrf-l-2(l-J)log(62 + rf2) + 2^tan-i6-^, (13)

and when d = b, log/2 = log6 + Jtt - ^ (13')

From this by the formula used in (11) we obtain, when rf = 6, once

more the result stated in (12).

6. Calculation of g.m.d. We can now calculate the g.m.d. in some
important cases as a preliminary to the discussion of inductances.

Incidentally proofs of the results already stated will appear. It is first

to be noticed that if there exist any number of areas of extent A, B,

etc., the g.m.d. s of which, R i, Rj^, etc., from another area S are known,
it follows from the definition that the g.m.d., R of their sum from S,

is given by the equation

logij^^^g^. + fog^^ii:: (14)^ A + B+... ^ '

We consider first the g.m.d. of a circular area, annular or complete,

from a point P, (1) external to the area

and in its plane, (2) in the circular area

itself. Let b be the distance of P from

the centre of the circular area, a, a the

internal and external radii of the latter,

X and x + dx the radii of two inter-

mediate circles very near to one another.

Let two radii OR, OS (Fig. 158) be

drawn, making the angles 0, + dO
with OP, so as to intercept the element

of area x dx dO, on the annulus bounded by the circles of radii x and

X + dx. The distance of P from the element, or r, is y/b^ + x^- 2bx cos 0,
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Hence the g.m.d. of the annulus from P is given by

2irx dx log R = \x dx \ log {h'^ + x^- 2bx cos 0) dO.
Jo

This can be written

log(l + -^-2cos0jd0-\-xdx\ogx\ dO (15)
\ X X / Jo

Now the first integral on the right of (15) is known to have the value

47r log b/x, if b>x, and if b<x. Hence in the first case for the annulus

27rx dx log R = 2iTxdx (log b - log x) + 27rx dx log x

or R = b (16)

On the other hand, if P be within the inner boundary of the elementary

annulus bJxKl, and the first integral of (15) is zero. Hence we have

for the annulus in case (2)

27ric log R = 2'7rx log x

or R = x (17)

From these results it follows by (14) that the g.m.d. of any finite

annulus from an external point P is simply the distance of the point

from the centre. For the annulus is made up of elementary annuli,

every one of which has the same g.m.d. from P. This includes, of

course, as a particular case a complete circular area.

The g.m.d. of a finite annulus from a point within its inner bounding

circle is now easily found. The area of the annulus is 7r{a'^ - a^). Hence
by (14), if R be the g.m.d. required,

x\og x dx = irla"^ log a' -oj^Xog a ^
—

),

, „ a'^ log a' - a^ log a 1 ^..ox
that IS log R= ^^2 2—^ - o ^1^)

Lastly, if P be on the annulus at a distance b from the centre, the

annulus divides into two parts, one internal and the other external

to the concentric circle through P. Hence by (16), (18) and (14), if

R now denote the g.m.d. for the whole area in this last case,

i^g^=
^^^T^^ 2^^^:ra2

(1^)

7. Values of g.m.d. in various cases. The following corollaries follow

at once from these results.

1. The g.m.d. from a circular area (complete or annular) of any

area external to the circular area, and in the same plane, is equal to

the g.m.d. of the figure from the centre of the circle. For the g.m.d.

of every part of the external area is its distance from the centre, and

the result follows by (14).

2. The g.m,d. of any figure completely internal to an annular area
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from that area is the value of R given by (18). For R is the g.m.d. of

every element.

3. The g.m.d. of a circular annulus of infinitesimal breadth from
itself is simply its radius. For the g.m.d. of every i>oint on it from the

annulus is the radius.

4. The g.m.d. of the finite annulus from itself is given by

log7? = loga -_---^log- + - ^,--^ (20)

For consider the g.m.d. of the annulus from a point in it distant

X from the centre. The g.m.d. of the internal part is x, the logarithm

of the g.m.d. of the external part is (a'^ log a' -x^ log x)l{a'^-x^)- I.

Hence, as found in (19), the g.m.d. of the whole area from the point

is given by

l0g/2'=-72^^ -.—72
2-i '2 2^08^ 21^ a^-ar 2(a 2 - a^) a 2 _ ^2 o

The g.m.d. of an infinitesimal annulus of breadth dx and radius x
from the total area is thus R' . Hence by (14) the g.m.d. of the whole
area from itself is to be found from

7r(a'2 _ ^2) log R = V 2irx dx log R'.

Substituting the value of log R' from (21) and integrating we obtain (20).

If a = 0, the area is a complete circle, and (20) gives in that case for

the g.m.d. of the circle from itself

logi? = loga'-^,

or 7i^=aV^ = -7788a' (22)

A good example is the cable, consisting of a wire of radius a, within a

coaxial tube of radii h and e, discussed in IX. The wire and tube are

supposed to be of the same material. It is required to find the self-

inductance L, per unit length for steady currents. •

For the present we suppose all the inductivities to be unity. Bv
(3), (5) and (6),

/v = 41og/?i2-21ogZ?n-21og72,2. (23)

where 7?^, R^^, R^^ are the g.m.d. s of the cross-sections, i?^ for the

wire, i?22 for the tube. By the results stated in (18) and (20),

logi?ii = loga-i,

log/2.2 = logc-^^2r6^1og^+--^^-^,

, „ c2 log C - fe2 log 6 1

2 11
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Assembling these results and reducing we get

r oi '^ 2c4 - c 3c2-62 1

^=^^''^a-'w^n'^"H-w^)^'^'
^''^

which agrees with IX. 10 (52).

It is obvious that here the only part of the magnetic induction the

lines of which are in the space between the wire and the tube, is that

due to the (unit) current in the wire. If the inductivity of the medium
in the space is /x', this induction is 2yu' log (6/a). The remaining lines

are in space of inductivity /x. Thus taking account of these inductivities

we get
r o M ^ 1 2;xc* , ^c^-h^
^= 2/l0g-^ + i;.4-^^^,-J;.^^,- (23')

It will be noticed that the symmetry of the arrangement is such

that no lines of induction pass from one region to another, so that the

magnetization of one part does not affect the magnetic induction in

another part.

There is no difficulty in establishing this result by direct integration

by considering the current within any coaxial surface of radius x, and

the induction which that produces through a further radial distance dx.

The product of these gives the energy, and therefore L is obtained by
integration. [See 15 below.]

Next consider the g.m.d. of a line from any point P. Let AB (Fig.

159) be the line, jp the length of the perpendicular from P on the line,

a and a' the lengths of the segments AO^ OB into which the line is

divided at 0. Then the distance from P of any point Q in the line at

distance x from is V^p^ + x^' Hence for the line

(a + a')logi2= \ogVp^ + x^dx
J - a

= \a' log (a'2 +^2) ^ J^ log (^2 +^2) _ (^ + ^')

+^Ctan-i'' + tan-i'^) (24)

A O B
FIO. 159.

If coincide with the centre oi AB^ a = a' = \ the length of AB, and

logi2 = Jlog(a2+^2)_i+?/tan-i") (25)

If coincide with JB, a = 0, and

logi2 = Jlog(a'2+^2)-l+?tan-i-, (25')

where a' is now the whole length of AB.
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If two lines are of length a, and arc collinear, and their centres are

at a distance rm, the g.m.d. R for the two is given by

log« = J(n + l)Mog{(n + l)a} - n2 log(na) + i(n - l)Mog{(n - l)a} - :]. (26)

For this case a very convenient calculation formula is

log fl = logn - (,2„, + e(;„4
+ 16^„« + 36L"»

+ 66(L'"+
•••) <"^

where it is understood that n> 1

.

8. G.m.d. for lines, rectangles and squares. From (25) we get at

once the g.m.d. from the centre for four lines forming a rectangle.

For let the length of the rectangle be a and its breadth h. Then, since

for the ends p = ^a, and for the sides p = J6,

2(a + h) log /2 = (a + 6) log - "^
^^ - 2(a + 6) + 2a tan-» ^ + 26 tan-^^

or log7? =ilog^^-l+ ''^tan-i- + -^tan-»^ (28)

If the rectangle be a square a = 6, and thus

logjB=log(^)-l+^=a«-''»/s/2 (29)

The g.m.d. of two parallel lines from one another can now be found.

This is an important case, as it enables the self-inductance of a circuit

composed of two parallel thin sheets of conducting material to be

calculated. Let AB, CD (Fig. 160) be the lines, and E the foot of the

C E X P D

FlO. 160.

perpendicular from A on CD. Let x be the distance of P from E, and

p its distance from AB, a and ^ the distance of C and D from E, taken

as positive quantities when measured from E to the right, and negative

when measured the other way. The length of CD is thus /5-a, and
if a be the length of AB, we have to put in (24) x for a, and a-x for

a'. Thus multiplying the expression on the right of (24) by dxy and
integrating from a;= a to ic= |8 we find by (14), if R now be the g.m.d.

of CD from AB,

a{l3- a) log R=^i(l3^-p^)\og{^+p^)-i{a^-p^)\og(a^ + p^)

-i{(c^-P)'-p'nog{(a-Pfi-p^}
' +i{(<^-ar-p^}^og{{a-a)^+p^}

+ v8 tan-^ —-pa tan"^ -

P P

- p(a - /3) tan-^ +p{a-a) tan-^

-|«(^-a) (30)
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The value of R given by this equation may be used for the calcula-

tion of the self-induction of a circuit composed of two long thin strips

of conducting material arranged with their lengths and planes parallel.

The lines AB, CD represent the cross-sections of such an arrangement

made by a plane at right angles to the conductors.

The g.m.d. of each line from itself can of course be found from (30)

by putting a = 0, /3 = a (the length of the line considered), and ^ = 0.

We thus obtain

logi? = loga-f, (31)

which can be verified at once by calculating directly for this particular

case.

If a = 0, and the lines have each the same length 2a, while still

situated as in Fig. 160, the equation for the g.m.d. reduces to

logB=^(l-g)log(4«2+p2) +^glogp +£tan-i^-f;

and if p, the distance between the lines, be equal to 2a, the equation

reduces to log R = log 2a + \ir- f

.

We can now find the g.m.d. of a given line from an area in the same
plane. We shall consider first a given line and a parallel rectangle,

and from the result for this case deduce the g.m.d. of two parallel

coplanar rectangles from one another. The practically important

arrangements are those in which the line and rectangle, or two rect-

angles, are symmetrical about the line passing through their centres,

as shown in Figs. 157 and 159.

C D

I

c f c

Fig. 161.

Taking first the line and rectangle, as in Fig. 161, and putting a,

a' for the lengths AB and CD, we suppose the rectangle to be generated
by the motion of CD, at right angles to itself through a distance h,

the breadth of the rectangle. We may thus suppose CD made up of

parallel strips of area, each of infinitesimal breadth djp, and find the
g.m.d. of the rectangle by multiplying the expression for log R in (30)
(modified to suit the circumstances supposed) by dp, and integrating

from ^ to ^ -f 6. The constant factors on the left will for simplicity be
retained.
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We have here a = J(a-a'), /3 = J(a + a'), so that

a-a=i(a + a') = /3,

Thus (30) becomes

m' log /? = i (/S2 - f") log (/S2 + ;>2) _ J (,,2 _ ^2) log („2 + p2)

+ 2«/3tan-i^-2»atan-i-- 3 aa'

Multiplying by dp, integrating as stated above, and putting R now for

the g.m.d. of the rectangle CD' from the line AB, we obtain

(32)

-} log {(^ + 6)2 + ^2}

-Jl>(^'-3')log(/>2 + /^)

+ ?,^3tan-i^-?,^3tan-i|

- (the same series of terms with fi replaced by a)

-\^aa'h (33)

A rectangle of breadth b, might have been generated by moving the

line AB away from CD (Fig. 162). We should have obtained the same

Fig. 162. FlQ. 163.

expression for the g.m.d. of the latter rectangle from the line CD,
as is given in (33) for the other case. That these two g.m.d. s are

equal is easily seen from (32). Each rectangle may be divided into

the same number of strips of equal breadth, and the g.m.d. of each

strip in the rectangle CD' from AB is the same as the g.m.d. of each
strip of AB' from CD, so that the result follows by (14).

We can now find the g.m.d. in the important case of the two rect-

angles shown in Fig. 163. Multiplying the expression on the right of

(33) by dp, integrating from ^ to ^ + 6' (so that p is the distance oi AB
from CD) and arranging the results, we find for R the g.m.d. of the

rectangles from one another.
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iaa' hh' log R= [{^ + h + h')W -i{p-^b + b')^} - i/3^] log {{p + b + h'f + ft)^

- [iV + b'n^^-UV + b'f} - i/34] log {{p + h'f + /32}

- [{V + bf{^'' -i{p + 6)2}

-

ift^] log {(^ + 6)2 + /32}

^W/5^-^y)-i/3niog(i)2 + /52)

- (the same series of terms with /S replaced by a)

-\-f^/3{p + b + b'){{p + b-\-h')Han-^ ^^~n
^ V + o-^o

> p + o fi I

+ J^y{pnan-i|+/3nan->|}

- (the same series of trigonometrical terms with /5 replaced by a)

-i{P^-^^){{p-^b + br-{p + br-{p + b)^+P^}-%'aa'hh\ (34)

Here it is to be remembered that /3 = i{a-\-a'), a = J(a-a').

The g.m.d. of either rectangle from itself can be found from (34)

by putting a = 0, a = a' = ^y b = b', p-i-b=p + h' = 0. Hence for the

g.m.d. from itself of a rectangle of length a and breadth h, we have
the equation

logfl4log(a^ +6Vi^^:iog(l+g)-iglog(l+5

26, ,a 2a, ,6 25
+ - - tan-i 7 + o i ^^^ ~ - fs-3 a 6 3 6 a 12

(35)

If the rectangle is a square a = 6, and

logi? = loga+-log2 + ^-j2

or 7^=44705a (36)

9. G.m.d. for adjacent squares in different relative positions. For
two adjacent squares placed as in Fig. 164 we get, with a as the length

I

Fig. 164.

of side, from this result for the g.m.d. between them,

log 72 = log a + tjV log 5 + log 2 + 2 tan-i J
- 2A

1 2

:

(37)
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or, as tho, rcadrr may verify,

/?= 10065498a (37')

Thus the g.m.d. is not very difTerent from the distance between the

centres.

The g.m.d. between any two squares in a row can easily be found
by (31). For example, between any square and the next but one it

is given by

log/i = loga-ilog5 + Vlog3- Vlog2 + 8tan-4-4tan-4-i.^,
or 5 = 1-0005106 X 2a,

still more nearly equal to the distance 2a between centres.

Consider now two adjacent rows of equal squares and the g.m.d.

between a square in one row and a square in the other row. An expres-

sion for the g.m.d. is easily obtained by an easy double integration

Fia. 105. Fio, 166.

first for one square, then for the other. We record here only the following

results. For the two squares which are corner to corner (Fig 165)

we have

Iog72 = loga + 3log2-,vlog5 + 7r-4tan-ii-?| = log(l-410962a).

The distance between the two centres is a\/2 = l •4142135a.

The g.m.d. for the two squares situated as in Fig. 166 is

log /? = log a - V log 2 - V log 3 + ^^ log 5 + \',>' log 13

- Jx - 8 tan-i i + 5 tan-^ J + 5 tan-^ § - j .f

= log a + 0-8046295 (38)

The reader will find a large number of other results completely

worked out in a valuable paper by Mr. E. B. Rosa (B.B.S.W. 3, p. 1).

The results in such cases as those quoted here are important, as giving

a means of estimating the mutual inductance between a turn of wire

in a coil and neighbouring turns.

10. Self-inductance of circular coil of large radius. The determina-

tion of the g.m.d. of the cross-section of a conductor is important in

other cases than that of a long straight conductor. The following

example may serve to show its importance. If we have a circular

coil of n turns each of radius great in comparison with any dimension

of cross-section, it is easy to see that the coefficient of self-induction

of the coil is very approximately equal to n^ times the coefficient of

mutual induction of two parallel coaxial circles, each of radius equal

to the mean radius of the section, and at a distance apart equal to the
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g.m.d. of the cross-section from itself. For the coefficient of self-induc-

tion of a circuit is equal to the total magnetic induction through the

circuit produced by unit current, and the coefficient of mutual induction

of two circuits is the total induction through either produced by unit

current in the other. Consider then the induction through a circle of

reference A coaxial with the given circuit, and at a distance from the

latter small in comparison with the radius. Let it be supposed as before

that the current is of uniform density over the cross-section, so that

the cross-section may be supposed divided into a very large number
of parallel thin filaments each of cross-section dS. If S be the whole

area of cross-section, and unit current flow in the conductor, the current

in each filament is n dS/S. Let a cross-section of the whole system,

including ^, by a plane through the axis, be taken, and let r„ be the

distance of the section of A from that of any one of the system of equal

filaments, and r,„ the distance between the section of the latter filament

and any other of cross-section dS^- The diflerence between the total

induction produced by the assemblage of filaments through the circuit

of this latter filament, and that which they produce through A is

2«f^"
(log '„ - log n„) = 2«(log 74 - log EJ,

where Ra is the g.m.d of the cross-section of the given conductor from
that of A, and R,n is its g.m.d. from dS^^.

Now let A be composed of as many coincident filaments as there

are imagined to be in the given circuit. Thus the induction through

each filament of the conductor may be compared with that through a

corresponding filament of A. Since the number of filaments is S/dS,

we have for the total difference between the induction through A,

and the sum of the inductions through each filament of the conductor

due to the whole assemblage,

2n ^^(log E^ - j^' log ^„,) = 2n^ (log B^-\ogB), (39)

where R is now the g.m.d. of the cross-section of the conductor from

itself.

The energy of the given system corresponding to this induction is

half the product of the current n dS/S, in each filament into the expres-

sion just found, that is, it is ^^(log i^^-log i?). This vanishes when
Ra = R, that is, when the g.m.d. of the cross-section of A from that of

the conductor is equal to the g.m.d. of the latter from itself. The
energy of the given system is then equal to half the product of the total

current into the induction through A, that is, in other words, the self-

induction coefiicient of the given circuit is equal to that of mutual
induction between the given circuit and A.

That the coefficient of mutual induction in the latter case is equal

to that between A and an equal circuit B at a distance apart equal

to R, if not evident, may be seen as follows. The induction through
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A due to the given circuit is for equal currents equal to that produced
by A through the given circuit, and by the reasoning above, this is

equal to the induction due to A through a circuit B replacing the given

circuit at the distance 7^.

11. Mutual induction of two close coils of large radius. The expres-

sion found above (IM) for tlie g.m.d. between two Hyniiiietrically placed

rectangles is applicable to the approximate calculation of the coefficient

of mutual induction of two coils, A and B, of which the cross-sections

by a plane passing through the common axis are rectangles, provided

the radius of either coil is great in comparison with every dimension
of the sections, and with the distance between them. Clearly to find

the total induction through coil B due to unit current in A, we may
proceed by calculating (a) the total induction through each turn of A
due to unit current in that turn

;
{b) that part of each of these total

inductions which does not pass through B. The difference between
the sum of the results in {a) and the sum of those in (b) is the coefficient

M of mutual induction. First we suppose the current in the coil A
to be uniformly distributed over the cross-section, so that if S^ be the

area of the section, and there be n^ turns each carrying unit current,

the current per unit area will be n/Si. Thus the current across an
element of the cross-section dS^ is fiidSJSj.

Now consider, as before, the difference between that part of the

total induction due to a filament of section dSj^y which escapes a filament

of the other coil of section (/^Sg, and that part which escapes a near

coaxial circular circuit of reference. Let r^g) ^» be the distances from

dSi to dS2, and from dSi to the cross-section of the circle of reference.

The difference of total inductions specified is then

nj^dSJSi.{log ri2- logr).

Integrating over the whole area Si we get for the difference due to

all the filaments into which S^ can be divided the value

^M(Z^i(logri2-logr).
S

Now let the other circuit be divided into any convenient number
n of circuits, each of the same small area dS^. It is the difference be-

tween the total induction through one of these, and that through the

circle of reference that has just been found. We have then dS^^SJn.
Hence the result just obtained may be written

/ Integrating now over both ctoss-sections we get for the total difference

wni(log7?i2-log^)>

where R^^ is the g.m.d. between the cross-sections, and E is that of

the section S^ from the circuit of reference.
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If the number of turns in the second coil be ^g instead of n, this

result must be reduced in the ratio of Wg to n, by multiplying it by
n2/n. For accuracy of course ^2 must be large. Hence for the final

value of the difference of the total inductions we have

WiW2(logi2i2-log7?).

If i2 = 7?i2, that is, if the g.m.d. of the cross-section of the conductor

of reference from A be equal to that of the cross-sections of A and B
from one another, the total induction which escapes the conductor of

reference is equal to that which escapes the coil ; in other words, the

coefficient of mutual induction of the two coils is equal to that of the

coil A and a coaxial circular conductor, the cross-section of which by
any plane through the axis is at a g.m.d. from that of the coil A, equal

to that of the cross-sections of A and B from one another.

It must be possible to replace the coil ^ by a conductor of proper

mean radius carrying the whole current of n units which flows in the

coil, so that the total induction through it is equal to the sum of those

through the coaxial filamental conductors into which the coil has been
supposed divided. If the radius of any part of the coil be large in

comparison with the dimensions of cross-section, this proper mean
radius may be taken as the simple mean radius of the coil. The other

coil can then be also supposed replaced by a coaxial circular conductor

at a distance from the other equal to /?j2- Thus the determination of

the coefficient of mutual induction of two coaxial coils is reduced to

the determination of that of two coaxial circles.

The relative positions of these two circles is not definite. If we
consider the lines of force through a coil due to the current in it, we
see that these are closed round the coil, and any closed circuit placed

in its field will pass through certain lines of force. The circuit may
be placed in any position or have any size consistent with passing

through the same lines of force, and the coefficient of mutual induction

of the coil and circuit will be the same for all. If, in the present case

we suppose the primary circular conductor fixed, the other may be

situated anywhere on the toroidal surface marked out by the closed

nearly circular lines of force, the radius of which is the g.m.d. of the

cross-sections.

12. Mutual inductance of two coaxial circles. We proceed now to

calculate the coefficients of mutual induction of coaxial circular circuits

and coils. Taking first the case of two coaxial circles of nearly equal

radii, we see that if we can find their coefficient of mutual induction

when the circles are in one plane, we can find tliat for the actual

arrangement by calculating, in the manner described above, the portion

of the total induction due to one which escapes passing through the

other owing to the deviation from coplanarity.

Consider first two coaxial circles in the same plane. Let the radius

of the outer circle be a-\-c, and of the inner a. Then if we take any
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element da of the outer cirelc at A (Fig. 107), and let 6 be the angle OAE
between the diameter through ds and a line of length r drawn to an

element J^, of area rdO dr in the inner circle, we have for the magnetic

induction through that area tlie value ds con 0/r^ .rdO dr. Hence for

the total induction B through the inner circle we get

^^^j^^j-j'-.siMi^; (40)

where r^^AB, r2 = ^C, ^i = 8in"*a/(a + c), and the final integral is

taken round the outer circle. The distances Y^, rg are evidently the

roots of the equation

r2-2r(a + c)co8a + (a + c)2-a2 = 0.

These roots are

-i) = (a + c) cos aT \/(a + cf cos^O -c^-2ac (41)

Fia. 167.

If c be very small, then approximately

fg= 2a cos 0, Ty = c/cos 0.

Integrating then with respect to r we find

B= 2 ids r cos 6 log ^Ue==2{ds p cos log (^cos^O^dO.

Now

pcos6llog(^cos2 6>)d[6> = sin6>,|log(^^ccs2 6>,)-2|

- 1 + sin 0.
+ log, ^^%° 1 - sm ^1

which reduces approximately to

log4-2 + 21og J?^.

Hence, to the same degree of approximation,

M = 47raAog^-2) (42)

Now let the circle of radius a be carried out of the plane of the other

circle a distance b while still remaining coaxial with the latter. The
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difference between the total inductions which escape from passing

through the smaller circle in its two positions may be calculated as if

the circles were straight. Putting now r for V^^ + c^, the shortest

distance between the circular arcs, the difference of inductions per unit

of length is approximately 2 (log r - log c), and for the whole circle

4:7ra (log r - log c). Hence the coefficient M of mutual induction between

the circles in the specified configuration is approximately given by

(,og«^-2)M = \:fTa[\og-— 2 (43)

13. Coil of maximum self-inductance. From this result we can find

approximately the relative dimensions of a coil of large radius, which

for a given length and gauge of wire has a maximum coefficient of self-

induction. By the theorem proved in 10 above the self-induction

coefficient is equal to the coefficient of mutual induction between two
equal coils each of the given mean radius, and at a distance apart

equal to the g.m.d. of the cross-section from itself. Let the g.m.d. be

U. Then by the preceding result, if the number of turns be w,

i = 47rw2aAog^-2) (43')

Now for similar sections of different linear dimensions R varies as

the dimensions, and since for a given thickness of wire the number of

turns varies as the cross-section, we have n = CW', where is a constant.

Again the total length of wire I is 27ma, so that we have the two con-

ditions, 27rwa = Z, 2'7r(7i2^a= Z, which give dnlda= -nja, dRlda= -i?/2a.

Hence taking a as independent variable, differentiating the value of

L, and substituting these values of dn/da and dRjda, we find

da

which for a maximum gives

logB = log8a-^ (44)

If the section of the coil is circular of radius p, then by (22) above

log R = \ogp-l, and (44) gives

a= lpe''" =3-224/, (45)

For a coil of circular section of the relative dimensions stated in (45)

a more exact value of L is given in XV. 22 below. This gives, if the

mean diameter of the toroid be D, and the total number of turns be

n, L = ^'Q9n^D. This is of course for uniformly distributed current.

If the section of the coil is square, the value of R, from (36) substi-

tuted in (44), gives

a = l-850s (46)

= 4^n2(^--log^j,
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if 8 is the side of the square. These dimensions {n and s) are, however,

too nearly equal to enable the approximate formula by which the

relation is found to aj)i)ly with accuracy, and the result can only be

regarded as a rough rule to guide the experimenter in the construction

of coils,

14. Meaning o! self-inductance of part of a circuit. A large amount
of valuable and accurate work has been done at the Bureau of Standard*

at Washington on the inductance of conductors and of coils of different

forms. To that work what follows in the present chapter is a good
deal indebted. Some remarks are necessary here as to what is meant
by the self-inductance of a part (such as a length I of straight uniform

wire) of a circuit. The self-inductance of a complete circuit has a

perfectly definite value whatever tested and approved law of the

action of elements is used for computing it, but that of a part of a

circuit is a matter of definition, and this fact must be recalled when
the inductance in question is to be used for any practical purpose. For
example, the self-inductance of a length I of straight wire of radius a

B b'

A •* A
Fig. 168.

may be defined either as the result obtained by applying the law

ds . sin O/r^ to compute for this wire the total magnetic flux through

the plane strip of area extending from the conductor AB in Fig. 168

towards the right to A'B' at infinity, or as the same thing plus the flux

through the infinite areas above BB' and below AA'. The former

would be finite, the latter would be infinite. Unless it is otherwise

stated we shall use the former definition.

The inductance might be defined as that due to the finite conductor

supposed provided with a displacement return part, so that it is obtained

for a complete circuit. For the present we shall take it as measured

by the magnetic flux through the plane area referred to above. It

may be remarked that this is exactly the result given by applying to

the finite conductor Neumann's mutual inductance formula

M CCcoa edsds' /jyv

where ds, ds' are the lengths of narrow longitudinal filaments of equal

cross-section of which the conductor is supposed to be composed, r is

the distance apart of the elements, and e the angle between them.

15. Self-inductance of straight conductor of given length. As a first

example we take the calculation of the self-inductance of a straight
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conductor of length I, and of uniform circular cross-section, radius a.

The current is we suppose symmetrically, in general uniformly, dis-

tributed round the axis. Its action external to the conductor, and

to the prolongation of the conductor either way, is exactly the same
as if the whole current were concentrated in an infinitely thin filament

along the axis. We take first the external action. Let the axis of the

conductor be the ^-coordinate axis drawn from A as origin, and the

cc-axis be drawn from A as in the diagram. Consider then an external

point P the coordinates of which are x, z, and an element E of length

dz of the axial filament, in which for the present the whole current is

supposed to flow. If a line through P parallel to the axis of x meet the

axial filament in p, the distancepE is z' - z. Then by the law of magnetic

action assumed, the magnetic force at P due to the element dz' carrying

a current y is ^^. ^^^r

y 2 . / >—^sm6^ = y ^.

The induction per unit area of the x, z plane at P is

('
xdz' yV l-z ^1

{x2 + (Z - zfY
~ ^ L {^2 _ (2' _ ^)2}*

"^

(^2 + ^2^]
'

Multiplying this result by an area dx dz taken at P, integrating with

respect to z from to Z, and with respect to x from a; = a to a; = oo , we
obtain f f* 1 r l-z ^ 1

y ^ ^-^—.+-^—Adxdz (48)

Here it will be observed the integration is not extended above BB'
or below AA'.

Calling the induction outside the conductor N, for unit current,

we obtain by integration with respect to z,

= 2z6og-- l), nearly (49)

The induction inside the conductor has still to be reckoned. If the

diameter be small enough in comparison with the length I we may
take the magnetic force per unit of the current y as ^x/a^. Hence the

induction through a strip of breadth dx and length I of the conductor

is 2x1 dx/a^ if the permeability is unity or 2juixl dx/a^, if the permeability

is JUL. Thus the whole magnetic induction inside the conductor is /ul.

But to find the effect on the self-inductance we must take account

of the fact that the induction through any strip of breadth dx and

length I at distance x from the axis is put round the current in the

cylinder of radius x. The work done in creating this inductance is

therefore ^yx^/a^. ^ij^ylx^dxja^x, integrating from ic = to ic = a, for the
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total work done in the conductor JyV^- ^^^ ^^ ^ ^® ^^^ corre8j>onding

part of the inductance we have \Ly^ = \y^fjl, and bo

L = \fxl (50)

The whole energy due to the induction calculated is thus given by

T = iy»2j(log2j-l+^) (51)

If L be the self-inductance we have

L= 2/(log^^-l+'-') (51')

This of course is, as already stated, the inductance calculated from

the application of Laplace's law to the portion of the circuit specified,

and takos no account of the rest of the circuit.

16. Mutual inductance of two parallel wires of equal length. We
may now find the mutual inductance in a similar sense to that in which

we have just determined self-inductance, for two parallel wires of length I

and radius «, op2)osite one another, with axes at distance d apart. The
mutual inductance is in this case measured by the total induction

which must pass inwards across one of the wires, A say, when unit

current in the other, B, is annulled. Any passage of induction lines

across A in consequence of the annulment of the current in any other

part of the circuit B is here left out of account. By (49) we have

simply to find the induction outside the distance d from B. It is

iv=2{(.^^^^)^-.-nog^^-(^t^};

or iV = 2i(log^^-l+|) (52)

if the length I is great in comparison with d. The value of N is the

mutual inductance sought.

If one of the two wires in this arrangement is part of the return

conductors for the other, then neglecting the end connections, and the

magnetization of one wire by the current in the other, we get for the

self-inductance, from the values just found,

L = 2{Li-M), (53)

where L^ is the self-inductance for either wire, supposing that both

have the same i^ermeability. This gives, if d/l is small,

L= 4/(log^ + ^) (54)

The signs of the parts of L on the right of (53) are here reversed from

(5) above. This is not very material, but it should be noticed.

The mutual inductance of two straight infinitely thin conductors of

lengths I, V in the same linfi is also easily found, on suppositions similar to

those already stated. By this is meant the magnetic induction which (as
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calculated by Biot and Savart's law) surrounds the linear conductor

BG. From the result already obtained in (52) and the relation in (53)

we easily obtain for this mutual inductance Mn' the result

M„.=nog'+''+riog'+'' (55)

This may also be obtained by direct integration.

Iil = V this becomes

M = 2Z log 2 = 22x0-693147, (55')

in centimetres of course if I is measured in centimetres.

17. Self-inductance of a straight bar and any form of section. The

self-inductance of a straight bar, of length I and of any form of cross-

section, may be deduced from the expression already found above for

the mutual inductance of two parallel conductors. For by the theory

of the geometric mean distance, and the definition of self-inductance

here employed, the self-inductance of the bar is equal to the mutual

inductance of two parallel straight filaments of length I, and separated

by a distance equal to the g.m.d. of the section from itself. Thus, if

R be this g.m.d. we have by (52) above, approximately,

^^v (^^^= 22(log|

For example, if the section be a circle of radius a,

22= ae~^ = 0-7788a,

and so log 12= log a - J.

Thus Z =a(log^-^+"^*) (57)

Again, if the section be a square, of length of side a, B=0-447o, and

i= 2i{logJ-(l-logO-447) +
-*J^-}

(58)

If the section is a rectangle of lengths of sides a and 6, R is very

approximately 0-2235 (a -H 6), even if a = 206, and therefore, since

log (1/0-2235) = 1-500, we get

-. „,/- 21 1 0-2235(a-h6)\ .^^.

18. Mutual inductance of parallel conductors of square section. The

mutual inductance of two parallel conductors of square section may
now be found. It is equal to the mutual inductance of two filaments

of the same length and of distance apart equal to the g.m.d. of the

two areas apart. This, as the reader may verify (see 9 above),

is very nearly the distance between the centres, whether the squares

are situated as in Fig. 165 or as in Fig. 166. In the former case the

g.m.d. is slightly greater, in the latter case slightly smaller, than the
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distance between the centres. This holds whatever the distance

between the centres. Thus very approximately we have, if d be the

latter distance, / 21 dM = 2i(log^^'-l+^) (60)

As a numerical example take I = 10 metres and df = 2 cm. We get

M= 2000(log 1000-1) + 4 = 2000x5-9078 + 4 = 11820, (60')

that is 11 -820 in microhenrys.

The self-inductance of a return circuit composed of two parallel

bars of square section, and of the same length, is given as in (53) by

where L^ is the self-inductance of one bar and M the mutual inductance

of the two.

19. Inductances in various cases. We now state a number of results

of calculation of inductances for different cases, leaving to the reader

the verifications by the methods indicated.

(1) Two equal parallel rectangles composed of filamental conductors

the thickness of which may be neglected : sides of lengths a and h and
distance of planes apart d. [Calculate mutual inductance by Neumann's
equation.]

M =4Llogf-^±i«^±i/-^l

,Mogf^±i^!±^(-^n
\h + ia^ + h^ + d^V ^ J J{a^ + h^ + d^y

+ 8 {(a2 + 62 + (^2)* _ (^2 + ^2)i _ (^2 ^ ^2)i ^ ^J, , (gj )

Putting in this a = h, we get for two squares at distance d apart

L U + (2a2 + (^2)i d J

+ {2a^-{-d^)^-2(a^ + d^)Kdl (61')

(2) The self-inductance of a square formed of four equal conductors

each of length a and diameter of cross-section 2p small in comparison

with a. We have
2i = 4Li-4M,

where L^ is the self-inductance for each side, and M that of a pair of

opposite sides.

The mutual inductance of a pair of adjacent sides is zero. According

to results obtained above we have, neglecting p^/a^,

£ = 8a{log?-logii?-+e-l-75 + 2H
^ p Z a )

Z = 8a flog"* + ^-0-524) (62)or

G.A.M. 2 \
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(3) The self-inductance of a rectangle of sides a and h in length made

of round wire of radius of cross-section p. Putting d = {a^ + h^y, we have

= 4 |(a + b) log a log {a + d)-b log (6 -f- d)

-^(a + 6)-h2(^-K^)} (63)

If the conductor have a rectangular section ax /3,

La = 2{alog^-^ +
J«

+ 0-2235(a + /3)},

With, as before, d^{a^-\-b'^y, these values, with those corresponding

for the sides of length 6, we have

L = 4
I

(ft + J) log -^^^ - a log (a -\-d)~-b log (b + d)

-'^-h2cZ + 0-447(a + /3)j (64)

For a square this becomes

i> = 8fl|log^~ + 0-2235"^ + 0'726| (64')

20. Self-inductance of a non-inductive shunt and of a thin tape.

(4) The self-inductance of two equal rectangular sheets placed opposite

to one another, and connected at two adjacent opposite edges, as when
a piece of conducting strip is doubled on itself to form a nearly non-

inductive shunt. In this case

L = U{\ogR^-\ogRj), (65)

where R^ is the g.m.d. of each part from itself and R^ is the g.m.d.

between the parts.

(5) When the more accurate formula

M=^2[l\og{U(P + d^fy-l\ogd-{l^ + d^)Kd] (66)

for the mutual inductance between two parallel conductors of length

I and distance d apart is applied to obtain the self-inductance of a

straight thin tape, arithmetical mean distances as well as geometric

mean distances have to be taken account of. For a discussion of these

we have no space, and the reader must be referred to Mr. Rosa's papers

in the B.B.S.W. [see, for example, 4, p. 325, et seq.]. The following

approximate result is obtained for the self-inductance of a straight

thin strip of length I and breadth b :

^=K'-M4-S) ™
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21. Solid conductor in coaxial tube. Multiple conductors. (6) A right

cylindriral straight solid conductor of h-ngth I and radius Cj with

return Rui)plied by a thin coaxial tube of radius Oj. The Belf-inductance

is given by

L = 2l ('°«:^D
<«^'>

If the outer tube have sensible thickness, so that its external radius

is rtg and its inner aj. then

X = 2/('"•yd'

where loga' =''-l^^l^\^^^^ -[ (68)

(7) A current is divided equally between two equal wires of length

I and radius p and at distance d apart. Then

= 2i(log —,-l), (69)

where r is the g.m.d. of the section of a wire from itself =0-7788/7.

For three straight conductors in parallel so arranged that in a cross-

section of the arrangement the axes of the three wires are at the vertices

of an equilateral triangle of side c?,

Z = 2/flog-^,-l). (69')

^ {rd^Y
/

(8) A to-and-fro " non-inductive " arrangement of 2n wires in a

plane each of length I and distance d between adjacent extremities.

Z = 2/(log^-h^-^), (70)

where ^ = 2log (
^ '

^'^ - ^^-^M .

n.3.5...(/i-2)n*^

This result is due to Kosa {B.B.S.W. 4, p. 339). The result for n
infinite had been previously given by G. A. Campbell, Elec, World,

44(1904). It is

^=2<'°glri)
(^1)

(9) A *' non-inductive " winding on a circular cylinder of radius a

and distance d between adjacent turns,

L = 47ra('log--fi-AV (72)

where A has the value just given. [It is understood that the axial
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length of the coil is small compared with the radius, otherwise this

value would not be exact.]

22. Inductances of coils. Gray's formulae. We now consider the

calculation of the self- and mutual inductances of coils of different forms

and dimensions.

The expression given in Chapter VII. above was obtained by the

author of this work in 1892* for the mutual kinetic energy of two

solenoidal coils with intersecting axes included at any angle 0. This

enables the mutual inductance of the two coils, or by making them co-

incident, the self-inductance of one to be obtained by formulae, instantly

derivable, which are convenient and accurate in a large number of cases.

The expression was obtained by the special process of integration of

Maxwell's expression in zonal harmonics for the mutual inductance of

two circles the axes of which intersect, which is set forth in Chapter VII.

For this case precisely the same formulae were given t in 1905 by

Messrs. Searle and Airey, no doubt independently. The reader may
refer to the chapter cited for the general expressions ; we shall here

deal with cases of importance in practice.

First, we suppose the coils to be coaxial. This renders the zonal

harmonic multipliers all unity. Further, if the origin be taken at the

centre of one of the coils, we see at once that all the terms with even

suffixes in the series are zero. Thus for the mutual inductance of the

two coils we have

M= TrV^^Wg (^A + ^^3^-3 + ^5^5 +...), (73)

where A, n^ are the radius and number of turns per cm of length for

one coil and a, Wg for the other. If x^, cCg, ^i, ^2 ^® ^^® distances of

the nearer and farther ends of the two coils from the origin, and r^,

r2 be the diagonal distances as shown, we have here ^2 = ~ Si ( = ^)'

and so

^'" Arf r,^J'

if,=

K»

- i { ^9 (.W - 3^^) - ^.(W - 34^)}.

-*{ri3(4V-iox,M^+l^*)

_ 1 / ^2 /^ 6_91^ 4 J2_|_ 35^ 2yl4_ 35 J6\
^\ ^17\^2 ^i^X^n. -1-2^2^ T18^ /

^^2

- ^7 {x^^ - 2\x^^A^ + ^i•x^A!' - ^A^ }

:

(74)

/

* Phil. Mag. 33, 5. S. (1892). t The Electrician, 56, p. 318, 1905.



601

.(74')

CALCULATION OF INDUCTANCES

*.= -a''^(S3-^rS + 63|;-36|' +45),

Values of the multipliers K and k of higher orders will be found in the

Appendix on Spherical Harmonics. A table calculated at the Bureau

of Standards at Washington for the use of this formula is given in an

Appendix.

23. Gray's formula for coaxial coils. To adapt this formula to two

coaxial coils which are also concentric, it is only necessary to remember
that, in that case, x^= -x^ {= -x) and r^ = r^, so that we get the

following special values from those set down above,

4a;,, X „ 2x . - - ._ ^

A'i =

K, _ 2x

8^13

Kn= i, K,= 879(4^^-3^^).

(ix^-\07?A^+lA%
.(75)

Thus if iVj, iVg be the whole numbers of turns on the coils, so that

N1N2 = ^x^niWa, we get for M the equation

M = 27rViViiV2 / - A^ 4p-3a^ A^ix^-^A^) 8^^-20^V + 5^4

V 2r42r* 4 8r8 8

^2(8a;^ - 20x^A^ + 5^*) 64g« - 336^V + 28Q^V - 35a«

16ri2 64

etc. i .(76)

This is referred to by Rosa as the formula of Searle and Airey. Clearly

it is also only a particular case of the general formula stated above.

24. MutuaJ inductance of a solenoid and a coaxial circle. If we put

iV2 = l and f=0, we get a convenient equation for the mutual induct-

ance of a solenoidal coil of length x, and containing N turns, and a

coaxial circle of radius a in the plane of one end of the coil

,

M = \1 + i-^ +A 78^ ^2 +tA -712-^4 + tMt -16"^6

...). .(77)
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where

x,= 3- 4
J..

^4 = -1- ioS+ 4^-,
^A*'

^6 = n 2 ^2
X* 4^°

^8 = ft

~2

. + 63^^,
^6

^10 =W-H¥ ^2^""" 4« 165j + 55
A^

...(78)

If the length of the coil be 2x, and N be the whole number of turns,

the formula will give the mutual inductance between the solenoid and

a circle of radius a coincident with the median cross-section of the coil.

This formula was proposed by Rosa {B.B.S.W. 3, p. 224). The
derivation from equation (76) shows that it also is a particular case of

the author's general formula.

As an example of calculations carried out by these formulae we take

a coil specified by Viriamu Jones to illustrate a formula which he used

to calculate the mutual induction of the coil and circle of the Lorenz

apparatus. The data given were ^ = 10, a = 5, a? = 2, in inches, r2 = 104.

The results of calculation are those found by Rosa (B.B.S.W. vol. 8,

No. 1) :

^2 = 2-8400

^4= 2-1064

^6 = 1-5208

^8= 1-0173

0-5818

1st term = 1-0000000

10

2xV
48-38972

2

3

4

5

6

= 0-0866771

= 0-0118537

= 0-0017781

= 0-0002670

= 0-0000379

7

Sum

= 0-0000046

1-1006184

Multiplying these two results together, we get

M = 53-25861iV,

where N is the number of turns in the coil. The result obtained by
Jones was Tlf = 53-25879M, which is about 18 parts in 5 million greater.

25. Calculation of current-weigher constant. Rosa has also used this

formula to obtain the constant of a current-weigher of the Ayrton-

Jones pattern which is indicated in the diagram. The constant is

proportional to the difference between the mutual inductances of the

outer coil on the terminal circles of the inner. The calculation was
carried out by taking the outer coil as consisting of two terminating

in the plane of one of the ends of the inner coil, which in the normal
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position waH Hyinmetrieally placed in the outer. These two coils O^A,

O2A had respectively 80 turns and 240 turns. In centimetres A, a, x

were 16, 10, 8 respectively for the former coil and 16, 10, 24 for the

latter, while r* was 320 and 832 in the two cases. The mutual induct-

ance, Msy of the coil 0,^ on the circle S, and that, A//„ of the coil O^A
on the circle R were calculated. The following are the X multipliers

in the two cases :

For i/w. For Mg.

Xj +2-000 - 6-00

^^4 +0-250 + 0-25

X^ -0-9375 + 23-5

X^ -1-203 -45-7

Xjo- 0-562 -490
Terms of Series.

1st term 1-0000000 1-0000000

2 „ +0-0937500 + 0-0138683

3 „ +0-0097656 -0-0006411

4 „ +0-0002670 + 0-0000009

5 „ -0-0002253 + 0-0000027

6 „ -0-0000662 -0-0000002

7 „ -0-0000072 0-0000000

Sum 1-1034839 1-0132306

The outside multipliers, ^ir^a^Nlr, of the series gave il:f.^ = 9741-16,

M^ = 16641-32. Jones's elliptic integral formula gave ^^ = 9741-17,

il/^ = 16641-32, in centimetres, practically the same result.

26. Coils of lengths Vs times the radius. The following example

of formula (74) shows the efEect of making the lengths of the coils

equal to \/3 times the radius in abbreviating the calculation of their

mutual induction. We take the data

^ = 25 cm, Ny^ = n^AVi, |so that N^N2 = ^n{n^a,

a = 10 cm, iV2= n2a'\/3, J Wi = W2 = 20,

d = (x'-\rA^)^==\AVl.

Hence
r ^ V7

= 0-0179057 henry.

Here the number of turns is not integral, which of course it must
be in any actual case. Altering the lengths to 43-3 and 17-3, we make
the values of iVj, iVg ^6^» ^^6. For this one correction term in (74)

must be calculated so that the value of M comes out -0178854 henry.

This example is given by Rosa ; and a much longer calculation by a

formula due to Roiti (not here given) used as a check gives a result

only differing by 1 part in 178,000.
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27. Practical example of Gray's formula. The use of the author's

formula is illustrated by the following practical example worked out

by Rosa. The data are

2it; = 20-55, A = 6-U, N^^lb,
2^=27-38, a = 4435, N2 = 75.

Distance between adjacent ends of solenoids 7-2.

Here %= 0-7296 ZiA:i = 0-042937

^2= 2-737 i^3^3 = 0-018274

iCi^ 20-89 ^5^:5 = 0-005193

a;2 = 41-44 ^7^:7 = 0-001423

0-067943

M = 1092-3

This is a case in which the convergence is not sufficiently rapid. The
longer coil was therefore considered as in two sections, C and D, of

axial lengths 13-51 and 13-87 cm, of which C was the nearer to the

other coil, R say. The coil R was considered divided into two sections

A and B, of which B was the nearer to S. Then C was divided into two
sections F and G, and ikf^^. and M^^ calculated. The results obtained,

without going beyond K^h^, were

M^c = 207-2, M;,c' =683-8, M^^ = 64-9, ^5^ = 130-7,

giving If = 1087-2 cm.

Higher terms would have given a more exact value. As it is, a

check carefully applied by the method of Nagaoka, mentioned below,

gave M = 1086-55, of which the last figure was very uncertain. These

calculations illustrate how accurate the results obtained by these

formulae, without excessive computation, may be, and how by sup-

posing the coils subdivided the convergence of the series may be made
all that may be desired.

28. Coils with multiple layers. In the last chapter the mutual induct-

ance of two circles has been dealt with. We shall only here supplement

that discussion by an account of a few more complicated and at the

same time practical cases, in which the coils contain a number of

layers of wire, and it is necessary to take into consideration the cross-

section of the windings.

The first method of taking account of the cross-sections of two coils

of which the mutual inductance is to be calculated is that given by the

late H. A. Rowland of Baltimore. The method consists in an obvious

application of Taylor's theorem of the expansion of functions, and is

convenient only when the cross-sectional dimensions are not large,

that is, are not comparable with the radius of either coil or the distance

between them. It is to be remembered also that it is in general
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necessary, for exact work, to take account of the fact that the total

conducting cross-section of the conductor is different from the

croHs-Hcction of the coil, both in extont and in distribution.

29. Correction for cross-sections o! coils. Let the cross-sections of

the coils be situated as in the diagram, and let there be two central

turns, of radii A and a, one in each coil about which the other turns

are symmetrically arranged. The mutual induction between these

central turns we shall denote by Mq. Then if nj, Wg be the total numbers
of turns in the two coils a first approximation to the mutual induction

required is
Af = „.„,M,.

If the coils are of finite axial breadth 26i and 262, and radial depth

2cj, 2ca we have for a second approximation

«,«2
^O + gl^l +'>i) ^ +«1 d^J +«2 ^2 ]. W»)

for it is clear that there can be no terms involving dMQ/dAy dMQ/day
or d^MQ/dA da. For coils of equal radii and cross-section this becomes

^^M,A(b^^^^^<^m (80)

It has been shown in the last chapter that for circles of radii A and a,

Mo= i'7rVAa[(^~-y^G-^Hy (81)

where y^ = iAa/ {{A + a)^ + x^} ^ the square of the modulus of the first

and second elliptic integrals G, H. From this the correction terms can
be calculated. By differentiation we find (having regard to the modular
relations) that when A=a,

(82)

^^ ~ A\^ 1 - yS

30. Correction of elliptic integral formula for cross-section. The
following correction of the value of M for the effect of section applied

to the elliptic integral expression for two eqital coaxial circles, gives a
very exact result, except when the coils are very close together. It

was obtained by Rosa * in a revision and correction of the expression

given by Weinstein and Stefan j for the effect of cross-section in equal
coils. The correction is made by adding to Mq, as given in (81) above,
the expression

AM=:i'7ra8ma^{G-H)(A+^^-{-HB\, (83)

* B.B.S.W. 2, p. 341. t Wied. Ann. 21 and 22, 1884.
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where Gy H^ are the complete elliptic integrals I. and II. to modulus

y = sin a, and A and B have the following values :

A = .^2 ("i ~ "2 ~ ^3 + (2«2 ~ ^Wg) cos^ a + Sogcos* a} , \

B =^^^ (oj + JOg + 2a3 + (2a2 + Sag) cos^a + Sogcos^a}
,

J

...(84)

in which

a^ = fe2 _ c2 _^. c4/30«2, ag = (Si^c^ _ 4c2)/60a2, Og = (26^ + 2c4 - bh^c^)l20x^.

Hence, for coils of equal square section,

ai = 6V30a2, a2 = 64ygOa2, 03= -64/20x2 (85)

A pair of coils of equal radius has been used by Rowland, Glazebrook,

Rayleigh, and others, in absolute determinations of resistance (see

Chapter XV. below).

31. Lord Rayleigh's correction for cross-section. Another method
of obtaining a second approximation to the value of the mutual induct-

ance of two coils of finite cross-section has been used by Lord Rayleigh.

Using the notation already explained, but putting f{A, a, x) for the

mutual inductance of the central windings, we get approximately, as

the reader may verify,

f{A+c^, a, x)+f(A-c^, a, x)r

+f{A, a + C2, x)+f{A, a-c^, x),

M= iWiW2^ +/(^, a, x + \)-^f{A, a,x-\),^ (86)

+f{A, a, x-\-h^+f{A, a, x-h^,

-2f{A,a,x).

This is a general formula of approximation, which is applicable to

any function of A, a, x. We have already employed it in considering

the force on the suspended coil of a current weigher. The amount by

which this approximation is in error may be computed approximately

by expanding M by Taylor's theorem as far as differential coefficients

of the fourth order and comparing with this formula, which really

amounts to

1 r,, „ , „.32Mn So^M.
2^Mo

'

2 3a2, , ^g^^

M-M +l/(6 2.^,2)^_0.,2^^0.,

^11521^^^ ^^2^
9x* ^''i ^A^ ^"^2

?a4 /

It has been shown by Rosa {B.B.S.W . 2, p. 373) that the difference e^

thus obtained is given by

, .364 + 3c*-2062c2^-^"^
480^^

^''^

for two equal coils. If the coil is of square section this is

^^-'<^-'-^^ <^'>
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80 that the error is negative. In any case, whether of equal coils or

not, it is clear that the error is smaller the greater the distance of the

coils apart. Moreover, the value of M may be too large or too small

according to tlie shape of the cross-section. The error is very approxi-

mately zero (for «^ = constant) if ?; = 305 and c = 4/3-65 = 1-096, nearly.

82. Lyle's equivalent mean radius for distant coils. For two coaxial

and distant coils of square section it has been shown by Professor

Lyle * of Melbourne that a closely approximate value of M is obtained

by using for each instead of the mean radius a, a radius r given by

= ''(l +2&) ^''^

b

c. c_

A

where h is the side of the square section. Of course such a value of r

is obtained for each coil.

If the coil section is not square but rectangular, the coil is to be

replaced by two filaments according to

the following specification. Let Fig.

169 represent the two cross-sections and
their relative situation. Let the breadth

in each case be denoted by h and the

radial depth by c. In A we suppose

that 6>c, and in B that c>6. For
coil A let /S'^ = -/o (6^ - c^) be determined. p,„ igg

^

Then A is to be replaced by two fila-

ments (1 and 2) of radius given by r = a(l +c2/24a2) and situated at

a distance 2^ apart symmetrically on the two sides of the mean plane

of the coil.

In coil B, on the other hand, two filaments (3 and 4) in the mean
plane and of radii r + (5, r - (5 are to be taken, where

r2 = a(l+62/24a2) and «5*= ^V(c^-&^)-

The mutual inductance of the two coils is now the sum of the induct-

ances of the filaments of A on the two filaments of B, each filament

containing half the number of windings of the coil to which it belongs.

where, for example, M-^z is the mutual inductance of the filament

1 in ^ on the filament 3 in B,

33. Formulae for inductances of thick coils. Singly infinite solid coils.

There remain thick coils and flat coils, which are of importance in

wireless telegraphic work. We now give some account of calculations

for such cases, using, for the most part, methods due to Butterworth

{Bhil Mag. 29, 1915. See also Note on p. 527).

Consider a magnetic field symmetrical about an axis. Take an origin

on the axis, and consider a point P of the field. Let the distance of

Phil. Maj. 3 (1902).
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P from the axis be y, and its axial distance from the origin be z.

Denoting the magnetic potential at P by Q, we have for the differential

equation satisfied by Q,

oy^ y oy oz^

Of this a solution (see Gray and Mathews' Treatise on Bessel Func-

0= cp{\)e-'^~J^{Xy)dX, (92)
Jo

where JoiXy) is the Bessel function of zero order for the argument Xy.

For points on the axis Q reduces to

ao=f 0(A).
Jo

-^'dX. (93)

It is unnecessary to enter into any discussion here as to the meaning

of (p{X). Qq is the potential at the axial point at distance z from the

origin. The magnetic induction / in the direction of z, at the distance

y from the axis, is for a medium of unit inductivity. The flux of

induction through a circle of radius r, with its centre on and its plane

at right angles to the axis, is given by

^=-2xj%gd3, <^*)

By (92) this may be written

/ = 27r|^ X<l>{X)e-^~^^'ydyJ,{Xy)]dX (95)

It is proved in the Treatise on Bessel Functions referred to above

that
•r

i
ydyJf,{Xy) = lJi(Xr).

A

.(96)

/•cc

Hence we have 7= 2x^1 (f>(X)e~^^Ji{Xr)dX
Jo

Expanding Ji{Xr) in ascending powers of r, and using (93) we get

the value of 7, the stream function for the circle from the values of the

potential at points on the axis. Thus

" = y /r\2" 1 fJ~^+^0

/=-..^2(-l)'"G),^y?-" (97)

Now consider a solid coil of radius a with its axis along the axis of

2, and extending from z = z, to z=oo . The total linkage of this coil

with the field is N, and we have
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34. Axial potential due to semi-infinite solid coil. Mutual inductance

of two such coils. Now let us suppose that the potential Uq is due to

a second semi-infinite coil, of radius a and extending from 2 = to

z = - 00 . The value of Uq may be taken as that due to a disk of

matter of surface density which, at the centre, is j>roportional to a,

and tapering off to zero at the edge. If era be this density at zero

distance from the centre we have at distance x, (Ta{a-x)/a. The

potential at the point 0, z, due to a circular strip of radius x and breadth

^' ^®
27r(rx {a - xyVx^Tz^.

Hence we get by integration for the whole potential

C ax-x* ,

/ z^\

or i\ = TTfra^
I Z^ 22 22,

a/1 +-2--+-^ log
V a^ a a^ ° 2

a

Expanded in inverse powers of zja this is

(99)

o .2^ « N^ (-ir(2^)^ / 1
X"* nOO)

z^{2s + ^)\s\{s + \)\\^z

aj

Using this in the value of N given in (98) we get, for the total linkage

of the field and coil between z and oo
,

A7=^2^V (-1)12^+2.)'- _^i_
vL-1)"

>^"-^'

ao2)
'^f^(25 + 3)s!(5 + l)!(22)2(»+«)V 22« (2n + 3)n!(w + l)!' ^ '

If we write ;p for n + s we can put this in the form

n = V ^2(i> - n)+3
^

|.2n+3

^ 2(2w + 3)(2;>_2w + 3)w!(w + l)!(^-w)!(y-w + l)!'""^^^

where TS is some sufficiently high value of p according to the degree

of accuracy required.

35. Practical formulae for solid singly infinite coils. From this we
can obtain an expansion in a form suitable for calculation. We first

choose ^ = 0, and therefore n = 0, and get I as the value of the first term
of the expression on the right of (102'). Then we put j9 = l, and take

the values 0, 1 for n. Next we take ;p = 2, ^ = 3, ^ = 4, ... in succes-

sion, and in these give to n the values 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, ...

for n respectively. Thus we obtain
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-—?fi-(i)"(^r5)^(i)'@-4-^,V)

-(i)*(A-4«"-*l---^-)

flYfli . 28 ., 40 ,. 28 .„ 14 .

}
.(103), A

which is convergent for sufficiently large values of z.

From this the mutual inductance between the two solid coils, one
extending from z = to z = go , can be found with exceeding accuracy

if a>l and z>3r.
36. Mutual inductance of two non-overlapping finite solid coils.

From this result we can find by an obvious process the mutual induct-

ance of a pair of coaxial solid coils of finite length which do not over-

lap. Denote by h^ the separation distance of the adjacent ends of the

coils, by ^2 ttat of the remote ends, and by h^, h^ the separations of

the other two pairs of ends, one of one coil, the other of the other coil.

iV = 7rVa3r3{ (---,-- ^ + 1)
^

Then we have

'- ^hi ^2 ^3 ^r 9

1/1 1 1 1 \/5 r 6 . , 6 , . 5 A

1/1 1 1 n/14 „ 28 „, 40., 28,. 14 A
2~s(v-V"V^VA33«' + y"^'+y«'' + ¥«'^+33^')

-
} (104)

This gives at once the mutual inductance of a pair of coaxial flat

coils wound full from the centre to the circumference in each case.

We have only to write h + dhi for Ag' h + dh2 for h^, and h-^-dh^ + dh^

for A4. We then get, omitting the factor cr,

• iV = .W.2^A,c^^2{[3^2'^J(r5^^-^r5^^)

26^

+

1 2.5/2 ^ 6 ,, 2 A
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1 3^.7/5

2« A» A27
6 . , 6 5

27
aV« + r-f*)

28 A"\33''

28 « , 40 , , 28 _ 14 -^

.(105)

The quantities cMj, fMg i«ay be taken as the thicknesses of the coils

and disappear when the strengths of the shells are substituted.

If in (102') and (103) we write z/a in place of 2, and rja in place of r,

we see that N for the actual infinite solid coils is equal to that for two
of radii respectively rja and unity, at distance apart z/a, multiplied by

That is

N^a'^N
\a cJ'

To complete the expressions for the inductances we have to insert the

winding densities, that is the number of turns which in each case pass

through unit area of a plane containing the axis of symmetry. We
put 7jj, ^2 ^or these densities, and therefore multiply by n^n^. [No

account is here, or later, taken of space occupied by insulating material.]

Hence we have, using N in the sense in which it is calculated above for

the actual coils,
Jlf = n,n,iV (106)

For the two coaxial parallel flat coils we have by (105)

M = 27rVr3nin2/S, (107)

where S denotes the quantity within the brackets { }.

37. Working formula for two semi-infinite coils. Butterworth gives

the following working formula (for the case of a = \) for two semi-

infinite coils with their adjacent ends at a distance z apart,

iV = 27r2r3[^-(B-a)r2 + C/^-Z>r6], (108), B

where ZA=\znog
l+Vl+22

+ 2(Vl +
^^-27r

=

\

405= log

13440 =

829441) = -r-=

1 + a/1+z2

Vi + 27r dz^'

(1+2^)3

l)"(2n-3)! frY
Kw +DlW(2w + 3)n!(w + l)!

...(109)
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This holds for r<z, and having regard to the series for ^A and 40B
we see that it holds for 2;<4.

38. Case of distance between ends of coils small. When 2<r we can

-""
^.^^-.^H^^^iSsmA <".,

For small values of z the term - irz^Xogz causes difficulty, and special

treatment is necessary for this term.

If we denote this term by o) we have

rf2ft, / 3\ rf'"a) (2n-3)! .....

If 2;>r, we have

^^h^^^^w^^^m^) /
* ^

which is convergent if 2>r.
The idea of the method adopted is that of finding a simple magnetic

distribution which gives rise to an axial potential containing this term,

with other terms, to which the preceding method is applicable. Mr.

Butterworth considers a linear distribution of poles along the axis of

z from 2 = to z= -c, with a density irz^. To avoid confusion in

finding the potential at a point z on the axis, we write irix-zY for

the density of the distribution, where x now denotes the distance of

the point considered from this latter axial point. The potential at the

point z, oo' say, is thus given by

^' =^^'^11^ dx = uy + ir[zHog{c + z)-cz-\-^^'^, (113)

in which as before w= - ttz^ log z.

We denote the linkage due to w which we wish to discuss by n, and

that due to w by n', and obtain

|^ = i{jz2l0g(c + 2)-icZ + ||-^l0g(c + 2)

+ terms which vanish for c = oo (114)

To find the linkage n' the work done in removing the linear distribu-

tion of poles from the field of the solid coil of radius r, the free (south)

pole of which is at the distance z from the origin, has to be calculated.

The axial potential at distance x from this pole is

- i\(x, r)= -irlx^ log + rVx^ + r^ - %'x
j.
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and since the density of distribution of poles is 7r(x-2)*,

w'= -ttJ {x-z)mo{xir)dx (115)

Evaluation of this integral and substitution in (114), give—Ba-'«.M-)-S('o4-Ji)

rUl 2 l2» 1 2* 1 25/ 2r 77\1

"^y (-l)n(2n-3)! /2y"-|

r3 ^^ 2^-^(w-l)!(n + l)!(2/i + l)(2/i + 3)\r/ J "^
'

Using this to replace (112), we get

iV = 27rv[(^'-^)log^+^' -(B'-^)r2 + Cr*-Z)r«], ...(117), C

in which

3/1' = |22 l0g{2(l + A/r+2'2)} + jA/m^ _ 2 _ 1 ^2^

405' = log{2(l + A/l+22)}
29

(118)

\/l+22 20'

^^^rl_l22 l23_J.24/ 2r 77\
'^ 2rl3 3r2^6r3 30 r^ V ^^

2 "^60/

_ 2" "y^ (-!)» (2^1-3)! j / z\'''\

/•2 2y^ 2=^"-2 (n-l)!(»n-l)! (2n + l)(2« + 3)\r/ j

39. Solid coils with adjacent ends in contact. When 2 = (116)

becomes

27r2r5/

4(r('''^'-2-o)'
<"^>

and hence, by (98) and (110),

^ = ^-^^^{6-^0^^-^2-0)^-2^' ^^^^^'^

where . = Vfi4lli:^^2n + 3)X

V\2.4.6...(2w + 4)/

^«

(2n + 7)(2/i + 3)(7i + 3)(n + l)
(121)

40. Derivation of formulae by elliptic integrals. This result was
verified by Butterworth by means of formulae developed from the

elliptic integral solution of the mutual inductance of two coaxial sole-

noids. This solution was given by Maxwell, and is set forth in (119)

above.

The following formulae of derivation were employed. The mutual

G.A.M. 2 K
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induction M of two coaxial circles, radii A, a, and axial distance b, is

given by the equation

M = i7rVAa[(^-y)G--H^ (122)

G, H (according to the notation adopted in VI. 10) are the complete

elliptic integrals, of the first and second kinds, to modulus y, where

2a/Zct

'^~{(^+a)2+62}i

We have also M = STrVTa^{G{yi)-H{yi)},
Vyi

where yi = (ri-r2)/(ri + r2), rj^ = {A + a)^ + h^ rg^ = (^ - a)^ + fe^.

With these are the modular differential relations

dH H-G dG H G
dy- y dy- y(i-y') y

(126)

(123)

(124)

(125)

and the following reduction formulae, which are easily established,

(n + 2) f y^H dy = y^'+'H +
J
y^G dy,

(n + 2)2fy'^+2^f;y = y"+»^-(n + 2)y«+'(l-y2)6^

h{n + l)Ay^Gdy,

Theintegrals u=[^Gdy, v=\ ~Gdy (127)

Jo JoV

are important. Values of G and H and some related quantities are

given in the Appendix. From these we have

„ l-^ /, ,<-./-1.3.5...(2»-l)V y-" ^

Jo Jo(l-y2sin26>)* Jo sm6> V 3^ 5^ /

= 1-83193, (128')

dy
and

y(l-y2sin26>)*
=r d0\
Jo J ^' sismey{l-y2)i

,
fi dy fi' OcotO.dO

Jvy(l-2/T Jo (l-y2sin26')^
.(129)
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by integration by parts. The last integral is obtained by expanding

(I - y^ain^O)'' and integrating term by term. Thus we find

. /, 4 ^/1.3.5...(2n-l)yy'-*\ ,,_.
t;^u, = i.|log--S( 2.4.6...2n ) 2n)

<^^^

The following theorem is of use in this connection.* The potential

energy P exhausted in adding to a uniform thin circular disk, of radiuii

A and areal density a; a coaxial thin disk of radius a and of uniform

areal density rr', is given by

P='^'7r(r(r'A{{A^ + a^)H-{A^-a*)G},

where G, H are complete elliptic integrals to modulus a/A [a<A].
Hence for the work done in placing a solenoid of radius A, extending

from z = to z = oo, in the field of a solid coil of radius a, extending

from z =Otoz=-oo,we have, to a constant factor, the expression

mi = ^s'^Ar{{A^ + a^)H-{A^-a^)G}da] (131)
Jo

for the solenoid and the solid coil act on one another by their adjacent

end disks, so as to lead to (131).

By the reduction formulae (126), (131) becomes

When^ = a, mi = m2 = ^a*(^-^UjJ (133)

The mutual inductance between a solenoid of radius a and a solid

coil of radius A {A> a), with their ends in contact, is similarly

W*3 = ^2 +f"'^=i-{(>4">-|('-z.-j>

^""'(v + ui)} (134)
2 A*

Finally, the mutual inductance between two solid coils of radii

A and a, with their ends in contact, is (with r = a/A)

N={m^dv = ^'jj'jrA^nr{l+r^)H-r(U + 3r^){l-r^)G

-3u-3f^{v + Ui)} (135)

When f= l, this is

N = ^\irA^n-3iii) = 2'iOUA^ (136)

*A. Gray, Phil, Mag. August, 1919.
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When the series for G, H, u, v are inserted in (135), we get

iV = l.w{l-^^.^(log^^-.A)^3^.}, (137)

^-./1.3.5...(2w + 3)Vwhere o-= > . ( ^^—~.— ,„ .. )

V^S.^.e... (2n + 4)/
(138)

(2w + 7)(2w + 3)(/i + 3)(/i + l)

This result is identical with (120). When r = l, (138) gives

iV = 24094^5^

the value stated in (136).

41. Tables for calculation of mutual inductances. Equations (103),

(108), (117), (120) (marked also A, B, C, D), enable N to be found for

all values of z and all values of r up to unity. The range of values of

z for these are

A, z>'^\ B,i>z>T\ G,r>z>0; D, z = 0.

The following tables have been given by Butterworth, and facilitate

greatly numerical computation. Table I. gives the values of N/2'7r^'r^,

and shows the agreement of A and B for 2 = 4 ; Table II. the agree-

ment of B and G for z = r; Table III. gives the values of ^=N/2'7r^r^

for 2< 4 and different values of r ; Table IV. gives the values of

Nz

These forms f and rj are suitable for graphical interpolation ; it is to

be noticed that tj is almost linear in r^ and in 1/z^.

TABLE I.

Values of ^=^NJ2ir^t^ for 2 = 4.

Y = 0-2 04 0-6 0-8 i-o

Formula A
B

0-0137566
0-0137564

00137419
0-0137416

0-0137172
0-0137172

0-0136836
0-0136834

0-0136406
00136405

TABLE II.

Values of ^ = iV/27rV for 2 =

)

r = 0-2 0-4 06 0-8 10

Formula B
c

0-117413
0-117417

0*087350
0-087348

0-067835
0-067834

0-054688
0-054686

0-045477
0-045476
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N
TABLE III. ^= '

.

Values of f = JV/2irV for 2<4 and r as sixjci fled.

r z—o 0-2 04 0-6

I-O
0-8

0-6

0-4
0-2

0-122063
0134215
0-145694
0-155685
0-163223

009469
O-IO182
0-10835
0-11378
O-II74I

0075971
0080307
0-084106
0-087350
O-0893S9

0-062649
0-065405
0-067835
0-069746
0-070970

r ^=o-8 I-O 2«0 40

i-o
0-8

0-6

0-4
0-2

0-052866
0-054687
0056260
0057477
0-058249

0-045477
0-046722
0047778
0048585
0049093

0-026022
0-026297
0-026520
0-026685
0026785

0-01364

1

0-013684
0-013717
0013742
0013756

TABLE IV.

Values of 7; = 1/9 - JVz/x'^/ ' for r and 2 as specified.

r z=4 5 6 8 10

I-O 0-001986 1292 0906 0514 0331
0-8 1642 1066 0746 0423 0271
0-6 1373 0888 0620 0351 0225
04 1 1 76 0760 0530 0300 0192
0-2 1058 0683 0476 0269 0173

As we have seen above we may, when the radii of the semi-infinite

coils are different, a, b say, and the coils do not overlap, regard N as

a function of two variables c/a, b/a, where c is the separation of the

adjacent ends. Hence, if n^, n^ be the winding densities as defined

above, we may write for the mutual inductance M the equation

M = n^n^a^Nf~y-) or M='ninJj^N f^, ^^ (139)

according as a>6 or 6>o.
42. Case of non-overlapping hollow coils. If the coils are hollow and

have inner and outer radii, a^, a^, b^, b^, we have only to subtract

from the mutual inductance for two solid semi-infinite, non-overlapping

coils of radii a^, b^ that for two such coils of radii a^, b^ and radii Oj, b^,

and add the mutual inductance of two solid semi-infinite non-over-

lapping coils, of radii a^ b^, so that
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For two coils of the same radius the last equation becomes

K = „,«,{«/iv(|^. l)-2a/iVg, 3+<^g. ')}' -(l")

or if the coils have their ends in contact,

M = n^nJ{a2^-i-aj^)N{0, l)-2a2^N fo,-^\\ (142)

The inductance is reduced to that for two coils of finite lengths

2^1, 2^2, with their mid-points at a distance h apart, by subtracting

the inductances due to semi-infinite coils superimposed on an original

pair, which have separation h-l^- ^g, so that, indicating coils by their

separations (c), we have

M==M{h-l^-l^) + M{h + l^^-l^)-M{h-l^ + l^)-M{h + l^-l^), (143)

where M{c) is giveA by (140).

43. Overlapping coils. If the coils overlap, we proceed as follows :

find (1) the uniform field which would exist within the outer coil if it

were part of an infinite coil
; (2) the field due to the polarity of the ends

of the outer coil. Thus, if the inductions through the second coil due
to these two fields be M^, M^, we have M =M^ + M^. For M we have,

with overlap /,

where a^, a^ are the outer and inner radii of the outer coil, and h^, h^

the outer and inner radii of the inner coil. The number of turns in

unit length of the outer coil is n^{a2, - a^) if n^ be the winding density

in that coil. The field within the outer coil would therefore be

47r?2i(a2-«i) for unit current, if the coil were doubly infinite in length.

Hence the induction through a turn of radius x of the inner coil, due to

this field, is irx^ x 47rWi(a2 - «i)> and if the overlap is I the whole induc-

tion through the inner coil is therefore

x^dx = ^^ir^n^nj,(a2- a^{b^ -h^). ...(144)

As regards M^, the formulae developed above are applicable, and
we have by (140), if the lengths of the coils are 21^, 2?2» ^^^ they have
a common centre,

M^ = ^M{l^ + l^)-M{l^-l^)}, (145)

or, if the coils have the same length 2Z,

M^= 2{M{2l)-M{0)} (145')
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As an example, let the coils have the fnllowin«( dimensions (in em
in each case)

:

outer radii 02= I0» ^2 = ^* inner radii aj = 5, fci = 2;

lengths 2/1 = 6,2/2 = 44, distance of centres = 21.

Thus the overlap is 4, and we get

Ml = UTr^njnj x 4 x 5(43 _ 2») = 27r*746-7ninj.

Also here

h-li-l2= Ci = if Cj/a2 = 2i
= 0-4, Cj/aj = 2'i

= 0-8,

A + /i 4-/2=02= 46, C2/ot=2a= 4-6, cjai = z\ = 9'2,

A-/1 + /2 = C3 = 40, 03/02 = 23 = 4-0, 03/01 = 2^3= 8-0,

A + /i + /2 = C4 = 2, 04/02 = 24=0-2, 04/01 = 2^4=0-4,

V«2 = *'i
=0-4, hja^^r^ =0-2,

^2/«i = **'i
= 0-8, 6i/oi = f'2 = 0-4.

Hence, by (140) and (143), and using the notation of the tables, putting

Li ^or ^(2,,, r„), ^Vy ^or ^(2',,, r'^),

3/2 = 27r2nin2[a2'^ {r,^{i,, + ^21 - ^31 " ^4i) " '2'(^i2 + ^22 " f32 " ^42)}

-<K'(rii+r21-^31-^41)
-

'•if(f 12 + r 22 - f 32 - ^42)}] (H6)

= 27r2niW2[l05( - ^^0-02820 +~ 0-02978)

-5s(- ^0-03652 + ^^0-03077)]

= -27r2nin2l04-4 (146')

Thus

M = Ml + ^2= 2x2^1*12(746-7 - 104-4) = 12680win2 (147)

44. Calculation of self-inductances. We now apply this method to

the calculation of self-inductances. The self-inductance of a coil is

the sum of the following inductions through it (for unit current) :

(1) Lj, that calculated for the coil regarded as part of a doubly infinite

coil ; and (2) Lg, that calculated from the polarities due to its ends.

Let the length of the coil be c, its outer and inner radii a and b, and its

winding density n, and write 2 for c/a, r for b/a, then, neglecting as before

any allowance for insulation, we get

Li=|7r2n2a«2(l-r)2(l+2r + 3r2) (148)

Also, by (145'),

L2 = 2{M(c)-M(0)} (149)

But M(c) = w2o6|iV(2, l)-2iV(2, r)-^r^N(^^, l)}
| ^^^^

M{0) = n^a^{{l+r^)N(0, l)-2iV(0, r)} ; J
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or in the ^, tj notation,

M{c) = 27r^n^a^^{z, l)-2r^i{z, r) + r^^(^ ,l\\, (151)

when 2<4, and

iH(c) = 7r2wV{^(l-r3)2-,;(2, l) + 27^^{z, r)-r^rj{zlr, 1),} (152)

when 2;> 4. Also

lfo = 27r%V{(l+r2)^(0, 1)- 2*^^(0, r)} „(153)

If e> 4 the formula L = LAl -"" +^-^\ (154)
^\ z z^ zV

where a, ft, y are functions of r, gives an accuracy of 1 in 10,000.

Values of a, ft, y calculated from the formulae

q = l{l-r^){l+2r + Sr^),

y = ^'{^(2, l)-2r3^(z,r)4-r«^g, l)}, J

with 2 = 4 in the expression for y, are given in Table V. This last con-

dition makes y strictly correct for 2 = 4, but for large values of z, the

final result is in error only to I part in 10,000.

(155)

TABLE V.

r a P 7

oo 073238 0-33333 0-0953
0-2 073699 033719 0-0973
0-4 0-75574 0-35579 0-1071
0-6 078447 0-39042 0-1306
0-8 0-81718 0-43906 0-1701
i-o 0-84883 0-50000 0-2306

When r = I, the formulae fail, but then the coil becomes a thin

cylinder, and the self-inductance is [see (148)]

so that for r = l,

1 5 1 35 1

^1 11^1^ AA_^_^1
3x2 "^2 22 4 2*'^16 2« 64

2^"^ ...), .(156)

« = 37r' ^ = 2' ^
=
4 16 22"^ 64 2*

45. Calculations for short coils. Range of applicability of formulae.

As an illustration of the method of working for short coils, we take a

coil of the following dimensions :

outer rad. a = 4, inner rad. 6 = 2, length c = 4 (in cm in all cases).



XIII CALCULATION OF INDUCTANCES 521

Then 2 = c/a = l, r = 6/a = 0-5, Lj =0-229165 x27r2»iV, by (155).

M{c) = 2'7rVa^({l, 1)- 2(0-5)3^(1, 0-5) + (0-5)^^^(2, 1)}

= 27r2nV(0-045477 - iO-048216 + .,»,0-026022)

= 27r2wVx 0-034236, (L57)

M(0) = 27r2nV{(l + ./.,)0-122062 - iO-150930}

= 27r2w2a'^x 0-088144 (158)

Therefore

/: = Li-2M(0) + 2Af(c) = 27r2n2a'*xO-121351=2453-9n2 (159)

The Weinstein formula gives for this case

L = 2459-5w*,

which is in error to the extent of nearly J per cent.

As to the applicability of the formulae given above, Mr. iiutterworth,

to whom they are due, gives the following caution. They are to be

used only when the inner and outer diameters of the coils differ appre-

ciably, and the lengths are not too small {b/a <0-8, c/a> 0-2). Table V.,

however, holds (with graphical interpolation) for all values of h/a.

For coils whose dimensions are outside these limits the usual solenoid

or circular filament formulae are more suitable, with allowance for the

section of the channel, in which the wire is wound, made by the method
of the geometric mean distance,

46. Inductances of flat coils. Making use of the formulae of integra-

tion for elliptic integral expressions which he gave in his Phil, Mag,
paper (loc. cit. 33 above), Butterworth has obtained some valuable

results for flat coils. We terminate this discussion with a statement

of these.

Let the mean radius of the flat coil be R, and its depth (difference

of radius) 2X, and consider two coaxial circles of the coil which differ in

radius by 2x, and have a mean radius r. Denote the mutual inductance

of these by m{x, r). The annular strip of breadth 2x, which these circles

bound, may have any position between that in which the radius of the

mid-circle is R-(X-x) and that for which this radius is R + X-x.
The total inductance for all such pairs of circles and a chosen value

of 2a; is .it+x-x

2n^dx\ m{x, r)dr, (160)
Jli-X+x

where we regard the current carrying circle as an annulus of breadth

dx, and the other circle as an annulus of breadth dr. The factor 2 is

due to the fact that the inductance for each jjair of circles must be

taken twice, since the inductance between them is mutual.

The value of x varies from zero to X, and we have finally

rX fR+X-x
L = inH dx\ m{x,r)dr (161)

Jo JR-X-i-x
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The integral for L is evaluated by developing, in a series of ascending

powers of 'k'[ = {\-k^y = {A-a)l{A-\-a)=xlr], the elliptic integral ex-

pression for the mutual inductance of two coplanar circles, at a distance

2x[ = 2{A - a)] apart, and of mean radius r. (For the process of expan-

sion see Appendix, Notes.) The series obtained is

M= 4xr($„ + lA'^, + 2';|-i'''$, +^^JJi'«#3+-) (162)

where

according to the general relation

*"-*«-=^2;^3 (1«^)

which holds for >i>l. Applying the four terms of the expansion

exhibited in (162) to (161) we find, writing X for log(4i?/^) and z for

412 J^ 98579\ l ,,„,,

This gives a modified version of Weinstein's formula, which is appli-

cable to coils of small inner radius. The first two terms of the series

in (164) gives a formula suitable for practical purposes. The series in

(164) converges for all possible values of X and R. The worst case is

that in which the inner radius is zero, and then X/R = l. The terms

in the brackets { } in (164) are then

0-886, 0-207, 0-012, 0-002.

47. Self-inductance derived from elliptic integral formulae. Using

the second elliptic integral formula (124) above, with G2 written for

G-H, we get for the induction, $ say, through a circle of radius x
concentric with the flat coil,

$ = STTw/a; I Gj^ajx) da -\- 1 aGj^xja) da \ ,

or, if we change the variable from a to juL = a/x, in the first integral,

and to yu = x/a in the second,

^ = Sirnx^{{ G^Md^-i-C GMdfJi//ui^\ (165)
^Jri/z Jxfr., J

The self-inductance of the flat coil is thus

L = n['^dx (166)
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Equation (165) integrated by parts gives

16
Z = y7rnVf (l- 8^)^VAt)^At (167)

By the formulae for integration with respect to the modulus given

in 40 above (167) reduces to

Z =^7rnV{t^i-l-QV+t;)-« + 2^^^/7-^^(^^

where w =["'(? rf/x, v=C 0^^, Ui = Cg d^ = l83\93l2i8. (169)
Jo J'-,/rj M Jo

The series for 0, II, u, v enable (168) to be put in the form

L=*.wpK-l)+:;:{^«.-l)+^log'^'+<^)].•(l™)

where . =6^ 2.4.6...2« ) 2M2i^)W^)Vj <'''>

When rj/fg is small this formula is very convergent, and is therefore

very suitable for coils of small inner radius. For coils of zero inner

radius (170) gives L = 6-96957n%», (172)

while (164) gives in this, for it, the most unfavourable case,

i: = 6•956n2r2^

a result which is about 0-2 per cent, too low. The first two terms of

(164), the modified Weinstein formula, give

i: = 6'87nV.

which is 1-5 per cent, below the true value.

For rjr2= 6j (164) and (170) give respectively

Z = 4-743502w2r2» ajid L = 4-743500n2r23, (173)

very nearly coincident values. Formula (164) is generally the easier

to work with, while (170) affords a check when one is needed.

The following table is given by Butterworth for the use of the

equation L =Qnh^ (174)

TABLE VI.

rjrt Q nlr^ Q rjr. Q

ooo 6970 035 5996 0-70 2528
005 6964 0-40 5632 0-75 1-946
010 6930 045 5-213 080 1-397
015 6845 050 4-743 085 0-8892
020 6-728 0-55 4-231 090 0-4574
025 6-544 060 3-682 0-95 0-I394
030 6300 065 3-105 I 00 0-0000
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Here Qiih^ is the self-inductance, for ri = inner radius, ^2 = outer radius

(in cm in each case), n = turns per radial cm.

48. Time-constants of coils. The time-constant of a coil is (VIII. 11

above) LjR, where R is the resistance of the coil. Now the resist-

ance of a flat coil wound with wire of circular section is ipn^{r^-r^),
where p is the specific resistance (resistivity) of the wire. If the length

and section of the wire are given, r^ - r^ and n are fixed, and the time
s

constant is proportional to QH^-r^jr^y. The following table gives

the time constant for various values of rjr^ -

TABLE VII.

rjr. o-o OI 02 03 04 05

QI{i-r,^M^ 6-97 703 715 7-25 7-32 730

rilr^ 0-6 07 0-8 09 i-o

(3/(1 -V/O^ 7-i8 6-94 6-46 5-50 o-oo

This table discloses the fact that the flat coil of best time-constant

has rjr 2 = 2/5, though for variation of ri/r2 the variation of time-

constant is very slow. For such a coil

L = 5-632nV3. .(175)

The time-constant of a cylindrical coil of a single layer is a maximum
when the length of the coil is 4/5 of the radius a, and then the value of

L is I4:'90n^a^, where n is again the number of turns per cm. The

radius of the cylindrical coil, which can be wound with the length of

wire used in the flat coil, is a = 0-725r2 with ri = 0'4r2. For this cylin-

drical coil

L = 5-666nV»

so that the cylindrical coil has a rather greater self-inductance for the

same wire.

49. Mutual inductances of coaxial and coplanar flat coils. Finally,

the mutual inductance between two coaxial flat coils in the same
plane can be inferred from the self-inductances given in Table VI.

Let Ti, r^ be the inner and outer radii of the inner coil and i-g, r^ these

radii for the outer coil, and denote the self-inductances of the coils

by L^, Ly, the self-inductance of the coil which would fill the inter-

space by L^, and the mutual inductances of the three coils by M^^,

Mpy, My^. Further, let the coils indicated by a, jS have self-inductance
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L^ in series, the coils |8, y have inductance L,; in s«Ti«*s, ami tJM' coibj

y, a have inductance i^. in series. Then

Z^=L, + X^ + 2M.^, L,, = L^ + L^ + 2iV^, i

Z,, = Z/« + I^ + Ly + 2Ma^ + 2M^^ + 2M^, J

from which the Ms can be found when the L& are known.

Thus M^^:=i(La-L^-L„--Lp)
or M^y = inM^4'(a,/^ - Qr,/r,) - V(0,,/r, +0V'.)} (177)

When there is no interspace, and r^ = 0,

M= K^{eo(l-r«//?»)-0,/.}, (178)

where R is the outer radius, r the dividing radius.

The following table illustrating the relations of the various induct-

ances is given. The symbols used have the following significations

:

Z-i = self-inductance of inner coil ; k = coefficient of coupling, M/VL^L^ \

1^2= n ,, outer „ ;

ilf= mutual inductance between coils ; n = turns per cm.

TABLE VIII.

rlR LJn^R^ LJn^R^ Mlnm^ k

OI 0-00697 6-93 0-0162 0074
0-2 00557 6-73 00930 0-152
0-3 o-i88o 6-30 0-240 0-220
0-4 0-446 563 0-446 0-280
0-5 0-871 4-74 0678 0-333
0-6 1-503 3-68 0-892 0-379

°7 2-39 2-53 1-025 0-421
0-8 3-56 1-397 I 005 0451
0-9 5-08 0-457 0-715 0-470
092 523 0-317 o-6ii 0-474
0-94 5-79 0-1910 0-495 0-470
096 6-17 0-0942 0356 0-465
098 6-56 0-0272 0-192 0-454
I 00 .6-97 0-0000 0-000 0-000

50. Formulae for self-inductance. We collect here in the first place

a number of particular results for self- and mutual inductances.

1. For a circle of radius a and circular cross-section of radius p,

Z= 47ra('log — -1-75) (Kirchhoff),

i: = 47ra|A +0-1137 ^) log— -0-0095 ^ - 1-75 (Maxwell).

For the latter formula pia is supposed very small. It is derived from
the g.m.d. of the cross-section from itself, in the computation of which
the wire is taken as straight.
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2. For a circular coil of n turns and circular section,

L = iirn^a{( \ +

[See also XV. 22, below.]

8a ^
p 24a2

1-75| (Rayleigh and Niven).

3. Mutual inductance of a short secondary outside a long primary.

Let 2x be the length of the primary, 2^ that of the secondary, A the

radius of the former, a that of the latter. Aj)ply Gray's formula

(VI. 22... 24) for the case of two coaxial concentric coils. A very few

terms will suffice.

4. Self-inductance of a long solenoid [radius a, length 6],

^ =^""^r^T-2^32a^r^y + 4ri024aA^"^y-3;

10 Vi 8a 109\
-6 l<^gX-T^

35 feVi 8a 431\^

This formula is due to Coffin (B.B.S.W. 2, p. 113). It is accurate

enough for most purposes for coils considerably longer than the radius.

The same investigator gave in the paper just cited the formula,

applicable to a solenoid of any length.

T
87r 2

o {(-S) (f'-O-'^C-S)'-^")'
Here a and h have the same meaning as before, and G and H are the

elliptic integrals I. and II. for the modulus 2a/(4a2 + y^y\ This is a very

useful formula. The following table for its use is given in B.B.S.W.

8, No. 1 . It is supposed written in the form L = 7i^aQ. Then for different

values of 2a/6, the table is

a
1

a

^b Q n Q

0-20 3-63240 1-80 1957938
030 523368 200 20-74631
040 6/1017 2-20 2 1 82049
050 807470 2-40 22-81496
060 9-33«92 2-60 2374013
070 10-51349 2-80 2460482
080 11-60790 3-00 25-41613
090 12-63059 3-20 26-18009
I 00 13-58892 340 26-90177
I 20 15-33799 3-eo 27-58548
I 40 16-89840 380 28-23494
I 60 1830345 4-00

1

2885335

51. Correction for deviation of flow from that in a current sheet.

The self-inductance formulae given above are current-sheet formulae,
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and require a correction depending on the ratio of the diameter of the

wire to the pitch of the winding. We have

L^L.-iTraniA-^-B), (179)

where L„ is the uncorrected value and A and B are quantities given in

the correction table in the Appendix. They are respectively

4 = Iog(l-7452^), B=^2mIog|^> (180)

where d/D is the ratio of the diameter of the bare wire to the pitch

D, and R^ is the g.ni.d. of the sections of the current sheet whose

centres coincide with those of the wires [B.B.S.W. 2, p. 168].

It was pointed out by Maxwell, Elect, and Mag. ii. 693, that the

self-inductance of a coil of rectangular section is too great if calculated

on the assumption of uniform distribution of the current over the cross-

section. There are three corrections, (1) for the space occupied by the

insulation, which amounts to iiiran (log D - log d), where D and d

are the diameters of the covered and the bare wire respectively
; (2)

for reduction from a square to a circular section

[0-1380606 = \ log 2 + j^TT - y]

;

(3) E for the difiEerences in the mutual inductances of the assemblage of

round wires on one another from the values they would have if they

were of square wire, and fitted without loss of space occupied by
insulation. Mr. Rosa has shown that the value of E is variable, and
gives the following table of its values :

Turns. Layers. Value of E.

2 — 0006528

3 I •009045

4 2 •01691

4 .
I 01035

8 2 01335
lO I •01276

20 I 01357
i6 4 •015 12

lOO 10 OI713

400 20 •01764

1000 50x20 •01778

CO — 01806

Note (Dec. 6, 1920). Several of the results of 33, ...,49 were given inde-
pendently by Spielrein, Archio fiir Elekfrotechnik, Bd. 3, 1915. This journ»l,
which began in 1912, was only received by the writer on the date of this note,

after the foregoing chapter was in type, and further reference to Spielrein's paper
was impossible. The results of Butterworth and Spielrein agree very closely.



CHAPTER XIV.

MEASUREMENT OF INDUCTANCES.

1. Coefficients of induction or "inductances." The experimental

comparison of coefficients of induction, or, as they are now called,

inductances, with one another, with known resistances, and with electro-

static capacities, received much attention during the last quarter of

the nineteenth century. This was a consequence on the one hand of

the efforts that were then made to obtain a more accurate realization

of the ohm, and of the ratio of the electromagnetic to the electrostatic

unit of quantity of electricity, and on the other of the vastly increased

importance which induction has assumed in electrical theory and

practice, through the enormous development during that period of

the use of dynamos, and especially of alternate-current machines.

In the last years of that century a very successful attempt was
made by the late Professor Viriamu Jones, in a determination of the

ohm, to apply the very great accuracy attained in the action of machine

tools, by Sir Joseph Whitworth and others, to the design and construc-

tion of physical apparatus. This striving after extreme exactitude in

physical measurement has continued and been increased mainly as a

result of the establishment and activities of well equipped national

laboratories of physics in Europe and America, such as the Bureau of

Standards at Washington, the Bureau International des Poids et des

Mesures at Paris, the Physikalische Eeichsanstalt at Berlin, and the

National Physical Laboratory in our own country. Exact electrical

standards have been defined and constructed for international use,

and the movement has been carried into other departments of physics,

so that correct standards of all kinds are now available for the com-

parison of experimental results obtained all over the world. The effect

of all this in promoting accurate physical research can hardly be over-

estimated.

In the present chapter an attempt is made to describe the chief

methods of comparison and measurement of inductances which have

been devised, with, as far as possible, illustrations of the processes used

and results obtained, in accounts of actual experiments. We shall

use Mr. Oliver Heaviside's term '* inductance " to signify what is

528
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generally denoted by *' coefficient of induction " distinguishing wliere

necessary between mutual indxwtance and self-inductance ; but as

self-induction is, on the whole, relatively more important, and is much
more frequently referred to than mutual induction, we shall, where no

ambiguity is likely to arise, use the single word *' inductance " in the

sense of cootticient of solf-iruiuction.

2. General theory of network of conductors carrying varying currents.

It is convenient to conHJder in the first place some points of general

theory which are of importance in this connection. The equations

of varying currents in any conductor, or circuit of conductors,

are obtainable from the electrokinetic energy and the dissipation

function, when these are known, if only electrokinetic phenomena are

in question, or from these two expressions, together with that of the

electrostatic energy, if, as will be the case in some of the problems in

the present chapter, electrostatic phenomena have also to be taken

into account.

Equations of currents have been obtained in VIII. 5 above by con-

sidering an assemblage of complete circuits as a dynamical system
;

but similar equations are obtainable in precisely the same way for the

currents in the individual conductors of a network, provided that

instead of resistances, inductances and electromotive forces in circuits,

the resistances, inductances, self and mutual, of the conductors, and
the impressed differences of potentials between their terminals are used.

The only difficulty is as to the meaning of the self-inductance of a

conductor joining two points in a circuit, or the mututal inductance of

two such conductors in the same or different circuits. But all such

questions are resolved by adopting some proper mode of calculating

inductance [for example Neumann's formula, V. 23 (18)] which
enables the inductance of a conductor to be found as that of a part of

a circuit, in the sense that when the inductances of the parts are calcu-

lated in this way they give the proper value of the electrokinetic

energy of the circuit or circuits for any possible arrangement of currents.

A case in point is that of two or more coils joined in parallel between
two points AB. The inductances for these conductors are very approxi-

mately those obtained by regarding the coils as made up of so many
complete circuits given in dimensions and position by the turns of wire.

In such cases the flux of magnetic induction through the part of the

circuit considered is definite and calculable, and different methods lead

to the same result. But there are other cases, for example that of a

Hertzian vibrator, in which different processes lead to distinctly

different values of the self-inductance of the apparatus.

3. Maxwell's cycle-method of a network. The difficulty here indicated

is avoided by a device adopted by Maxwell. A network is made up of

a series of meshes or "cells," in which each individual conductor,

except those forming the outer edge of the network, is common to two
meshes. Maxwell supposed a current to circulate round each mesh in

(i.A.M. 2 L
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the same direction, so that the actual current in each conductor was

the difference of the currents round two adjoining meshes. Thus each

mesh is a closed circuit with its own current in it, and the self- and

mutual inductances of the system are perfectly definite, being those

due to the various closed circuits each supposed to carry unit current.

Taking the former method first let L^, L^, ... denote the self-induct-

ances of the different homogeneous conductors of the system supposed

linear, ^j, y^, ••• , the quantities of electricity which these conductors

have conveyed in the interval from some chosen epoch of time to the

instant considered, so that y^, y^, ... are the currents in the con-

ductors at the instant, ilf jg, ^23» ••• » ^^® mutual inductances of the

conductors indicated by the suffixes, then the electrokinetic energy is

given by

Here Lj, L^, ... , M^^^ ••• ^^® constants. In many electric circuits,

with which we are not in these chapters concerned, but which contain

coils with iron cores, the inductances are functions of the currents.

The dissipation function is

F= ilR^^\ (2)

where Rj^ denotes the resistance of the conductor in which the current

is ^,.. If E be the electrostatic energy due to the charge of condensers

E = i2C^F„., (3)

where (7^ is the capacity of a typical condenser of the system changed

to a difference of potential F^ between its coating.

The effect of the electrostatic capacity of the conductors concerned

is something quite sensible, and may in certain cases be allowed for.

When it can be expressed, the part of the electrostatic energy which

depends on the capacity of the conductors, enables the terms in (6)

below to be calculated.

By this expression, also, when it can be calculated for the different

parts of the conductors, the electrostatic capacities of the connecting

wires can be taken into account. In such cases, however, the capacity

can in general only be roughly estimated.

4. Equation of current in a single conductor. Bringing then into the

account the electrostatic energy regarded as potential energy, we have

to add to the electrokinetic applied force corresponding to the current

y,, the electrostatic force - dE/d-y^. Thus if F^ denote the difference

of potential between the terminals of the conductor in which the current

is y^, we find by the dynamical method of Lagrange the typical equation

of current

d dT dF ^, dE ...
I =y (4:1

dtdyjdy, '' dy, ^
^

Writing down the equation of this type for the successive homo-
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geneouH conductors taken in order round a circuit of a network, and
adding both sides of tJie equations, wc get

d f'dT -dT \ dF dF ^ /dE dE \ ,^,

dt\dyj d^j^i / dyj dy^^^ \?>yj 9^^+, /

where E is the total internal applied electromotive force in the circuit,

since wc know that the latter is the sum of the differences of potential

between the terminals of the successive homogeneous conductors form-

ing it. This equation may be written

KLjDj+MjA+m-E-i:,'^^ («)

in which the summations are taken for all the conductors of the circuit

considered.

This equation may be taken as the most general form of the so-called
** second law ** which Kirchhoff explicitly stated for steady currents

in a system of linear conductors. It will be of constant use in what
follows.

5. Principle of continuity for varying currents derived from law of

magnetic force. The principle of continuity, commonly called Kirch hoff's

first law, is generally assumed for variable currents, and it is also usual to

assume, as has been done above, that at any instant the magnetic force

at any point due to a varying current in a circuit is the same as would

be produced by a steady current equal in intensity to that which exists

in the circuit at that instant. The latter assumption is justified, for

points which are near the circuit, by the theory, confirmed now by
experiment, of propagation of electromagnetic action.

It does not seem to have been noticed that the principle of con-

tinuity for a linear circuit can be deduced from this fact regarding

magnetic force as follows. Let three wires meet at a point 0, then

according to the principle of continuity the rate of flow from the point

must be exactly equal at any instant to the rate

of flow to the point at the same instant. Let

be taken as the centre of a small sphere, and
let the wires pass through the surface of the

sphere at A, B, C (Fig. 170). Let a path be

drawn round the wire A on the sphere, then

carried to B, then to C nearly round it, and
finally back to the point of starting from ^, so "

Y^^^ ^-y

that a closed path is traced on the sphere, con-

sisting of three nearly closed curves described in the same direction

round A, B, C, and an infinitely nearly closed path A\ B', C, not

embracing any of the conductors. A magnetic pole carried round the

complete path will have no work done on it on the whole, since the

path does not really surround any conductor ; in other words, it could

be shrunk to a point, without cutting through the conductor, and the
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work done in carrying a pole round the infinitely nearly closed path

A', B', C also vanishes. [To see this it is only necessary to conceive

the path opened out into an open loop, slipped back beyond the centre

of the sphere and then shrunk up.] But if y^, y^, yg, be the currents

in the wires at ^, B, C, all reckoned as inflowing, or all as outflowing,

the work done on the pole in the three paths closely surrounding the

wires is ^^(yj + yg + yg), and thus must be zero, since the work done
round A' B' C is zero. Hence we have

47r(yi + y2 + y3)=0

or 71 + 72 + 73 = 0, (7)

that is the total current arriving at or flowing away from the point

at any instant is zero. The same thing can obviously be proved in the

same way for any number of conductors meeting at a point.

6. Theory of Maxwell's cycle-method. Method usual in practice.

Returning to the dynamical equations of currents, the equations for

Maxwell's method of meshes, each carrying its own current, are easily

written down, as in (4) and (5) above. The quantities of electricity

which have flowed round the different meshes from any era of reckoning

up to the instant under consideration become the generalized conductors,

and their time-rates of variation, or the currents at that instant, the

corresponding velocities. If then Zj, L^, ... denote the self-inductances

of the different meshes, each regarded as a separate circuit, in which
currents

^/'i, '^2^ '•- ^^w, M^^^ M23, ... the mutual inductances of the pairs

of meshes indicated by the suffixes, we have

^=i(^i^i' + 2Mi2M2 + -) (8)

Again, if R^j. denote the resistance of a conductor which adjoins

two meshes distinguished by the suffixes j and ^,

F= \1R,,(i,~i,)^ (9)

These two equations with (3) above enable the equations of currents

for the different meshes to be written down. They are thus of the type

d dT dF dE
1^ ^^r + ^T = -^i-^^} {^^)
dtdyj dyj > dyj

where Ej is the electromotive force in the circuit indicated by the

suffix j.

This method avoids the necessity for an explicit reference to the

principle of continuity, inasmuch as this principle is assumed in the

statement of the method, and it is convenient for the systematic

working out of a complicated system ; but with the electrokinetic

energy expressed in the above form, which is the strictly accurate

one when the generalized velocities are the mesh- or cycle-currents,

it is not convenient for the derivation of equations from which the

inductances of given conductors are to be obtained. In these applica-
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tion.s, liowevcT, we modify the form of the electrokinetic energy by
writing it

7'= h^Lj,(!/j - ytf + 2il/oo(Mfe - yk)im - y-)), (11)

where Ljt^ is the self-inductance of the conductor common to the two
cycles indicated by the suffixes, and ^(jk)(i„i) the mutual inductance

between that conductor and the conductor common to the two meshes

indicated by the suttixos Im. But tliis merely amounts to using the

first method after all. In general it is quite easy to write down the

equations for the different conductors from (4) for the first method,

applying the principle of continuity mentally ; and as only one symbol
is required for the current in each conductor, the first method has the

advantage of greater brevity of expression.

7. Comparisons of inductances : problems. Ratio of inductances

obtained as ratio of two resistances. The (oinj)arison of inductances

comprises live problems with which we shall deal in succession : the

comparison (I) of two mutual inductances, (2) of two S(;lf-inductance8,

(3) of a mutual inductance with a self-inductance, (4) of a mutual

or self-inductance with a resistance, (5) of a nmtual or self-inductance

with an electrostatic capacity.

Of the first problem the following solution has been given by Clerk

Maxwell. Let A^, A^ (Fig. 171), be the two coils, the mutual inductance

ilf34 between which is to be compared with that, Afja, between two
other coils A^, A^. A^ and A^, A^ and A^ are placed opposite one

another at the required distance in the case of each pair. A circuit

is made up of A^, A^, a battery and a make-and-break key K ; while

A^, Aq are joined up as a secondary circuit to which the former is the

primary, and a branch containing a galvanometer is made to join two
points P, Qy on this latter circuit.

The resistances jRj, ^^3 of the coils A^, A^, respectively, with any
additional resistance included with the coil in each case up to PQ, are

adjusted by adding resistance coils from boxes, until there is no current

through the galvanometer when the battery circuit is made or broken,

and are then compared by means of a Wheatstone's bridge or other

convenient method. We have then (see below)

^'^=p= (12)
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To increase the sensibility of this and similar methods, some arrange-

ment such as Ayrton and Perry's secohmmeter, described below, for

successively making and breaking the battery circuit, and sending the

successive integral flows through the galvanometer in the same direc-

tion, must be adopted.

8. Theory of Maxwell's method. To prove the condition (12) let

L^y Lq be the self-inductances of the coils Aj^, A.>, L the self-inductance

of the battery circuit, and T that of the galvanometer. Then if ii be

the battery current at any instant, x, ?/, the currents in the same
direction round A^^, A^, respectively, the current through the galvano-

meter is x — y, and the electrokinetic energy of the system is given by
the equation

T = i{Lu^ + L^x^ + Lsf-hT(x-y)^ + 2Mi2'^x + 2M^^u^}. ...(13)

If R be the resistance of the battery circuit, G the resistance of the

galvanometer, we get for the dissipation function

F = i{Ru^ + RiX^ + R^f + G{x-'g)^} (14)

Since the impressed electromotive forces corresponding to x, y, are

zero, we have by (4),

dt dx dx * dt d^ 'dy

Hence, by (13) and (14),

LjX + T{x-y)-\- if12^ + R^x -\-G(x-y)=0,

Wg-T{x-y) + M^^u-^R^y-G{x-y)=0,

or, integrating and writing t for x-if, and taking account of the fact

that X, y, X, y, iX, are initially zero, we obtain two equations which

may be written

Eliminating y between these we obtain an equation of the form

A'z + Bt^Cz= Du-^Eii,

where A, B, C, D, E are constants.

Soon after completion of the primary circuit the current in the

secondary will have died out. Then the last equation becomes

Cz=Ey, (16)

where y is the steady current in the primary. By inspection of (15)

it is easy to see that

C=R^{Ri + G) + Rfi, E =M^R^ - M^^R^.

.(15)
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'I'll us (10) becomes, since z = x-y.

Hence il z{=x-y) = 0,

^ ^ R,{Ri^a) + R,G^'
(16')

M84
(17)

.»3

M^t R,
the relation stated above.

9. Condition that Maxwell's method should be absolutely "nnlL"
It is to b(^ noticed that if 2 = at (*a( li instant, and thr relation (17)

be fulHIb'd, D = 0, that is by (15),

M34 L,

ii
(18)

Thus the ratio RJRi is also the ratio of the self-inductances, if the

arrangements be such that no current whatever passes in either direc-

tion through the galvanometer.

It is sometimes important, as Lord Rayleigh pointed out,* that this

last condition, and in other cases a similar one if it exist, should be
fulfilled in order that the method may be an absolutely null one.

Very frequently, unless the galvanometer-needle is of very long period,

it shows considerable uneasiness even if the condition for zero integral

current is fulfilled. The fulfilment of (18) or a corresponding condition

may be brought about by the insertion of self-inductance in addition
to that associated with the conductors employed as resistances, and
it is always desirable, if possible, to do so. The test will be the absence
of uneasiness of the needle, and may be made a sensitive one by the
use of a vibration galvanometer (see XIV. 60 below).

The magnetic moment of the needle may be, and no doubt often is,

affected by the current in the coil, and this may interfere seriously

with the ballistic action of the galvanometer. This is discussed in

Chapter XII. 10 above.

10. Modification of Maxwell's method. The experiment may be
arranged with a derived branch on both the primary and the secondary

circuit, as shown in Fig. 172, and the galvanometer in the circuit of

one of the coils as A^. Let the resistance of the coil A 2 and connections

British Associalion Report, 1883, Collected Papers, 2, p. 228.
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to the right of AB be i^g, the resistance to the left of AB, R^, the

resistances similarly to right and left of CD, R^, R^ {R^^ including the

resistance of the galvanometer), the resistance of the derived branch
AB on the primary R, of the derived branch CD on the secondary S.

With this arrangement, when no current through the galvanometer
is produced on depression or raising the battery key, the relation

M,,_ R{R,-^S)

Mi2 SiR-^R^)
^^

holds. Thus the mutual inductances are opposite in sign, that is the

coils must be joined up so that the induced electromotive forces in the

secondary circuit are opposed. In the test therefore the coils are joined

up in this way, and the resistances are adjusted until no deflection of

the galvanometer needle is produced by making or breaking the battery

circuit.

If R=cc , that is if there is no derived branch on the primary, the

relation (19) becomes ^^^ R^ + S .^..

"mT^^-^s"
^^^^

In this case, since numerically M^^>Mi2y the galvanometer must be

placed on that side of CD on which the induction is the weaker.

li S=co , that is if there is no derived branch on the secondary,

_M^^__R_
(21)

Mi2 R + R2

If, for the coils in the positions of Fig. 172, i/i2>-M^34 numerically,

(21) becomes -M^JMsi = RI{R + R^).

11. Theory of the modified method. Let u be the current at any
instant through the battery, and therefore through A^, u' the current

at the same instant through A2, then the current in AB is li-u'.

Denoting now by L2, L^, L, the inductances of the three parts into

which the primary circuit is divided, namely A 2, A^, and the derived

branch AB, by L' the inductance of the derived branch CD, and by
Zj, L2, as before, the inductances of A^, A 2, we have

T= I {Lx^ + L^f + L'(x - ?/)2 + L2il'^ + L^u^ + L{u-uy
+ 2M^2^'x + 2Ms^uy}, ....(22)

F= i{R^x^ + Rsf + S{x-^)^ + R^^^ + R2u'^ + R{u-uy}, ....(23)

where x, y denote as before the currents in A^, ^3.

The equations of currents obtained from these and integrated over

any interval from an instant just before the contact was made or

broken, with attention to the fact that the initial values of the variable

quantities are all zero, give equations which can be written in the form

.(24)
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Elimination of y from these gives an equation of the form

^iJ + Bi + C'x = Da + D'li' + J5:m + ^V.

If the currents have become steady this reduces to

Cx^Ey¥E'y\

where x is the time-integral of th(; current which has passed tlirough

the galvanometer, and y, y' are the steady currents in the battery

and the coil A 2- Hence y' = y72/(i? + /Jj), and

^^=(^+^'ief/e> <25)

Now by (24) C = (R^-\-S)(R^-\-S)-S^,

E= -M34/S, E'= -MiziRs + S).

Hence (25) becomes

_ M„S{R+R,) + M,^R{R, + S)

{R, + R,){{R3 + S){Ri+S)-S'}^
*''"'

If x = 0, this gives at once

M34 R{Rs + S)
.(26)

Mi2 SiR + R^)

the condition (19) above for no integral current through the galvano-

meter.

12. Ayrton and Perry's secohmmeter. As stated above, the sensi-

bility of these methods may be greatly increased by using successive

reversals of the battery current, with a proper arrangement for com-
mutating the inductive flows through the galvanometer. An excellent

contrivance for this purpose was provided by Professors Ayrton
and Perry in the Secohmmeter. This is an arrangement of two rotary

commutators, worked by the same spindle, one for periodically inter-

changing the points to which the galvanometer terminals are attached,

the other for reversing the battery circuit. Each of these commutators,
as will be seen from the diagrammatic sketches in Fig. 174 below,

which show the mode of using the instrument, consists of four brushes

pressing on a cylindrical surface made up of two nearly semi-cylindrical

metal pieces separated by insulating material. The relative times of

reversal by the two commutators can be adjusted to suit the purpose
for which it is to be used.

The spindle can be driven by a handle or by any convenient small

motor. For a. given speed of driving, two speeds of the commutators
can be arranged for. With one there are rather more than eight, and
with the other twenty-four, reversals effected by each for one turn
of the handle or driving pulley. The speed of the driving handle or

pulley is governed by a fly-wheel.

For example, the instrument can be applied to the comparison of

two mutual inductances by the methods just described. The battery
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commutator is arranged to reverse the battery circuit at an instant

when the galvanometer circuit on the secondary is complete. An
induction-flow takes place through the instrument unless the proper
adjustment of resistances has already been made. After the battery

current has reached its steady value, the galvanometer terminals are

reversed by the commutator preparatory to a second reversal of the

battery. The flow due to induction in this second case thus takes
place through the instrument in the same direction as before, and so

on as the commutator revolves. If the period of rotation is small in

comparison with that of oscillation of the needle, the result is to give

a steady deflection equal to that which would be produced by a current

equal to nq, where n is the number of reversals of the battery per second,

and q the quantity of electricity which passes at each of them.
The sensibility therefore increases with the speed of rotation ; but

in the present application, as in all others in which only the integral

flow through the galvanometer, taken over the interval of variation

of battery current, vanishes for certain experimental arrangements,
the speed must not be so great as to prevent the battery current from
reaching its steady value between each pair of reversals. In cases in

which the method is really "null" the speed may be made as high
as is thought desirable.

13. M. Brillouin's experiments. M. Brillouin* carried out some
careful comparisons of mutual inductances by these methods. He
used (1) a derived branch on the primary, (2) a derived branch on the

secondary (with in each of these cases the galvanometer in series with
one of the coils in the secondary), (3) the galvanometer in the derived
branch on the secondary. We give here a short account of experiments

(1) and (3).

In (1) the derived branch was made up of a resistance box reading

to fractions of an ohm. As its coils were not wound double it was
placed at a distance from the rest of the apparatus.

The galvanometer used had a resistance of 900 ohms and was an
astatic needle mirror instrument. It was provided with a damping
vane of wire gauze, and was enclosed in a case to shield off air currents.

The observations were made in the ordinary way by means of a tele-

scope and attached scale placed at a distance of 1 metre from the

mirror.

The connecting wires were carried along side by side to reduce their

external action as nearly as possible to zero.

As the galvanometer was not sensitive enough to enable measure-
ments to be made satisfactorily with a single make or break, a rotating

commutator driven by a Gramme motor was arranged, so that in each
turn it (1) connected the galvanometer with the secondary circuit,

(2) closed the primary circuit, (3) short circuited the galvanometer,

(4) opened the primary.

* Theses Presentees a la Faculte des Sciences de Paris, 1882,
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The secondary circuit was kept closed [lermanently and the galvano-

meter received only the transient current at each closing of the primary.

About 10 impulses were given to the needle jKjr second, and a per-

manent deflection was tlius produced.

The coils used were first a pair consisting of an exterior coil made
of a cable of twenty insulated wires lightly twisted together, surround-

ing an internal bobbin of somcwliat thick wire. The mutual inductance

between the internal bobbin and each of the twenty strands of the

other was the same, M say. A commutator enabled any number p
of the strands to be opposed to the rest, so that the coefficient of

induction between the two bobbins was reduced to {20-2p)M. The
wires however being kejjt in series the resistance did not vary.

The maximum mutual inductance of these coils will be denoted by

In experiments (1) of which results are quoted below a pair of coils

was used of mutual inductance intermediate (for the positions adopted)

between the maximum and mininmm inductances of the apparatus

just described. We shall denote the mutual inductance of these coils

by M34.

A pair of coils used in experiments (3) consisted of a very carefully

wound bobbin of thick wire 19 cm long, and 10 cm in internal, 12 cm
in external diameter, placed concentrically with a small coil of length

4*7 cm and internal and external diameters 1 cm, 5 cm respectively.

The latter bobbin could be turned round through any required angle

by means of an index and divided circle. The external coil being long,

the two coils had a coefficient of mutual induction proportional to the

cosine of the inclination of the axes.

The coefficient of induction between these coils in any given relative

positions will be denoted by 3/' 34.

The following are the results of five experiments made with different

fractions h of M12, and no derived branch on the secondary. The
ratio of the coefficients comes out, as shown in (21), in terms of the

resistance R of the shunt on the primary, and R2 the resistance of

the coil A 2 in Fig. 172 ; R2 was corrected to agreement at the tempera-

ture of experiment with the box from which R was taken.

h Temp. II

1

0-9

0-8'

0-8

0-8

15° C.

H-2 „
14-7 „

U-8 „
14-2 „

68-5 ±0-1

91-6±0-l

138-9d:0-l

139-2±0-l

137-6±0-l

1-671

1-500

1-338

1-330

1-333

1-671

1-666

1-672

1-662

1-666

Mean 1-667
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A set of experiments was also made with the same arrangement,

and at one temperature, 12°*6 C, with hMj^2'^^3A- The ratio in this

case comes out in terms of the resistance R^ of the coil A^ and any
non-inductive resistance in series with it, and the resistance R of the

derived branch. R^ was that of the bobbin A^, together with a resist-

ance seven times as great, making R^ = 1849 ohms in all.

The results are given in the table.

h R R
R-\ R^

0-1 3-69 •1663 1-663

0-2 9-35 •336 1-680

0-2' 9-33 •335 1-675

0-1 + 1-2 18-62 •5017 1-672

0-1 +0-2' 18-70 •5028 1-676

0-2 +0-2' 37-5 •669 1-672

0-1 +0-2 -h 0-2' 92-7 •8336 1-667

0-5 92-5 •8334 1^667

These results give by addition for the values 1, ^9, -8, of h used in

the former set of experiments,

-^12/^34 = 1-670, 9M12/M34 = 1 -504, -SM^JMs^ = 1 ^334,

which closely agree with the values of (i?-f- J?2)/^2 ^^^^ found.

14. Experiments by Maxwell's method. A set of experiments was
also made with the galvanometer included in a derived branch on
the secondary according to the arrangement of which the theory is

given in 11 above.

The galvanometer was a very sensitive astatic instrument of the

Thomson pattern with a coil of 7000 ohms resistance. The coils, which

were the two pairs already described, were at distances of only about

2J metres from the galvanometer, but were placed in such positions

that the direct action of each on the needle was zero. They could be

turned through 10° from these positions without producing any sensible

action. The induced current in the small bobbin of the second pair

of coils, was found to produce no direct effect upon the needle in any
position in which the bobbin was used.

All the joining wires had their outgoing and return parts together

and were carefully insulated.

The primary circuit contained a battery of 10 Daniell's cells ; and
the rotating commutator was not employed, as the galvanometer was
sufficiently sensitive to show a single impulse when the integral current

through it was not zero. For the final adjustment the deflections were
amplified by closing and opening the circuit when the needle was
passing through zero alternately in opposite directions. Any want
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of perfect adjustment manifested itself by the aggregate effect of the

successive exceedingly small impulses thus given, since these all tended

to increase the kinetic energy of the needle.

But for balance in these circumstances it is necessary that the effects

on the needle-system of com])leting the circuit and of breaking the

circuit should both be zero. It was found at first that, while making
the circuit produced no effect, breaking it always produced a slight

impulse. This M. Brillouin traced to inductive action between the

coils and the metallic vane attached to the needles for the purpose

of damping. This induction depended on the law of variation of the

induced current in the coils and took place notwithstanding the fact

that the integral current at break was zero as well as that at make. By
placing a condenser across the primary circuit and the make and break

key, the law of variation of the current could be altered ; and it was

found that a corresponding change took place in the deflection. The
electromagnetic action between the induced currents in the vane and
the inducing current in the coils clearly ought to cause such effects

as those observed.

It was found that this action had a maximum for any position of

the needles when the cajmcity of the condenser was -25 microfarad,

and that when the vane was quite symmetrically placed relatively

to the coils the effect always vanished. A condenser of this capacity

was therefore applied, and the position of the needles adjusted by the

directing magnet until the effect was zero. The experiment was then

made, and the method of multiplication used for the deflections, with

certainty that the effect of make was exactly equal and opposite to

that of break.

By (12) above we have ^^- ^

M' 34 Rn

In the experiments made R^ was constant and =974-2 ohms, while

i?i was made up of a constant part jB = 1264-1 ohms, and a variable

part r. The results of one set of experiments are given in the table.

The fourth column is calculated by taking the fraction h of the sum
of the results in column 3, and indicates the closeness of agreement

of the results.

Ail/,2

h r
hMy. ^V'34

AI'm (Mean value from
last col. ).

01 191 ±0-5 1-493 ±-001 1-491

0-2 1639 ±3 2-980±003 2-981

0-2' 1640±3 2-981 ±-003 2-981

0-5 5994 ±3 7-450 ±-003 7-452
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15. Comparison o! two self-inductances. Tlie following method of

comparing two self-inductances is due to Clerk Maxwell.* The two
coils, the inductances, L^, L^, of which are to be compared, are placed

in adjacent branches, AC, AD, of a Wheatstone bridge (Fig. 173),

and balance is obtained for steady currents by properly adjusting the

(non-inductive) resistances R, S of the branches GB, DB. If the

resistances of the branches AC, AD be P, Q respectively, the relation

fulfilled when balance is attained is, as we know, PS =QR for steady

C

currents. The test for this balance is carried out by depressing the

battery key to establish steady flow, before the galvanometer key is

put down. If besides this the relation

Li R
L^ S

(27)

.(27')

be fulfilled, there will be also balance for transient currents, and no
deflection of the needle will be produced when, the galvanometer branch

CD being complete, the battery circuit is made or broken. Or the

coils may be placed in AC, CB so that L^ is associated with P and L^
with R ; then balance is obtained when

h^l
L2 R

A secohmmeter may be used, as shown in Fig. 174, to increase the

sensibility. Balance for induction currents is tested for by rotating

the commutators. The arrangement of the apparatus will be obvious

from the diagram.

16. Theory of method. To prove (27) and (27') we write down by

(6) the equations of currents of the circuits ACDA, CBDC, putting

r, G, for the self-inductance and resistance of the galvanometer, L^,

L2 for the inductances in the branches AC, AD, L^, L^, for those in

the branches CB, DB, x for the current in AC, y for that from C to D,
and u for that in the battery at any instant. The equations are by (6)

L^x + Px + Ty + Gy-L^(u-x)-Q{u-x)=0,
\

L,{x-y) + R{x-g)-L,(u-x + y)-S{u-x + y)-ry-Gy= 0.)
'"^^

* m. and Ma^. vol. ii. p. 398. (Third edition.)
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Integrated over the whole period of variation of currents these

equations become, since there is finally zero current in CZ),

(P+Q)x -i^Gy=Qu + P +Q (29)

where x, y, u denote the quantities of electricity which have flowed

through ACy CD, and the battery, respectively, in the interval of

integration, y denotes the steady current through the battery, and

for the steady current in the branch AC has been put its value

yQI(P+Q)-

The continuous lines represent permanent, connections Inside the instrument,
the dotted lines temporary connections, bridge, etc. The upper part shows
the arrangement of the secohmmeter.

Elimination of x from (29) gives

.(30)

t{G{P+Q + R^S) + (P+Q){R-\-S)}

Hence, in order that y may be zero, we must have

Q

L, Q'

(31)

(31')or if Lg, L^ be negligible,

the relation stated above.

It is to be noticed that if Z^ be negligible in comparison with the
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other inductances, and P be finite, balance will be obtained if the

resistances Q, R, S are such that

'i-w-i-'
<^^">

This result will be of use in connection with the comparison of a

mutual inductance with a self-inductance.

17. Sensibility of the arrangement. We may now shortly investigate

the sensibility of the arrangement. If r be the resistance of the battery

branch AB, the resistance of the whole circuit for steady currents is

evidently r + PQI{P + Q) + RSI{R + S), or since PS = QR,

r + S{P + R)/{R + S).

If E be the electromotive force of the battery,

y = EI{r + S{P+R)l{R + S)}.

Thus (30) becomes with a little reduction

,,-E
''-'^'^Q *-«-'<) m(—(-|)){«(.4)*-(>-l))

If the ratio R/S{ = P/Q) be taken as fixed, and P and G as given,

R is to be* taken so that the denominator, D say, of this expression

for y may be a minimum. Denoting R/S by p, we have

^={G(l+|-) + p(l+p}{r(p + l) + P + iJ}.

Calculating dD/dR from this and equating it to zero we find

j^^ GPp{P + R + r{p + l)}
(33^

Gp[l+^j + P(, + l)

18. Conditions that the galvanometer current may be always zero.

If the condition (31), and the relation LJj^- L^L^^O, are fulfilled,

the difference of potential between G and D is always zero and there-

fore not only is there no integral flow from C to D, but the current at

each instant is zero. This may be seen as follows. Assuming that the

difference of potential at any instant is zero, there will be no current

through the galvanometer. Hence

L^x + Px^ L^iu -x)+Q{u- x),

and L^x + Rx^L^{u-x)-\-S{u-x).

Eliminating w and ii from these equations we get the relation
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wliicli niuHt hold for all values of ±y dx/dl, d^Jt/dt^. Hence we must have,
in the first place,

the condition for balance in the case of steady currents.

Equating th^. coefficient of djc/dl to zero, and using the relation

g/e = ra, wegct

P "Q "R'^S'
which is the condition f(31)] that there should be no integral flow

through the galvanometer at make (or break) of the battery circuit.

19. Use of a telephone in Wheatstone's bridge. lastly, equating
the coellicicnt of d-J/dt- to zero, we tind

L^L^-LJj^=0, .:. (34)

which shows that if C and D are kept at one potential always, the
inductances of the branches of the bridge must fulfil a relation precisely

similar to that fulfilled by the resistances when there is balance for

steady currents. The relations (31) and (34) must be fulfilled by the

inductances in order that a telephone may be used in a Wheatstone's
bridge. When the telephone was first introduced it was thought by
many experimenters that by using a telephone and intermittent cur-

rents the Wheatstone's bridge method of testing could be made much
more sensitive. As a matter of fact there can be silence in a telephone,

substituted for a galvanometer in a Wheatstone's bridge, only if the

inductances are balanced as well as the resistances by being made to

fulfil the relation (34).

If Zg, Z4, are negligibly small each term of (34) vanishes, and the

only condition to be fulfilled by the inductances is then (31), which
takes the form j p

The converse proposition however, that if this condition, or in the

more general case (31) and (34), be fulfilled, the current through the

galvanometer is always zero is not proved. But if the points CD
are not joined by a wire, and the conditions be fulfilled, CD will, it

has just been shown, be at the same potential during the whole interval

of variation of the currents. Hence, if at any instant during that

interval a conductor, of any resistance and inductance, be supposed
applied between C and Z), no current would start in it, since there

would be no difference of potential between its extremities. Thus,
with fulfilment of the condition, varying flow in the network, with
zero current in CD, is physically possible, and is the solution of the

problem, otherwise there would be more than one solution, and this

we know to be impossible if the currents can be regarded fts a dynamical
system.

G.A.M. 2m
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20. Practice of the method. In the practice of the method the

battery key is depressed first, then the galvanometer key, and balance

is obtained in the ordinary way for steady currents. Then a test of

balance is made for variable currents by putting down the galvano-

meter key first and observing whether there is any sudden deflection

to one side or the other when the battery key is depressed.

If there is, the resistances i?, S are altered, and balance for steady

currents restored by adding non-inductive resistance to the coils in

AC, AD. Then a test is made for an induction deflection as before,

and if necessary a further change in R, S is made, and so on. Balance

for steady currents is, at each step of the adjustment, obtained before

a test for the variable currents is made, and thus confusion between a

transient and a steady deflection is avoided.

21. Niven's modification of Maxwell's method. The repeated adjust-

ments necessary in this method render it troublesome in the above

FIQ. 175.

form. The following modification of it, due to Prof. C. Niven,* over-

comes this difficulty. One of the coils, say that of inductance L and
resistance P, is made one arm of a Wheatstone bridge (Fig. 175), and
balance is obtained with resistances Q', R, S which form the other three

branches. The other coil of inductance L' and resistance Q is then
inserted at FD, and balance is restored by inserting a non-inductive

resistance P' at EC. Non-inductive resistance, K, is then inserted

between E and F until there is no induction current in the galvano-
meter, when putting down the battery key produces no current through
the previously completed circuit of the galvanometer. When this is

L' KS

22. Theory of Niven's modification. Let at any instant u be the
current through the battery, x the current from A to E, y that from
G to D, & that from E to P, then the other currents are, in EC x-t,
in FD 'a-x + t, in CB x-y-t, in DB u-x + y + i. We get then by
(6) from the three circuits AEFA, ECDFE, CBDC, the following

Phil. Mag. Sept. 1887.
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equations of currents in wJiich l\ Cr, denote re«i>cctively the inductance

and resistance of the branch CD.

P'(±-t)-hTy + G^-L'{u-ii + !i)-Q(ii-±^i)'Ki = 0,

R{x-^-i)-S(iX-x + ^ + i)'-Ty-G^=0.

Integrating these from an instant just before closing the circuit

of tlie battery to any instant after the steady state has been attained,

denoting the steady currents in AE and the battery by i\ and y respec-

tively, and remembering that the adjustments have been supposed so

made that the steady currents in EFy (7Z>, are zero, we get

{P + Q')x + Kz = Q'u-Lx„ \

Gy + (P'+Q)x-{Q + P'-\-K)z=Qu + L'{y-xA (36)

-{G + R + S)y-i-(R + S)x-(R + S)z = Su. )

Hence, if A denote the determinant of this system of equations, we
get, by elimination of x and z,

A.y=
Q'u-Lx„ P +Q\ K,

Qu + L'{y-x,), F+Q, -{F+Q + K),

Su, R+S, -{R + S).

Expanding this determinant (first simplifying it by adding the

second column to the third), remembering that since P/Q' = P'IQ= R/S,

the relations {R + S)Q' = {P + Q')S, {F +Q)S = {R + S)Q, hold, and put-

ting (y-iCs)/4= i^//S, X8 = ySllR-\-S) we find

A.y = y{{K +P + Q')RL'-KSL} (37)

If the right-hand side be zero, and, as will generally be the case, the

determinant A does not vanish, y must be zero. Hence, in order that

there may be no integral current through the galvanometer, it is

necessary and sufficient that, as stated in (35),

L JK + P+Q')R
L' KS

23. Arrangement of bridge for sensibility. If r denote the resistance

of the battery branch AB, we easily see, taking account of the relations

PIQ' = P'IQ = RIS, that the resistance of the whole circuit for steady

currents is

r + R{Q-^Q' + S)l{R + S),

and that

A=.^-'^^(K + P + Q'){GS + (q+~^^)(G + R + S)}.

Hence putting E for the electromotive force of the battery we



548 ABSOLUTE MEASUREMENTS IN ELECTRICITY chap.

.(37')

have y= E/{r + R{K-{-Q + Q')l{R + S)}, and instead of (37)

..., ":zi^is^
-^{r(R + S) + R{Q + Q' + S)}{GS+W{G-[-R + S)}

in which W is written for Q + KQ'I{K + P + Q').

If D denote the denominator in the expression for y, then in order

that the arrangement may be as sensitive as possible D/R must be made
a minimum. For simplicity let P = Q\ P' =Q, R = S. Then S is to be

so chosen that D/S shall be a minimum. This by the ordinary method
is found to be the case when

{2r + Q-\-Q')GW
S^ = .(38)

G + 2W
24. Comparison of two inductances by differential galvanometer. This

comparison may also be effected by means of a differential galvano-

meter. The two coils of inductances Zj, Zrg, and resistances R^, R^,

are joined as shown in the diagram with non-inductive adjustable

resistances, and balance is obtained for steady currents without the

cross-conductor of resistance S. It is plain that if, as we suppose,

the resistance of each coil of the galvanometer is the same
{G), and their effects on the needle are equal for equal currents,

the additional resistances R\, R'
2,

(including connections) must be

equal to R^, Ri respectively. If E be the electromotive force and r

the resistance of the battery the steady current in each coil is

E E E
^^R^ + R\ + G + 2r^R^ + R\ + G + 2r^R,^ + R^ + G + 2r'

""'^^^

The cross conductor is then applied at the points of junction P, Q,

and the balance for steady currents is again tested, and if found to be

FIG, 176.

disturbed is restored by slightly shifting one or both of the contacts

P, Q. The resistance S is then adjusted until there is no deflection

of the needle on depression of the battery key. When this adjustment

has been made the relation is fulfilled

L^JIR^ + S
j^Qj
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26. Theory of method. It Jt, y, be the current« from P, Q, reapec-

tively, to the galvanometer, i that from P to Q through the cross-

connection, the current arriving from the battery is x + i at P, and
!)-i at Q. Hence if V be tlie inductance of each galvanometer coil,

M their mutual inductance, and the inductances of other parts of

the circuits be negligible, the equations of currents for the circuits

APGEA, AQGFA, APQA are by ((J)

VX + My + Li{J^ + ^)-\-{Ri + R\ + (iyr + r (./• + ^) + U^z = E,

Yil + M£ + L2y + {R^ + R'^ + a)y + r{x + y)-R'^ = E,

Li{£ + it)+Si + R^{x + i)-R\{^-t)=0.

Integrating the first two of these equations over the rise of the

current in each circuit from zero to the steady value y, and subtracting

the second integral from the first, we get, since R\ = R2t R'i = Ri,

{L,-L^)y + {R^ + R^ + G){x-y) + {Ri + R'2)z = (41)

Also the third equation integrated gives

Liy + Ri{x-y) + {2Ri-\-S)z = (42)

Substituting in (41) the value of z given by (42) and solving for

x-y, we obtain

_ {2Ri + S)L2-SLi ..„.

"^
^~2Ri{R2 + G) + S{R^ + R2-^G)'^ ^ ^

In order that this may be zero we must have

Li 2Ri+S ....

L^' S ^ ^

The value E/{Rj^ + R2 + G + 2r) substituted for y in (43) gives

„ {2Ri + S)L2 — SLi /An\^~^^
{2R^{R2 + G) +S{Ri^ R2 + GJ}jRi + R2 + G + 2r) "^ ^

The resistances i?i, R2 are fixed, and in practice G also is given.

If the galvanometer is too sensitive the magnetic field at the needles

may be increased in intensity, or the coils may be shunted provided

the shunt is precisely the same in inductance (if any) and resistance

in both cases. The flow through each coil will, if S' be the resistance

of the shunt, be simply {x - y)S'l{G + S'), as it would be if the galvano-

meter coils and shunt had no inductance.

26. Conrarison of mutual inductance of two coils with self-inductance

of one. Maxwell has also given the following method of comparing
the mutual inductance M of two coils with the self-inductance of one
of them. One of these coils, Cj, of inductance Zj {>M) is included in

the branch AC (Fig. 177) of a Wheatstone bridge, and the other coil,

C2, of the pair is joined up with the battery in the branch AB. The
galvanometer is in the branch CD. Let P, Q, R, S be the resistances

of the branches AC, AD, CB, DB, and let balance be obtained for
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steady currents so that PS = QR. Then if the coils be properly placed

the ratio PjQ^RjS can be so adjusted that there is no varying current

through the galvanometer, and the relation

X,= -m(i+0=-m(i+|) (46)

is fulfilled if the inductances of the other branches are negligible, or

K-

are balanced in the manner described below. The whole theory is

given in (30) below.

27. Avoidance of successive adjustments by shunting coil. In order

that the bridge may be balanced for both steady and varying currents,

the coils must be so placed that the inductive actions in the branch

AG are opposed, and the resistances adjusted until no deflection is

produced on depressing or raising the battery key. After each altera-

tion of the ratio PjQ or RjS balance for steady currents must be restored

before testing for varying currents. To avoid the repeated adjustments

necessary in this process, a non-inductive coil is joined between A and
B, and varied in resistance until no deflection is obtained on depressing

or raising the battery key after the galvanometer circuit has been com-
pleted. The presence of this coil does not affect the balance for steady

currents, so that when PS has once been made equal to QR^ this adjust-

ment is not disturbed. Now if W be the resistance supplied by this

coil and E the point in it at the potential of (7, Z), it is divided into

two parts AE, EB by the point E the resistances of which are

QWI{Q + S\ SWIiQ + S).

Since, if we please, E may be taken as in contact with D the former of

these may be regarded as a shunt on AD, bringing it down to the

resistance QW/iQ + S+W), which gives by (46) the relation

= -m(':
, P P + R

) ,(47)
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28. Brillouin's modification of method. It will be noticed that there

is want of generality of application in this method, inanmuch as both

(46) and (47) require that Ly>M. It ban been pointed out by M.
Brillouin that the method is made perfectly general, and the relation

between L, and M simplified by putting the coil C'j in the shunt branch

W between A and B. Balance for steady currents is first obtained,

and then the total resistance W of the shunt branch is altered until

balance is also obtained on making or breaking the battery circuit.

The relation between L^ and M is then

£.=-^^ <*^>

It is of great importance in this method that the inductances of the

other branches of the bridge should be as nearly as possible zero, as

sensible inductance of unknown amount not allowed for may very

seriously affect the accuracy of the result obtained. The coils used for

balance should therefore be as nearly as possible non-inductive.

It is shown below that if the branches ADy GB, DB have inductances

2^2, X3, L^t the complete condition for balance when the battery key

is depressed or raised,

^M + L.-pf^' + ^^»-§) = (49)

where h denotes the factor l + PIQ-\-(P + R)IW, or simply (P + /2)/TF,

according as the coil C2 is placed in the battery circuit or in its shunt

AEB. Now we may begin by arranging so that Zg, ^3, ^4 shall be

large in comparison with L^. This may be done by first arranging a

finite and as nearly as possible non-inductive resistance P in AC greater

than that of the coil G^, while inductive coils are included in the other

three branches. Balance for steady as well as for varying currents is

then obtained for this arrangement, and we know that then by (31")

t4'4'=« <^^

Without some special appliance this operation will involve successive

adjustments to balance for steady currents at every alteration of the

resistances, but this may be avoided by using for one of the coils,

say that in DB, a coil of variable inductance such as two coils joined

in series, one of which is within the other and capable of being turned

round to any angle of inclination of the axes. The self-inductance of

such a pair of coils is made up of two parts, the sum of the self-

inductances of the component parts, and twice the mutual inductance

between them. The latter part can be varied by varying the positions

of the coils ; and by this means when once balance for steady currents

has been obtained, that for varying currents may be obtained also

without altering the resistances of the branches.

This done, C^ may be included in AG (thus making L^ finite) and
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balance for steady currents restored by adjusting P to its former value.

Balance for transient currents is then made by varying Wy and we
have accurately L = kM, since Lg, L^, L^, Q, R, S have not been altered.

29. Method of correcting for unknown inductances in the bridge.

A different method of correction was employed by M. Brillouin. If the

coils of a resistance box made of wire doubled on itself before being

wound have identical dimensions and be made of wire of the same
specific conductivity, but differ only in length and diameter of wire,

and moreover be, as of course they generally are, without mutual
inductance of sensible amount, the ratio of the small residual inductance

of any coils which may be used from the box to their resistance will

be approximately the same. This was found to be the case for a resist-

ance box used by Brillouin in his investigations, and accordingly this

box was used to give LJR. Balance both for steady and varying

currents having first been obtained with certain values of P, Q, R, S,

W, and Li, L^, L^, L^, a resistance r of inappreciable inductance was
added to P, and the balances restored by varying R and W to new
values R' and W. The equations were then

kM + Li L2 Ls L^^Q
P Q R S '

k'M + L^ L^ L\ L^

P + r Q R' ^ S
'

which, since LJR = L'JR', gave

L,= [{k'-k)^-k^M (51)

A general investigation given by M. Brillouin shows that in order

that this comparison may be carried out with all the exactness of which

the method is capable, the galvanometer ought, if used without a

commutator giving a steady deflection, to be from 100 times to 1000

times as sensitive for transient as for steady currents. Thus to obtain

a sufficiently great galvanometer deflection, a rapidly rotating commu-
tating arrangement, such as Ayrton and Perry's secohmmeter, Fig. 174,

must be employed, if very high accuracy is aimed at.

30. Theory of the method. Referring to Fig. 177 let the inductances

of AC, AD, CB, DB, AEB, and the galvanometer branch CD, be

denoted by L^, L^, L^, L^, L^, T, respectively, and let 'a, x, y, t, be

the currents in the battery, AC, CD, and the shunt branch AEB at

any instant, then integrating over the whole interval of variation of

currents at " make " of the battery circuit, and putting y, x^, y^, z^ for

the corresponding values of the steady currents, we get for the finite

equations of currents for the circuits ACDA, CBDC, ACBEA
{P + Q)x +Gy -^Qz=-My + L2{y-ts)-{Li + L2)x,-{-Qu\

{R + S)x-{G + R + S)y + Sz = L^{y-i,)-{L^ + L^)x, + Su, [(52)

{P + R)x -Ry-Wz = L^z,-My-{Li + L.^)x,. J
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But since the resistance of the bridge network ia iS(P+ R)I{R-^S),

iy -i.)li.= W(R + 8)IS(P + R),

and therefore
,,=^^_^__^j^±^J^^

Again {y-x^- i^)/x^ = P/Q, which gives

. _^ W{R + S)
'^'' P+QS{P+R)+WiR + S)^'

Substituting these values of i^, i^, in (52) and eliminating x and z,

we see that since PS = QR, the coefficient of w identically vanishes, and
we find after easy reductions

P + Q
where A denotes the determinant

G, P + Q, Q
(G+R + S), R + S, S

-R, P+R, -W
31. Modification of formula for Brillouin's arrangement. If the coil

Og is included in the shunt branch AEB, the term involving M in the

first and third equation of (52) is - Mt^ instead of My. Hence in the

value of y given by (53) we have only to multiply M by t^jy to find

the proper relation for this case. But

t,ly = S{P + R)I{S{P + R)-\-W{R + S)}.

The multiplier of M in the numerator of the second fraction on the

right of (53) therefore becomes

A ^P ^P + R\ S{P + R)

y=^-7rr7r- x V' (^^)

Q W JS{P + R) + W{R + S)

^ W{P +Q)^Q{P + R) S P + R^JQ S P +RP + R
W{R'+S) + S{P+'R)Q W ~SQ~W ~ W '

since PIR = QIS.

In order that y may vanish the necessary and sufficient condition

...m(i.^.^^)-p(J^43_|,).o, (54)

in the case of Maxwell's arrangement ; or

^^^^''w--Kt4'-&)=«'
<«*'>

in Brillouin's modification.

It is therefore necessary in order that no error of serious magnitude
may enter into the results that Zg, L^y L^ may be either negligible or
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capable of approximate estimation. If the latter is the case the

correcting term can be at once found from (54) or (54').

32. Most sensitive arrangements of bridge. • We may investigate the

most sensitive arrangement of the bridge for this comparison. This we
shall do by (a) finding the best value of R for a given value, p, of the

ratio PjQ, and a given galvanometer, (6) finding the proper resistance

of a galvanometer bobbin of given shape and dimensions for use with

the bridge. Let r be the resistance of the battery (and the coil if in-

cluded between A and 5), then, if W be supposed infinite for the present,

the resistance of the circuit is r + S{P + R)l{R-\-S). Hence if E be the

electromotive force of the battery we have

y = E{R + S)l{r{R + S)+S{P + R)}.

Hence (53) becomes, with the value of k indicated in (49),

y=
,- /P X TTn^ (55)

{r{p + l) +P + R][a['^ + l) + pPj^'}

The condition that the denominator of this expression may be a

minimum is easily found in the ordinary way, and is

GP{r(p + l) + P}p^- Gp + P(p + 1)
^''*'>

This gives the best value of R for use with a given galvanometer.

If however there is a choice of galvanometer-bobbins of the same volume
and arrangement of wire but of different resistance, G, then for a given

current the galvanometer effect produced by each bobbin varies as

VG, provided the thickness of the insulating coating be in a constant

ratio to the diameter of the wire, or be so small as to be negligible.

Thus in order to find the condition for a maximum we have to substitute

for the denominator {D say) of the expression on the right of (55) a

new denominator D' = D/VG. Thus, calculating dD'jclG and equating

to zero, we find in addition to (56) the condition

<^-'f^n ''''

These give for R the quadratic

2R^-\-PR-P{r(p + \) + P} = (58)

This has two real roots, one positive, the other negative. The former

is therefore the required value of R and substituted in (57) gives the

value of G.

A good practical example is that in which one of the two coils has a

comparatively small resistance, as for example the primary of a Ruhm-
korff induction coil. If this be put in the battery circuit, and the cells
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have a low internal resistance, r may be put <''jnal to zero, and we have

then 1

i2 =>.
^

..(59)

These results are not affected by the introduction of the wire of

resistance W^ since we should then have instead of Q, S, simply

QW/iQ-i-S+W), SW/iQ + S+W) respectively, and p would have the

value R{Q-^S+ WySW = P(g + 5 + W)IQW,
so that (56) and (57) would not be altered in form.

83. Practical example of method. The following are samples of

results obtained by M. Brillouin in experiments made with two coaxial

and concentric coils of the following dimensions :

Mean
Diaiuoter. Lengtli.

No. of
Turns.

Large bobbin, - - 10-9 cm 48-5 3263

Small - 4-98 „ 48-5 3272

3263 [in four layers

3272 / in each case.

Value of M calculated (without allowing for thickness of layers)

4-79 X 10 c.g.s.

In all the experiments here quoted the coil C^ was placed in the

battery circuit as shown in Fig. 177.

Q B s w k

117-72 100 100 81-886 4-659 ±-002
117-72 1000 1000 420 ±-3 4-661 ±002
117-73 10000 10000 3806 ±10 4-658 ±-005
235 100 200 68-85 ±-05 4-661 ±002
587-4 200 1000 91-79 ±-04 4-659 ±-002

A series of eight experiments from which these results are selected

gave a mean value of ^•= 4-6595.

Four other experiments made with R and <S, 1000 ohms and 10000

ohms respectively, and with values of Q, 1176-3, 1176-3, 1165, 1164-8

ohms, gave results agreeing very well with one another, but furnishing

a somewhat different mean value of k, namely 4-6397.

Two experiments in which these mean values of k were respectively

used to find L/M, gave

Q n s w k' -LJM

379-6

3785

1000

1000

1000

10000

518-2 ±-5
394-5 ±-5

4-662 ±-004
4-594 ±-004

4-661 ±-003
4-660 ±-005
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A rajjidly rotating commutator was used as described above to

make and break the battery circuit so as to increase the sensibility

by giving a steady deflection of the galvanometer when the condition

for balance was not fulfilled.

34. Mutual inductance of two coils compared with self-inductance of

third. The mutual inductance M of two coils may be compared with

the self-inductance Z of a third coil by the following method, which

is also due to Prof. C. Niven.* One of the mutually acting coils is

included in the battery branch AB, Fig. 178, of a Wheatstone bridge,

the other is placed as a shunt across the galvanometer branch CD.

Fig. 178.

Balance is first obtained for steady currents, then the resistance, S\
of the shunt is altered until there is no deflection of the needle at make
and break of the battery circuit. Then

.(60)
L JP + Qf
M QS'

35. Theory of method. We shall denote by P, Q, R, S, G, as before,

the resistances of the four branches of the bridge and the galvanometer,

by /S', L' , the resistance and inductance of the coil shunting the galvano-

meter branch, by F the inductance of the galvanometer, by u, x, y, t

the currents at any instant through the battery, the branch ACy the

galvanometer, and S\ and by y the steady current through the battery.

From the galvanometer circuit ACDA, CBDC, we get the integral

equations of currents

{P+Q)x + Gy=-Lxs-i-Qu,

{R + S)x-{R-\-S-^G)y-{R + S)z Su,)
(61)

in which the inductances of the galvanometer and the coil which

shunts the branch CD do not appear, since there is no steady current

from C to D and the inductances of the other branches are supposed

negligible.

The difference of potential between C and D is

Ty + Gy =Mu + Uz + S'z.

This integrated yields Gy =My + S'z,

* Phil. Mag. Sept. 1887.
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y^h'uh converts the second equation of currents just found into

{R-^S)x-(^R + S + G + -^,-G')y=^-M~^y + Su (62)

KliniinatinfT x between (02) and tlie first of (61) with Qyl{P + Q) put

for i" and usinj^ the relation PS = Q1{, we find

M<^^-LQ

(/>+g){/'+g+G(i+J+?^+«))'

or since y= E/{r + Q{P+ R)I{P + Q)}, where r is the resistance of the

battery branch AB, including coil and connections,

* (63)

{p + +G(l+^ + ^^+^)){r(P +g)+«(P + J?)}

The necessary and sufficient condition that y may be zero is thus

LJJP + Ql
M QS'

'

which is (60). Hence when the resistances are so adjusted that there

is no integral transient current in the galvanometer branch the induct-

ances have this ratio.

It is clear that since P is fixed the value otS' depends on that chosen

for Q. To a certain extent S' is fixed and therefore also Q, since S'

cannot be less than the resistance of the coil and connections used across

CD. If P and Q be supposed both given, the best value of R to choose

would be given by the equation

{QP + r{P,Q)}GPS'

GQ{S' + P + Q)+QS'{P + Q)
^

'

The following example is given by Prof. Niven. The field magnets
of an old dynamo of the Ladd pattern were joined up in AC, and their

self-inductance was compared with the mutual inductance of a pair

of experimental coils. The resistance of that one of these coils which
was placed in CD was 10-5 ohms, the resistance P of AC was 1-79

ohms, R was made equal to P, and Q was chosen 1000 ohms, so that

S was also 1000 ohms. It was found that for balance an additional

resistance of 167 ohms was required, making S' 177-5 ohms. Thus

L^ (1001.79)2 _
M 1000x177-5

36. Comparison of an inductance with a resistance. The following

method of determining a self-inductance in absolute measure, by
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comparing it with a resistance, was used by the late Lord Rayleigh in

his determination of the absolute value of the B.A. unit of resistance*

The method is originally due to Clerk Maxwell, and is described in his

paper on "A Dynamical Theory of the Electromagnetic Field."

f

Four resistances, P, Q, R, S, are joined as four branches of a Wheat-

stone bridge, as shown in Fig. 179. The branch AG has self-inductance

C

B

FlO. 179.

L, but none of the others inductance of any kind. A battery is placed

in the branch AB, and a ballistic galvanometer in the branch CD.
Balance for steady currents is first obtained by depressing the battery

key K^, and a second or so afterwards the key A^g- Then iCg is depressed

first, and the angular deflection O^y produced by putting down K^j

and caused by the inductance L in AC, is observed.

The balance for steady currents is now disturbed by altering the

resistance P to P + SP, or ^ to ^ 4- SQ. We shall suppose that the latter

change is made. The deflection 6^2> produced by the steady current

which now flows through the galvanometer when both keys are put

down, is read off and noted.

If Xg, isi be the steady currents which flow through the branches

AC, AD respectively, after Q is changed to Q-{-SQ, and T be the period

of oscillation of the needle, then it is shown below that, subject to

correction for damping,

X=6ei'If if'. ...; (65)
Xg TT tan O2

The ratio i^g/x^ can be found as described below, and thus L can be

calculated.

37. Use of secohmmeter. The secohmmeter can be applied to increase

the sensibility of this method, and the arrangement of the apparatus is

shown in Fig. 179a. BC denotes the battery commutator, GC the

galvanometer commutator. The arrows show the direction of rotation

of each as seen from its side of the instrument. After the bridge has

been balanced for steady currents, the instrument is rotated at a speed

determined by a speed-measurer, and makes say n reversals per second.

Let the steady deflection of the galvanometer needle be 0^, then

the uniform current equivalent to that producing the deflection is

* Phil. Tram. R.S. Part II. 1882.

t Phil. Trans. R.S. vol. civ. 1865 ; or Clerk Maxwell's Collected Papers, vol. i.

p. 547.



XIV MEASUREMENT OF INDUCTANCES 559

H tan O^jGy where // is the field intensity acting on the needle, and

G is the constant of the galvanometer, supj^sed to be a tangent

instrument.

FlO. 179a.

The continuous lines here represent permanent connections inside the instrument,
the dotted lines temporary connections to bridge, etc.

The secohmmeter is now stopped, and a steady current through the

galvanometer is produced by altering Q to Q + oQ. Then it will be

seen that

^ 8QP tan G^

or

** Otan^, ,

SQP9,
n Q 0^'

J

if the deflections are small.

By first balancing for steady currents, then altering Q by a con-

venient amount SQ, and rotating the commutators at a proper speed,

the induction current may be made to balance that due to the disturb-

ance of the ratio P/Q, so that no deflection is produced. When this

is the case ^n p^^ (65")
n Q

L = k

Here kisa. coefficient depending on the relative positions of the galvano-

meter and battery commutators, and may be determined once for all

by determining the other quantities for a known self-inductance L.

The galvanometer must not be reversed exactly or very nearly midway
between two reversals of the battery, as the more nearly this arrange-

ment is made, the smaller must be the value of k and the greater

SQ . P/Q for the necessary balance.

38. Theory of method. The integral transient current through the
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galvanometer is easily found as follows. Let x, y, u be the currents

in AC, through the galvanometer, and through the battery, at any
instant, F, G, the self-inductance and resistance of the galvanometer,

then from the circuits ACDA, CBDC (Fig. 179) we get the equations

of currents

Lx-{-Px + Ty + Gy-Q{u-x)=0,

R{x-y)-S{u-x + y)-Tg-Gy = 0.

These integrated over the whole interval of variation give, with

Xg put for the steady current in AC,

{P + Q)x + Gy =Qu-Lx„ \

{R + S)x-{R-^S + G)y = Su. j

Hence y = —y 57 —. ^ (6'^)

"(-3-('*3
Thus the flow through the galvanometer is the same as that due to

an electromotive impulse, -LXg in AC, acting independently of the

battery branch AB. For, any electromotive force e, thus acting, would

give a current through the galvanometer of amount

The inductance of the galvanometer would not affect this result, and

is therefore not introduced. Thus, if we put for the integral of e the

value - Lxs, we get the result stated above.

Now if tg denote the steady current through the branch AD, the

steady currents through the galvanometer and the other branches of

the bridge satisfy the equations (obtained from the circuits ACDA,
CBDA, and the circuit ACBA, through the battery),

Pxs + Gps-Q%=^0,^

Rx,~{G + R + S)^,-Si, = 0, [
(6^)

{P+R + r)x,-Ry,-^rts=E,)

where Q' denotes any value of the resistance of the branch AD, r the

resistance and E the electromotive force of the battery. Putting

Q' =Q + SQ, and using the relation SP = QR, we get from these equations

y.-E^, (69)

where A is the determinant of the system of equations (68).

But eliminating x,^, y^, we find for the steady current t^^ through the

branch AD
^

^GR + P{G + R + S)
Z^ = £j ,

.
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Hence, from (69), ^,
« p—-

It may be noticed that an electromotive force i^SQ in AD, acting

as if the battery branch did not exist, would produce through the

galvanometer a steady current of amount

which is nearly the same thing as y, if SQ be small. It is to be care-

fully noticed here that i^ is the current in the branch AD after the

resistance Q has been altered to Q + oQ.

By the theory of the ballistic galvanometer (XII. 36, et seq. above)

y is given by the equation

subject to a correction for damping. Also

1/,= ^ tan fa,

so that yl^s= Lx>,ligi)Q = T sin ^OJir tan 9 2, or

x>, IT tan r'g

which is equation (65).

39. Lord Rayleigii's experiments. In the late Lord Rayleigh's experi-

ments the battery current was reversed to produce the induction-flow

through the galvanometer ; so that taking the deflection produced by
reversal in each case we must use the ratio t^jlx,, in the above formula

forZ.

Lord Rayleigh used for R and S two coils of ten units each taken

from a resistance box, while P was a copper coil of resistance rather

less than 24 ohms, and inductance L to be determined. A coil of 24

units taken from the same resistance box with a coil of 753 units (which

was taken from an auxiliary box) placed in parallel with it, balanced

P. The resistance P was thus 24x753/777 = 23-25869, in units of

the box.

Q was altered by substituting 853 units from the auxiliary box for

the 753 units used in parallel with the coil of 24 units. Thus Q was

made 23-34322 units, and therefore SQ was 0-08453 unit.

The battery current was reversed by a key placed m AB while the

galvanometer branch was kept closed. Observations of 9^, 9^ were

taken by means of telescope and scale in the ordinary manner ; and
were made as rapidly as possible, by properly manipulating the key,
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and opening and closing the galvanometer branch so as to stop the

inductive deflections after the throw had been observed. The observer

himself damped the vibrations of the needle by exciting temporarily

at proper times a current in a coil for the purpose.

The induction throw was taken without waiting for the needle to

come perfectly to rest, or arranging for perfect balance for steady

currents. The amplitude of free swing was obtained by observing

two successive elongations with the needle fairly quiet. Then the

battery current was reversed as the needle passed through the position

of equilibrium, and it was noted whether the induction throw was
with or against the direction of free motion, and the four elongations

after reversal were observed.

After reversal the zero for steady flow had of course shifted owing
to imperfect balance, but the change gave a means of correcting the

induction throw. Let a be double the true arc of deflection due to

induction, Uq the range of vibration from side to side just before

reversal, and h the arc through which the zero had shifted, then at

the moment after reversal the velocity which the needle had in con-

sequence of free swing was numerically iraJT, in consequence of induc-

tion 7ra/T, and the displacement from the new zero was b. The velocity

was thus 7r{adraQ)/T.

If now s represent the displacement from the new zero at any
subsequent time we have /27r \

s = ^sin f -„ t-e),

where A and e are constants. Then

ds 27rA /2'7r^ \

27rA Triaztdf.)
= -^cose= -^-^

when ^ = 0. Thus ^ cose = J(ad:«o)•

Again when ^ = 0, s = b, and therefore

^ sin e = - 6.

1 1 / V . 27r _ 27r
Hence we have s = J (a± «(,) sm -^ « + o cos t.

This represents a vibration of which the amplitude

A = Vi{a±aof-hb\

or, if b be small, 2A^aztaQ +—

,

0/

262
so that a = 2A-^aQ- —

,

d

where A was the observed arc of deflection. The correction given by
the last term was very small. 2A was the arc between the two turning
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points immediately following the reversal. A« a check, readings of the

two following turning points were also taken. The new zero was
obtained from two successive elongations of the needle which were

observed after the needle had nearly come to rest in its new position.

The next time the needle passed through the equilibrium i)08ition

an induction throw in the opi>ositc direction to the last was taken, and
the four immediately following elongations observed.

40. Observations of steady current deflection. Readings were then

taken as <|uickly us po.ssil)le of the steady current deflection produced

by changing the coil of 753 units to 853 units. Readings of three or

four successive elongations were taken as soon as the amplitudes had
become moderate. Then the galvanometer branch CD was opened,

and the battery current was reversed while the needle was passing

over to the other side of zero. When the needle had swung over, the

galvanometer contact was restored, then four elongations were again

observed. The arc between the two positions of equilibrium was thus

twice the deflection due to the steady current produced by changing

Q from 23-25869 to 23-34322 units.

A correction of course had to be made for the effect which would
have been produced by reversing without changing Q. This was
obtained from the observations of the effect of imperfect balance

made before each induction throw ; and any progressive change due
to alteration of temperature was got rid of by using the mean of such

observations made before and after a change from 753 to 853 units.

The following is a specimen set of observations. In the table E. P.

stands for " equilibrium position," and I. T. for " induction throw."

Time of
Observation.

Position of
Battery Key.

Readings on Scale and Deflections in
Scale Divisions.

3 h. 36 m.

3 h. 38 m.

Left.

Riglit.

E. P. 264-4]

I. T. 246-6

E. P. 262-5

I. T. 245-6J

Res. 753

units.

3 h. 40 m.

3h.41m.
Right.

Left.

E. P. 182-3\Res. 853

E. P. 344-7/ units.

• 3h.44m.

3 h. 45 m.

Left.

Right.

E. P. 264-4>|

I. T. 245-7 Res. 753

E. P. 263- 1 r units.

LT. 245-6i

41. Reduction of results of observations. In the first set of these

results the difference 1-9 between 264-4 and 262-5 was due to imperfec-

tion of balance, in the second set the difference was 1-3. The mean of
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these, 1-6, subtracted from 162-4 gave 160-8 as the deflection produced

by replacing 753 units by 853 and reversing, corrected for imperfection

of balance.

Thus the ratio of the two deflections obtained from this specimen

set of observations was 245-9/160-8 = 1-529. Two sets, each of four

similar observations, the second set made with the galvanometer

reversed, gave each the mean V9,lue 1-5310 for this ratio, so that

reversing the galvanometer produced no effect.

Calling D the distance of the mirror from the scale, 2A the induction

deflection, 2B the deflection produced by reversing the battery current

when balance is disturbed by the addition of 100 units to the 753,

all three quantities being expressed in terms of the same unit of length,

we have

A B
tan W^ = —

, tan 20 ^ = ^ ,

which give by successive approximation

11^
2 sin 1^1 .4 32Z)2

tan (92 ~B IB^ '

4 2)2

or, since ^ = 122-5, B = 80, and D = 2180,

?|^*f^ =-99925 4 = -99925 x 1-5310.
tan O2 B

Separate determinations of the logarithmic decrement gave X = -0142,

and the period T was found to be 23-386 seconds. Since the effect of

damping was to diminish the distances from zero at the first and
second elongations by the fractions JA, fA of their proper amount, the

difference between these distances can be corrected by multiplying

by the factor 1 + A. It is sufficient to apply this factor to the value of

2 sin l^i/tan O^.

Thus the equation for L becomes

Z = ^^^^^ -99925^(1+ A) (69')

The resistance of the galvanometer was 80 units, and calculation

showed that the current through it might be neglected in estimating

the ratio z^^/x,^. The resistance of the battery being low, the difference

of potential between A and B was taken as given. Calling it V we
have

x,= 7/(10 + 23-25869), ^,= F/(10 + 23-34322),

,, , tg 10 + 23-25869
'"*^^^

^r 10 + 23-34322-

Using then these data with the value

•08453 X -987 ohm or -08453 x -987 x 10^ c.g.s.
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for (iQ obtained by regarding 1 h.a. mnL a« W.^T ulim, \\e grt

L = 2-4028xlO'^

in ordinary electromagnetic c.g.g unitn, that ia, in centimetres.*

At the temperature of the room tlie refiistances given by the Ijoxes

were not exactly multiples of the b.a. unit, and tlie reHistance of

853 units had to be increas<'d by fully one part in a thousand to give

the necessary correction. Thus oQ was greater than the value given

above by this fraction. Thus, finally,

L = 24052xiaMncm.

Calculation from the specification of the coil gave

X = 2-4(X)xlO«, in cm,

about 1 in 500 less. In Lord Rayleigh's judgment the former value

was just as likely to be corn'ct.

42. Joubert's method of measuring self-inductance. A self-inductance

may also be compared with a resistance by the following method due
to M. Joubert. A circuit is made up of the coil the inductance of

which is to be determined, and a non-inductive resistance. An alter-

nating machine giving a suitable electromotive force as nearly as

possible following the simple harmonic law is included, and the mean
square of the difference of potential between the terminals is compared
by means of an electrometer with that existing between the terminals

of the non-inductive resistance. Denoting the mean squares of these

differences, respectively, by Fj^, Fg^* ^^^ ^^® resistances of the corre-

sponding coils by i?i, i?2' w^ have

ll^Rl +r^ „
F,» R2' '

where n = 4:7r/T, T being the complete period of the alternating current.

This equation gives

L=hmi-{) (71)

The value of n can be found of course from the speed of the machine,

and the number of alternations in each turn.

To find the ratio V^IV2 the electrometer must be used idiostatically

as explained below,! that is, one terminal is connected to one

pair of quadrants if the instrument is a quadrant electrometer ; or

to the stationary electrified system which acts on the movable system

or indicator, while the other terminal is attached to the needle or

indicator. Then the mean square of the difference of potential between

the terminals will be proportional to the deflection if small, or if the

needle is brought back to a sighted zero position, will be proportional

See Chapter XVI. fSee the chapter on Electrostatic Measurements.
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to the couple required to keep it in that position. Any sensitive elec-

trostatic voltmeter is well adapted for this measurement.

43. Theory of Joubert's method. To prove the formulas stated above
let r be the part of the resistance which does not depend on the coils

used for the comparison, E sin nt the electromotive force in the circuit

at any instant, and x the current at that instant. Then if L + L' is

the total inductance in the circuit

{L + L')x-h{Rj^ + R2 + r)x = E sin nt.

The part Lx + R^x is the difference of potential then existing between
the terminals of the coil that is being tested, R2X is that between the

terminals of the non-inductive coil. We may write, therefore, if Vj,

V2, be constants,

Lx + R^x = Vi sin nt, \

R2X = V2 sin nt.)

The complete solution of the first of these equations is

x = Ae ^ + -——A=^ cos Int-e),
VR^^ + n^U'

(72)

.(73)

where tan e =—^ •

nL

The first term on the right dies out in a short time and has no further

influence, if the machine works regularly, and so

«.

cos [nt-e).
y/R^^n^U-

By this result and the second of (72)

x> R
R9X— ^ ^ cos int -e) = Vc, ain nt,

.
' VRi'-^n^L^

R ^-{-n^U'
and therefore v^ cos^ (nt - e) = ^

^— v^ sin^ nt.

Hence, integrating over a complete period, we find

fl_R^l +r^

which is (70), and the rest follows as above.

The quantity in the numerator is the square of what is called the

" impedance " of the conductor ; R^ is often referred to as the " ohmic

resistance."

44. Conditions for accuracy of Joubert's method. It will be observed

that the accuracy of this method depends to some extent on obtaining

an alternating current which is sufficiently nearly expressed by a simple

harmonic function of the time, that is which varies as sin^^, where
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27r/^ is tilt; period of alternation. Alniost all alternating machines give

currents which are more complex, and a difficulty arises unless a sfiecial

machine is available. There are sources of error also ; for example,

tlie caj)a(;ity of the electrometer if of sensible amount gives a current

which is derived from the main alternating current in the circuit, and
the coils have each a certain electrostatic capacity. Moreover, if the

rate of alternation is high and the wire be thick, the ohmic resistances

of the coils cease to be constants, and de|)end on the frequency of

alternation in a manner which has been explained in Chapter IX.

This effect, however, is not of sensible amount if the frequency is low,

and the wire is of the thickness usually employed in induction coils

and standards. Also the tendency to restriction of the current to the

outer layers which rapid alternation produces takes place in both

coils, and this affects the ohmic resistances of both, and the inductance

of that which is inductive.

45. Rosa and Grover's investigation : correction for wave form.

A determination of a self-inductance by a modification of this method
was carried out with great care by Mr. E. B. Rosa and Mr. Frederick

Grover in the laboratory of the Bureau of Standards at Washington.*
The arrangement was that shown in Fig. 180. The alternating machine
used was one which gave an electromotive force represented approxi-

mately by a simple sine curve. This curve was drawn by a curve

tracer devised by Mr. Rosa, and was subjected to harmonic analysis

in order to discover its various components. To accentuate the higher

harmonics present in the curve a current was passed in a derived

branch on AC (Fig. 180) which contained a condenser and was examined
by the curve tracer. In such a branch the harmonics are magnified

by the action of the condenser in proportion to their order.

A correcting factor / due to the presence of the higher harmonics
was then found in the following manner. Denoting the current pro-

duced by the alternator at any instant by /, we have for / an expression

of the form

I = Ii sin {pt - </)i) + /g sin {3pt - ^3) + 1^ sin {5pt -<p^) + ...

as only the odd harmonics were present. The mean square of the

current was then (see VIII. 24 above)

For two coils in series one non-inductive and of resistance R, the

other having self-inductance L and resistance r, through which the

current I passes, the mean squares of the electromotive forces between
the pairs of terminals are respectively

See a paper presented at the Intern. Elect. Congress at St. Louis, 1904
{B.B.S.W. i. p. 125).
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Now in the experiments carried out E^ and E^^ were made identical

in value, and so was obtained the equation

The correction factor /is therefore given by the equation

•^

/i2 + 9/32 + 257,2+...

The analysis of the curves of the machine is given with full particulars

in the paper referred to above. We state here only the most probable

value found for/, which was

/= 0-99858,

a number differing from unity by 142 parts in 100,000, a quite sensible

difference.

46. Rosa and Grover's determination continued. In Fig. 180 the

non-inductive coil is marked R, the other L, r. These were in series.

L.r

Electrometer

and the terminals of the alternator were applied at the points A, C.

An electrodynamometer joined between A and C acted as a sensitive

voltmeter for the alternator. One terminal of an electrometer was
connected to the point B, between the two coils, and the other was
carried to a switch S by which connection was made between A, B or

B, C as required.

The value of R was varied until the same deflection was obtained

for AB as for BC. The frequency was found at the same time by
means of a chronograph and chronometer. The beats of the chrono-

meter were registered by the chronograph, which made also an electric

contact for every 50 revolutions of the alternator. Thus when the

speed was kept constant the frequency ^/27r was at once obtained.

To control the speed a rotating commutator directly connected to

the alternator so as to be driven by it, was used, with a Wheatstone
bridge and condenser arranged with it. When this bridge was balanced

at the required speed an observer kept the speed constant, by varying

the resistance R^ in the field coils of the driving motor by means of a

rheostat, so as to keep the galvanometer needle stationary.
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The electromotive l«»n «• wn A H could not easily be made exactly

equal to that on BC, but the value of the reHistance oi AB was adjusted

to the nearest ohm ho a« to give this equality, and electrometer readings

were taken for AB and for B(\ Three pairs of such readings were

taken for the resistance chosen. Then if the resistance of AB was too

low, it was increased by one ohm, and three pairs of electrometer

readings again taken. The exact value of the resistance for equal

readinfjs on AB and BC was then deduced by interjmlation.

47. Results of Rosa and Grover's experiments. Two coils from
different makers, each having inductance of the nominal value of

1 henry were experimented with ; one is denoted in the following

table of results by L^,, the other by Ly. The table will give an
idea of the concordance of the results obtained in different sets of

experiments

;

1 2 3 4 5 6

R r n inductance
nncorrccted

for wave form

Mean of
L

J^c

Run 1 - 1149-98 97-6 179-51 101567

/ 1-06572

J

Run 4 - 1141-90 97-75 178-284 101564
Run 5 -

Run 8 -

1133-93

1132-69

97-9

98-05

177()09

176-793

101575
101586

101428

Run 9 - 1159-76 98-2 181-083 101556

Run 2 - 113401 97-4 179-550 1-00145 \
Run 3 1125-93 97-6 178-272 100140
Run 6 - 1118-19 97-7 177009 100156 H-00144 1-00002

Run 7 - 1116-68 97-8 176-804 1-00135

Run 10 - 1143-62 97-9 181081 100145 J

In another set of experiments the corrected values obtained were
respectively 1-01416 and 1-00018.

It was found that the inductances varied somewhat wuth the tem-
perature of the laboratory, and that the temperature coefficients had
opposite signs for the two coils. The coil Ly was found to be wound
on a spool of serpentine imbedded in paraffin, while the other was
made of dry silk-covered wire wound on a spool of mahogany. No
doubt the expansion of the paraffin increased the geometric mean
distance of the wires, and so diminished L more than it was increased

by the increase of the radius caused by expansion of the copper.
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48. Comparison of self-inductance with capacity of a condenser.

Maxwell also showed how to compare the inductance of a coil with

the capacity of a condenser, and his method has since been modified

by various experimenters so as to obviate the necessity for successive

adjustments which it involves. As originally given the method con-

sisted in placing the coil in one branch of a Wheatstone bridge, as

DB, Fig. 181, while the plates of the condenser were attached directly

at AG. Balance for steady currents is first obtained and is not affected

by the condenser ; then the resistances are altered until no inductive

flow through the galvanometer is produced by making or breaking

the battery circuit. If G be the capacity of the condenser, P, S the

resistances of the branches AG, DB, the relation fulfilled when balance

is thus obtained is L = PSG (74)

49. Theory of the method. Let, as before, P, Q, R, S denote the

resistances of AG, AD, GB, DB, L the inductance in the branch DB,

Fig. isi.

and put G for the capacity of the condenser. Let further for any
instant z denote the current along AG, x-i the current charging the

condenser, y the current from A to D, and ^, >/ the potentials at G
and D. Suppose that balance for steady currents is first obtained so

that PS = QR, then in order that at the instant in question ^ may be

equal to r] the conditions Pt = Oii (75)

Ly + Sy = Rx (76)

must hold. But Pi is the difference of potential between A and G,

and may be taken as that between the plates of the condenser. Hence
the charge of the condenser is CPz, and since x-zis the rate of increase

of this charge, we have

x-i = CPz = CQy.

This with (75) converts (76) into

Ly-^Sy = ^^-^-RCQy, (77)

which if ^ is always to be equal to jul must hold for all values of y and

y. But PS - RQ = ; hence we must have also

L = PSG, (78)

and S and P must be chosen so as to fulfil this condition if the current

through the galvanometer is always to be zero.
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50. Rimington's modification o! Maxwell's method. A series of

successive adjustments is tlius iHMcssary before tlie proper values of

S and P and balance for steady currents are obtained. Mr. E. C.

Riinington * has sliown how these adjustments may be avoided by a

very sim})h' modification of the method. The balance for steady cur-

rents having been obtained as before, the condenser is applied at two
points E, F^ in AC (Fig. 182), including between them a resistance

^ C

Fia, 1S2.

p {<P) such that with the inductance L in DB no deflection of the

galvanometer needle takes place when the battery key is depressed

or raised. The resistance p may be taken from a resistance slide, the

whole (or the variable part) of which is included in AC, or preferably

two slides in series may be used so as to give two adjustable sliding

contact pieces to which to attach the plates of the condenser. The
galvanometer needle should have sufficient moment of inertia to

enable the inductive action to begin and end before the needle has

sensibly moved, for the effect of the condenser AC, which is charged

by the current from A to E, is to delay the rise of the potential at C
to its final value after the battery key is put down, while the inductance

L in DB produces a similar effect on the rise of the potential at C.

Hence if the needle were not sufficiently ballistic it might show a

deflection due to a difference in the rate of variation in the two cases,

although the time-integral of the current through the galvanometer

were really zero. The inductance is given by the equation

L = Cp^^ (79)

51. Theory of Rimington's modification. Writing down the equations

of currents for the circuits AGDA, CBDC, putting x for the current

in AE and FC, i for the current in EF, ^ for the galvanometer current,

u for the current through the battery, using the same notation as

before for the other quantities, and integrating over the time interval

from the instant before completion of the battery circuit until the

steady state has been attained, we find by (6)

(P + Q)x +Gy=^Qu + Cp^x,, \

{R + S)x-{G + R + S)y=^Su + L{y-x,),j '

Phil Mag. July, 1887.



572 ABSOLUTE MEASUREMENTS IN ELECTRICITY chap.

where y, x^., denote the steady currents, in the battery and in the branch

AC. Solving for y and putting y-x^^x^P/Q, we find

{R + S){Cp^S-LP)x,
y S{G{R-\-S) + {G + R^S){P + Q)}

^ ^

Thus the necessary and sufficient condition that there should be no

integral flow through the galvanometer is

as already stated.

If ^ = P this gives the result already obtained for the case originally

considered by Maxwell.

It ought to be noticed here that precisely the same equation may
be obtained by integrating, in the same way, over the interval at

break from the steady state to zero current in each conductor, so

that the test may be repeated at breaking the circuit.

We may now investigate the most sensitive arrangement of the

bridge. In general S is given in magnitude, and p, which must of

course be less than P, will in most cases be some convenient resistance

depending on the apparatus available, so that P may be regarded as

given. Hence we have to choose the value of R (and that of Q will

follow) so that y may for some chosen value of jo be a maximum. By
(81) and the equation

.
SE

'''~r{R + S) + S{P + Ry

where E is the electromotive force of the battery, and r the resistance

of the battery and the wires connecting it to ^, B, we get easily

, =
(OP'S-LP)E

^32)

{e(l+J) + p(l+|)){r(fi + S)+S(P + fl)}

The numerator of this expression does not vary : hence calling the

denominator D, calculating dD/dR, and equating to zero, we find after

reduction SP{G + S)(r + P) ,„„.

^ = iGTP)F-rsr' '
'

which gives the best value of R if that of G is given.

If however there is a choice of similar galvanometer bobbins of

different resistances, then as before (XII. 22) we must substitute for D a

value D' = D/VG, calculate dD'/dG, and equate the result also to

zero. This gives another equation for G and R, viz.

G=^^^ '^*'

From (83) and (84) as simultaneous equations the values of G and
R are to be found.
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If
J) is at the di8f>o8aI of the experimenter and can be varied by

small steps, the best arranj^ement is that for wliich, when y is almost

zero, a ^iven small ( hangc in p gives a maximum change in y. Hence
if possible we have to arrange so that dyjdp may be a maximum when

y = 0. The conditions for this however are so complicated as to be

unserviceable,

52. Anderson's ballistic metiiod. In the same pai>er Professor Ander-

son gives the following Himj)le ballistic method of comparing the

capacity of a condenser with an inductance. A bridge is made up as

before of four conductors, and a condenser and galvanometer are

arranged as in Fig. 183, so that by means of mercury cups the galvano-

meter can be connected either to CD by the cups a, 6, c, rf, or in series

with the condenser in the branch ABhy the cups c, rf, e,/. A rocking

key is conveniently made to effect either of these connections at a

Fig. 1.S3.

single operation. A coil of inductance L is placed in AC, all the other

branches with the exception of the galvanometer are destitute of

inductance.

Balance for steady currents is first obtained with the galvanometer

in CD. Then when the key K is depressed or raised an inductive flow

of integral amount y passes through the galvanometer. If Xg is the

steady current in DB, the value of y is given by

y=
IjXo

«{'4)*<-l)

(85)

The deflection 0^ produced by this is noted.

By means of the rocking key the galvanometer is joined in series

with the condenser between the points A and B, so that the plates of

the condenser are charged to a difference of potential Xg{Q + S). If

C be the capacity of the condenser a quantity of electricity Cx^iQ + S)

passes through the galvanometer. The resulting deflection O2 is

observed.

We have then by the theory of the ballistic galvanometer and (85)

Z.= 0(Q..){.(..|)..(l.J)}:-i;ii|-; (86,
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53. Practical example of Anderson's ballistic method. The following

are the details of an actual measurement made by the author of the

method. A coil of mean radius 20-9 cm wound with 278 turns of wire

in a groove of breadth 1-894: cm and dej^th 1-116 cm, was placed in

DB. The galvanometer was an ordinary reflecting instrument of

resistance 164-8 ohms, with its period made as long as possible by means
of a controlling magnet. A non-inductive resistance of 100 ohms was
added to the coil, and P and R were each 10 ohms. Balance was
obtained by making S 150-51 ohms. The mean results of several read-

ings agreeing well together were

Deflection due to induction - - _ _ 43-208 divisions.

Deflection due to charge of condenser of -5

microfarad ------- 46-125 „

Deflection due to charge of condenser of -45

microfarad ------- 41-875 „

By interpolation it was found from these results that a condenser of

•4657 microfarad capacity would just give a deflection of 43-208 divi-

sions. Thus in c.g.s. units *

L = -4657 X 10-15 X 2 X 150-51 x (329-6 -h 150-51 + 10) x lO^s

= •0687x109.

54. Comparison of mutual inductance and capacity by Anderson's

ballistic method. To determine a mutual inductance the method is

Fig. 184.

used thus : One coil, Cj, of the mutually influencing pair is joined in

DB as before, the other, C^, has its terminals joined to a pair of mercury

cups ^, h, which are arranged so that a rocking-key can put the galvano-

meter between A and B, or between the cups g^ h, so as to connect

the terminals of the coil G^-

Balance for steady currents having been obtained as before, the

terminals of the galvanometer are connected to g, h, and the battery

circuit is completed or broken. Calling ^3 the deflection produced and
denoting by 0^, 62, as before, the deflections obtained by operating

* See Chapter I. A microfarad is 10~-^ c.g.s. units of capacity, and an ohm
10' c.g.s. units of resistance.
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with the coil C, as already described (p. 573), we have

and
M
L

«in 10,

.(87)

r^+a
(88)

The inductive electroinotivo force at any instant in the coil Cg is

MXy hence the integral electromotive force is Mx„. The whole quantity

of electricity which Hows through the galvanometer is thus MxJ(r2 + 0),

where fg 's the resistaFice of the coil C'j. But the quantity of electricity

which ])as8es when the throw O2 ^^ produced is Cxg{Q + S). Hence
we get (87), and combining (87) with (86) we get (88).

As an example Professor Anderson gives the following :

Q=S= 1-003 ohm, the resistance of the coil Oj

;

r2= 157-7 ohms, G = l6i'S ohms;

= 1 microfarad, ^3, 02 = 12 and 5 scale divisions respectively.

Hence roughly, in c.g.s. units,

M = 103 X 2.006 X 322-5 x 14-4

= 9316x103,

or about -0093 henry.

55. Comparison of mutual inductance and capacity by a differential

galvanometer. In the paper already referred to in (21) above, Professor

Niven * has shown how to compare the inductance of a coil with the

capacity of a condenser by means of a differentia galvanometer. A
circuit is made up as shown in Fig. 185, of one coil of the differential

Ro

Fig. 185.

galvanometer, the coil (of inductance L and resistance R^) to be com-
pared, an additional resistance in the branch AE and the battery B.

A corresponding circuit is arranged with the other coil of the galvano-

meter, a non-inductive resistance i?2» ^^ additional resistance in the

branch AF, and the battery as before, so that the battery serves both

circuits as shown in the figure. After balance for steady currents has

been obtained by adjusting the additional resistances, the condenser

is joined across the two branches AE, AF, and the terminals shifted

until no deflection is produced, when the battery-key is depressed, or

Pkil Mag. Sept. 1887.
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raised, the circuits having been otherwise completed previously. When
this is the case the following condition is fulfilled :

L = C{R\^-R\% (89)

where R\, R\, are the resistances from ^ to P and Q respectively

(see Fig. 185).

56. Theory of method by differential galvanometer. We shall suppose

the coils of the galvanometer exactly equal for equal currents in

magnetic effect on the needle, and that each has the same ' resistance

G. Clearly, for balance with steady currents, the resistance of each

circuit must be the same. Denoting therefore by R the resistance in

each circuit, exclusive of the battery resistance r and the resistance

G of the galvanometer coil, and putting E for the electromotive force

of the battery, we have for the steady current y through either of the

galvanometer coils y(/? + (T) + 2yr = J5^, or

y-u^r <^«)

Let TQ be the points at which the terminals of the condenser are

attached, R\ denote the resistance from A to P, R'\, that from P to

the nearest galvanometer terminal, R\, R'\, the resistances from A
to Q, and from Q to the galvanometer, 1' the inductance of each

galvanometer coil, M their mutual inductance, x-i the current from

A to P, y + t that from A to Q, and t the current from Q charging the

condenser. The equations of currents obtained from the two circuits

AEGE'A, AFGF'A, are (since R^ + R\ + R\ = R^ + R\^^ R\ = R)

{L + l)x + My + {R + G + r)x-i-rp-R\z = E,

Mx + Ty + rx + {R + G + r)y + R'2i = E.

Integrating these from before make to the steady state, putting y
for the steady current, and subtracting, we find

{R + G){x-y) + Ly-{R\ + R\)z = (91)

But the final charge of the condenser is C{R\ — R'2)y if C denote

its capacity, so that
z = C(R' - R' )'v

Substituting in the last equation, we get

CiR'i^-R'^^-L
y = y R + G

-^=^5?&^'54 <^^^

by (90).

If no deflection of the galvanometer needle takes place x must be

equal to y, and for this the necessary and sufficient condition is

L = C{R\^-R'2%
as already stated above in (89).
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With rof^ard to tho seriHibility of th<* arran^rmciit it ih to ho olmerved

that Iti is givon, being the resistance of the coil to be compared, and
in general G also is given, so that all that can be done to make the

arrangement sensitive is to ke<*j> down the value of the resistance

additional to i?j.

If the resistance of the battery is negligible and the galvanometer

bobbins be a matter of choice, the best arrangement is to make the

additional resistance as small as possible, and make O-R.
If the galvanometer coils be each shunted by a wire of resistance

S the resistance of each galvanometer bobbin will become GS/iG + S)^

which we denote by G', and this, if the inductance of each shunt is the

same, takes the place of G in (92). The integral flow through the coils

is then Sxl{G + S) for one, and Syl{G + S) for the other. Hence the

total flow affecting the needle is S{x-y)/{G + S), or {x-y)G'IG. But
we now have C(R\^-R'^)-L

''-'> = ^{R + G'){R + G-^2r)
'''^'

Hence in order that {x-y)G'/G may be a maximum, we must make
{R + G'){I{ + G' + 2r)/G' a minimum. Differentiating with respect to

G', we find that the condition for a minimum is

G'^ = R{R + 2r) (94)

Thus if tho galvanometer have a high resistance so that the deflec-

tions are small, an improvement can be effected by shunting down
each coil of the instrument to an effective resistance given by this

equation.

57. Anderson's null method for comparison of self-inductance and

capacity. A modification of Maxwell's method which has the advantage

C

Fia. 1S6.

of being a perfectly null method, and therefore of permitting a telephone

to be used instead of a galvanometer has also been given by Prof. A.

Anderson.* The arrangement of resistances is the same as before, but

the condenser instead of being placed between A and G is placed between

A and a point E on CD (Fig. 186). The galvanometer (or telephone)

is supposed included in the part ED of CD, and the resistance, g say,

of CE is varied until no deflection of the galvanometer needle is

produced by making or breaking the battery circuit,

Phil. Mag. April, 1891.

G.A.M. 2o
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Let the resistance of ED be denoted by G, the currents through

the galvanometer (from E to D) and to the condenser by y, z, so that

the current from E to Cm z-y. Thus from the circuits ACDA, CBDA,
by integrating over the interval of variation, and using the value

Qyl{P + Q) for Xg the steady current in AC, and CPxg for the final

charge z of the condenser, we get, if the inductances of the other arms
of the bridge are negligible,

{P + Q)x + {G+g)y== -^^CPQy + Qu,

{R + S)x-{R + S-^G+g)y =p^ {L-CQ{R + S-^g)} + Su.

...(95)

Eliminating x we find

^ ^{R + S){G+g)-h{R + S + G + g){P + Q)
^ ^

The value of y is zero if the numerator vanish, that is if

L = C{RQ+g{Q + S)} (97)

If ^ = we fall back on Maxwell's solution, viz.

L = CRQ = CPS (98)

58. Condition that the method may be null. That this is the necessary

condition that the method may be a null one may be seen in the follow-

ing manner. Whatever be the conductor between A and E the difference

of potential between A and E is Px + g{y-z), while that between

A and D is Q{u-x-z). If there is no difference of potential between

E and D, y = 0, and we have Px-gi = Q{u-x-z). Integrating from

just before the completion of the circuit to any instant during the

interval of variation, we find

Px-gz=Q{u-x-z) (99)

Also from the branches ECB, DB we get in like manner

R{x + z)-hgz = S{u-x-z) + L{u-x-z).

But by (99) the last equation may be written

Rx + {g + R)z-^{Px-g&)^S{u-x-z) (100)

Equation (99) multiplied by S and subtracted from the last equation

multiplied by Q gives, since PS = QR,
{QR+g{Qi-S)}z-L{Px-gt) = 0,

and since Px^zjC+gt, this is

C{QR+g{Q + S)}z-Lz = 0.

Hence L = C{QR+g{Q + S)} (101)

That, conversely, the difference of potential between E and D is

zero if this condition is fulfilled can be seen, as in 18 above, from the
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consideration that otherwiHc there would be more than one solution

of the problem of flow of electricity in the given network between A
and B.

If g be small the main part of L is CQR, if g is made great the main
part will be Cff{Q + S). Thus by merely changing the resistance between

C and D and its distribution between g and />, a large range of induct-

ances can be measured. Returning to (96), putting for y its value

El{r + S{P+R)l{R + S)},

we write the equation in the form

y^E £e««+»(« +«)b:y_ ...(,02)

{a+g + {R + S + G+g)^]{r{R + S) + SU' + i{)i

For the greatest sensitiveness a given change in g, the adjustable

resistance, must produce a maximum change in y when y is nearly

zero, that is dy/ilg nmst be a maximum when y = 0. In all practical

cases we may neglect r, the resistance of the battery, so that we have

dy_ ^ CP{Q + S)E

^'^^ {G+g + {R + 8 + G-^g)^j^)s{P+R)

P{Q + S) ^P{Q +S)^P
S{P + R) R{Q + S) W

this equation may be written

f^^ £1 (103)

'^'"' ^{G+g) + R +S + 6+g

Hence, in order that the denominator may be small, we must take

R and g small and P large, and therefore Q also large.

59. Stroud and Oates' modification. Anderson's method has been

modified by Messrs. Stroud and Oates * for the measurement of

inductances and the comparison of capacities. The battery is replaced

by an A.c. generator. The resistance g in the bridge scheme discussed

above is in some cases of very considerable magnitude, and placing it

in series with the galvanometer reduces the sensibility. Accordingly

the condenser and the resistance g were arranged as would be shown
by Fig. 186 if modified as follows : The condenser and the resistance 7
are connected in series across P between C and A, and one terminal of

the generator is connected to the common terminal A' of the condenser

and the resistance. Thus the condenser is between C and A', and the

resistance between A' and A. The second terminal of the generator

was connected to B, and the galvanometer was connected between C
and D. The procedure is as before, the resistance g is varied until the

PAtlJlfay. 6(1903), p. 707.

But since
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depression of the battery key after the connection between C and D
had been closed by the galvanometer key produced no deflection.

It may be observed that turning Fig. 186 round so that the con-

denser is placed between B and the point E on the connection between

C and D, and the inductive resistance is in AD, in no way alters the

expression for L. For we should have as in (101) above

L = C{g{Q + S) + PS},

which, since PS = QR, is the same equation as before. It is not difficult

to prove that in the arrangement of Stroud and Gates the equation

for L is

L= C{g{P + Q)+PS}. (104)

If this arrangement is represented by a drawing, it will be seen at

once that it is in a sense conjugate to that of Anderson, which

explains the similarity of the formulae for the two cases ; in point

of fact one formula can be deduced from the other.

Messrs. Stroud and Gates used an alternating current, with a moving
coil galvanometer, the field magnet of which was of laminated soft

iron strongly excited by an alternating current supplied by the alter-

nating generator. The result was a large increase of sensibility, which

enabled very small inductances to be tested.

60. Rosa and Grover's determination by Anderson's null method.

Very accurate measurements have been made by Anderson's method

C

FlO. 1S7.—Showing commutator for interchanging two arms of tlie Anderson Bridge.

by Messrs. Rosa and Grover at the Bureau of Standards at Washington
[B.B.S.W. 1, p. 291]. The arrangement of apparatus is shown in

Fig. 187. An alternating current generator was connected to the points

A, B, and a mercury commutator enabled the resistances P, R to be

interchanged. This enabled errors from slight changes of P and R to

be eliminated. These resistances are made equal, but of course there

are nearly always differences in residual inductance and in capacity

between coils which are equal in resistance, and these also have their
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oflFcctH ])ra( tieally annulled hy the interchange of the arras of the bridge,

aH Hhown in Fig. IH7.

Th(? rcHiHtances were made of inanganin and were submerged in oil

to enable their temperatureH to be measured and to prevent heating.

Slide wireH enabled the resistances g and ^ to be adjusted to 0-001

ohm, and for all accurate determinations a new measurement of resist-

ance was made every day.

A vibration galvanometer was employtul, that is a galvanometer

the needle system of which is capable of oscillating in time with the

short ))eriod alternating forces applied by the alternating current.

It is of course the case that when the conditions for balance of resist-

ances and balance of inductances are satisfied, that no current can

pass through the galvanometer at any instant. But if the steady

current balance be slightly disturbed, as it is apt to be by heating of

the coils, then it is impossible to adjust the resistance fj so as to make
the galvanometer current zero. All that can be done is first to adjust

g so that the needle of the galvanometer has a minimum amplitude of

oscillation as the circuit of the battery is made and broken, or the

alternating current generator is run, and then to alter one of the re.si.st-

ances (say Q) so that a complete balance is obtained, and the needle

remains stationary. This obviates the necessity when an alternating

machine is used for returning to the use of a direct current to test

whether the steady current balance still holds, and moreover it is

possible, at the moment when the vibration range is a minimum, to

make sure that the resistance balance is exactly restored. Also, as

Messrs. Rosa and Grover point out, the vibration galvanometer takes

account of the variation of the resistance of the inductive coil, or of

the arms of the bridge, caused by the alternation of the current. This

variation, as has already been pointed out, is small for fine wire and low

frequencies of alternation.

A vibration galvanometer having a resistance of 200 ohms was used
at a frequency of about 1 10. The curve of sensibility of the galvanometer
had two peaks of sensibility, at 110-6 and 120 vibrations per second,

and a minimum of sensibility at a frequency of 115. This rapid falling

off from sensibility when the frequency varied from that natural to

the needle was the chief inconvenience of the instrument.

The whole of the adjustments for balance were made by the vibra-

tion galvanometer, starting from a rough direct current balance. A
graduated scale was viewed by means of a telescope which received

rays reflected from the mirror of the galvanometer. The filament of

an incandescent lamp which illuminated the scale was also seen in

the telescope. When approximate adjustments of the resistances to

balance for steady currents and of g were made the filament appeared
somewhat broadened by the vibration of the galvanometer mirror when
the alternator was run. Small changes of resistance were then made
until the filament and the lines on the scale were quite sharp and clear.
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61. Residual inductances and capacities in "non-inductive" coils.

The difficulties in making exact determinations of inductances by this

method, or by any other, arise from residual inductance in the non-

inductive coils used, and the electrostatic capacity of the coil g and of

the arms of the bridge. The inductive coils used must of course be

placed at considerable distances (of the order of a metre) from one

another, and from the arms of the bridge, and the necessary leads,

if twisted together to avoid inductance, will have appreciable capacity.

This capacity effect of the leads is small in small coils and is obviously

relatively much more important in large coils. In the latter case the

leads may be kept apart in definite positions for which their inductance

can be calculated or determined.

The subject of errors due to residual inductance and to electrostatic

capacity is well illustrated by the manner in which Messrs. Rosa and

Grover's research on Anderson's method was carried out, and in some
instructive remarks which the authors make. As regards residual

inductance or capacity in the arms of the bridge and the coil g, they

state first that the resistances P and R of the coils were always made
equal and were interchanged by a commutator, so as to eliminate the

effects of any difference in their resistances, their inductances, or their

capacities. This left however the differences between Q and S (apart

from the inductance L) to produce an effect. Residual inductance in

the non-inductive part of Q would make L too large, and capacity,

by counteracting inductance, would make L too small. Inductance

or capacity in S would produce an opposite effect to that of the same
thing in Q, and so the effects could be balanced if the coils used in

Q and S were similar. In Rosa and Grover's experiments S was fixed

and Q varied for balance ; so that Q contained a number of small

resistances which could not, as regards inductance and capacity, be

balanced exactly by S.

As they point out, in measuring small inductance coils the capacity

effect is small, and the leads should be made as short and placed as

close together as is possible with safety ; for large coils it is better,

as has already been stated, to place the leads so that their inductance

can be calculated and their capacity neglected.

The inductance I of the wires joining the condenser to the bridge

reduces the capacity (7 to a slight extent, which is in the ratio of fl

to ^IpC, where j9 = frequency x 2 tt ; when the leads are close together

their capacity forms an addition to C. When currents of high frequency

are used with large condenser capacity C the error due to inductance

of the leads may be of appreciable amount ; with small values of C,

the capacity of leads which are twisted together or laid close to one

another, may be considerable, and this error should be guarded against.

62. Determination of the electrostatic capacity of an induction coil.

The error due to the electrostatic capacity of the induction coil itself

may be serious, if it is so constructed that spires in its winding which
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are in its use at considerable (liflFerences of {)oU*ntial are closely adjacent

and the fn^quency is high. We shall prove that if c be the capacity

of tlie coil and L the true inductance, the measured inductance L' is

given approximately liy the equation

L' = L(l+p*cL) (105)

In the very higli frequencies involved in the oscillatory discharge of

a condenser this effect may lead to a considerable dif!«rence between

the actual period and that calculated from the value of L.

To obtain an idea of the effect of capacity, consider the current

produced by an alternating difference of potential i^osiHp/, applied

to a coil, of resistance R and inductance L, which is joined in parallel

with a condenser of capacity c. We suppose the resistance and
inductance in the condenser branch to be zero. If the coil current

be yj, and tlie condenser current y, we have [see VI 11.]

Ly , + Ry^ = EQBmpt, y

=

pEq cos pt.

Now y^ = --^^^^sm{pt-0), [f)==tan-HpLIR)].

Hence

y, + y = J&o I
, sin {pt -0)+cp cos pt I = Ef,A sin {pt - ih),

\{R^ +p^Ly )

with
<l>
= tan-if^ {L -c{R^ + p^L^)}\

After reduction, as the reader may verify, we obtain

p
yi + y= —^ ,8m{pt-<p), [0 = tan-i(?Z.7^')],

{R'^ + P^L'^y

where R =- ir-^r^——;r-ir^«. L = ^

{l-p^cLf+p^^R^ (l-^cL)2 + y2c2/28

Thus the effective inductance and resistance are L\ R\ and the

impedance is VR^^p^L"^. It will be noticed that if c be small and

p be not extremely great, we have approximately

R' = R{\+2cfL), U = L{l+cp^L)-cR^,

so that if R be small, L' = L{1 +cp^L), the value quoted in (105) above.

It is not difficult to find (see Rosa and Grover's paper, loc. cit.) the

effect of placing an inductionless resistance r, (1) in series, (2) in

parallel with the condenser [capacity C] of Fig. 187.

In (1) L = Cs(g^~^-^-\-P^-p\^LC\

In (2) the effect is zero.

It is to be observed that in an actual coil the capacity is distri-

buted, and on that account the result here stated does not accurately

represent the actual case.



584 ABSOLUTE MEASUREMENTS IN ELECTRICITY chap.

For an actual induction coil carrying alternating currents any
theoretical determination of the effect of distributed capacity is a

practical impossibility, and this introduces a serious difficulty in the

discussion of electrical oscillations in which that capacity can play a

sensible part.

[It may be observed that discussions of impedance such as that

above may be carried out very easily if we express the alternating

difference of potential by E^e'^^'^ and the impedance of the coil by
R + ijpL. Then we have two parallel impedances, R + ijpL in the coil

and l/ij9c in the condenser branch. Thus if the combined impedance
is / we have, adding the reciprocals of the impedances, just as we add

the conductances of two parallel conductors,

1 1 . 1 - p^cL + ipcR

/ R + tpL ^ R + ipL

that IS / = n 2 rx2 , 2 2P2 = ^ + ^^ •

Thus we get at once the results already found above,

r.. R _L-c{Rl+fU) -1

{l-fcLf + p^c'R^' {l-fcLf^fc'R^']

The value of c can be found by measuring L' at the different fre-

quencies jo/27r and p'j^ir. For one of the induction coils used by Rosa
and Grover which had an inductance of 1 henry, the capacity was
1 X 10~^ microfarad. For this the correction term pi^cL was -00005,

not a large error, but one which with ten times the frequency would
be -005.

The capacity of a coil may be kept low by winding it in a deep

channel so that there are many layers each of a small number of turns
;

and of course large induction coils have their secondaries wound in a

number of such deep sections to avoid risk of breakdown of the coil

by internal sparking.

This mode of winding, however, though it does not lessen the mutual
inductance between primary and secondary, keeps down to some
extent the inductance. When large self-inductance is required it is

advisable to choose the form which gives maximum inductance and
determine the capacity in the manner explained above.

There is also the effect of absorption in the condenser on the

measured value of L. The current is made to lag in phase to a certain

extent, so that the difference between its phase and that of the electro-

motive force is somewhat less than 90°. For good mica condensers

the effect of absorption was found by Messrs. Rosa and Grover to be

inappreciable.

The investigation of the effect of capacity given above is of im-

portance in connection with the construction of coils for use as shunts
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for alternating current ampere-meters. It has been seen that a con-

denser of capacity c across the ter^ninals of a coil of resistance R gives

a reduction of inductance of amount c/^, or for the same cajjacity

distributed between two parallel wires of \cR^. This is not affected

appreciably by altering the frequency up to 3(K)0 cycles i)er second, a

frequency up to which the so-called "skin effect" is not of great

amount. Keeping the effective inductance low gives a small phase

angle. For example, for a 100-ohm coil with a condenser across its

terminals the effective inductance would be L-cR^. That this may
be zero we should have c = LIR^. Thus if it is found by calculation

or experiment that L is 2 microhenrys the conden.ser which would

neutralize L would have a capacity of 2 x lO^/lOO* x 10»8 = 2 x 10-»^

that is 2 X 10~* microfarad.

The capacity alters with the frequency if that becomes very high,

and the variation is as the square of the frequency and is more im-

portant for coils of large resistance than for small, as the fornmlae

show. For a l()()-ohni coil the change between the frequencies 1(X)

and 3000 is not more than 10 per cent. Thus if the capacity for a

100-ohm coil were 3 x 10~* microfarad, the change of effective in-

ductance would not exceed, in absolute units,

3 x 10-1^^ X 10* X 1018 X 10-1 = 3 x 102,

that is 0*3 microhenry. For coils of smaller resistance the effect is

inappreciable.

If there is sensible absorption in the dielectric there is an apparent

leakage between the turns of the coil, and the resistance suffers an

apparent diminution, of amount proportional to the frequency of the

alternation, to a phase angle which arises from the absor{)tion and to

the resistance itself. The apparent resistance R may in fact be

written R = R{1 -^pcR tan 6).

This formula has been tested by experiments carried out by Curtis

and Grover at the U.S. Bureau of Standards on a manganin 1000-ohm
coil, covered with shellacked silk, and found to give results fairly

concordant with fact. The effects are not large. The phase angle

was 2°-6, r-5, r-2 for frequencies 100, 1500, 2700.

Reference should be made for further information to Messrs. Curtis

and Grover's paper, B.B.S.W. 8, p. 495.

63. Estimation of error due to residual inductance and capacity.

The effects of small residual inductances and of capacities were fully

investigated, and it was found that they could be summed up in two
correction terms, a, /3, as in the equation

L = L^ + a-l3 (106)

The composition of these terms is as follows. Let l^, Zg, ^3. ^4, ^5. be the

^ residual inductances in the four arms AC, AD, CB, CB of the bridge,
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and the resistance g [see Fig. 187]. Then an investigation of the kind

explained in Chapter XV. below gives

+^{ahih + h)+S(hh + hi,+hh) + RiAh+h) + Phih+h)}- (107)

When P = Q = R = S this of course is considerably simplified.

g —^— + ^/' ^^® equation can be written in the form

of (106) above. We can, unless the frequency is very high or the residual

inductances great, neglect the term /3. Further, multiplying and

dividing by p, we have

« = -(</>!- 02- </>3 + ^4), (107')

where ^j, </>2, ^As, ^4 are the phase angles of the currents in the arms of

the bridge. For good mica condensers the effect of absorption was

found by Rosa and Grover to be inappreciable.

It will be seen that the effect of small residual virtual inductances

h* ^2' ^3' ^4' h' ^^ ^^^ ^^^^ arms of the bridge and the resistance g (where

it is to be understood that the inductances proper and the small capa-

cities are combined) can be summed up in the two correction terms

a, /3, in (106).

Here L,^Os{g^^ + p]^

fi
=^Wh +h)+s (hh + hh + hh) + Rhih + h) + Phih

+

y }•

,

The expression PS - RQ is not now zero, but has a value which will be

given in the chapter referred to above.

Unless the frequency is very great or the inductances ij, I2, " large,

the value of /? may be neglected. The quantities ^j, 02» 03» ^i ^^®

the phase angles of the currents in the arms of the bridge due to com-

bined inductance and capacity in the resistances P, Q, R, S (leaving

L of course out of account). If they are all equal we have a = 0. The
amounts of the correcting terms for some suggested cases will be com-

puted. Here however we give the results of Rosa and Grover's deter-

minations for four coils given as of 100 millihenrys each.

(108)
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64. Comparison of mutual inductance and capacity : Carey Foster's

method. A method of comparing a coefficient of mutual induction

with the capacity of a condenser has been given by Prof. Carey Foster.*

It is based on the following considerations. Let the two coils C^, Cg,

the mutual inductance for which is required, be given in position as

/^ -—AVAVAV-^.

FIO. 188.

in Fig. 188, and be joined, one, Cj, through a battery, a coil of resist-

ance i?i, a make and break key K, and the other, Cg, as a secondary

circuit through a galvanometer G. Then if R2 be the resistance of the

secondary circuit, M the mutual inductance of the two coils, the whole

quantity of electricity which flows through the secondary, when a

steady current of strength y is produced or annulled in the primary,

is MyjR.^.

Again if the resistance coil in the circuit of Cj have its terminals

connected to a condenser of capacity C (Fig. 189) and the primary

Fig. 189.

circuit be made or broken, the quantity of electricity which traverses

the galvanometer G is CR^y. Thus if the same deflection as before is

obtained we have
M^CR.R, (109)

If however deflections are obtained indicating currents yj, y^, in the

two cases, then
M^CR^R^^ (110)

Now let a combination of these two arrangements be made as shown
in Fig. 190, including a resistance box in the secondary circuit to enable

the resistance R2 of that circuit between the points A and E to be varied

at pleasure. Then let the resistances R^ (in the primary between the

terminals of the condenser), and i^g ^^ varied until on making or break-

ing the battery circuit no deflection is produced. When this is the case

the integral flow through the galvanometer due to the charging of the

condenser (that is the charge of the condenser) is exactly equal and

* Phil Mag. Feb. 1887.
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<)j)|M».sit<' to that (iue to the induction current in the gecondary circuit.

Thus noticing t!iat the inductance in C^ cannot effect the integral

flow through it we see that CR^y = MylU2, or

M^CRJt, (Ill)

65. Most sensitive arrangement for Carey Foster's method. We can

easily find the most sensitive arrangement for the experiment. In

the first place it is to be noticed that the resistance (R'l say) other

than Ri in the primary circuit depends on the primary coil and the

battery and is to be taken as fixed. We shall regard the galvanometer

bobbin (1) as given, (2) as a matter of choice from similar bobbins of

different resistances.

Let us su})pose that the potential at A is not equal to that at E.

Then putting ti, x for the currents in the primary and secondary, y
E

Fig. 190.

for the current through the galvanometer, T for the inductance and

G for the resistance of the galvanometer bobbin, we get from the circuit

AC^EA (Fig. 190) the equation LS^ +Mu + R^x^Vg^Gy^O. This

gives the integral equation

R^ + Gy = My.
Further we have for the total charge of the condenser

x-y = CR^y.

Solving for y from these we find

{M-CR,R,)y

or, since y= E/iR^-^ R\), where E is the electromotive force of the

battery,

y-^{G^Rj{R;+R-~)'
*"^'

which gives the same condition as before that y may be zero.

In order that y may be a maximum the value of the denominator

must be a minimum. Calling it D, and noting that only R^, R^ vary.
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and are connected by the relation Rj^R2 = eM/C, where e is a small

quantity, we find

Eliminating dRJdR^ we get, as the required condition of maximum
sensitiveness with a given galvanometer,

|-^=|- •• (113)

If the galvanometer bobbin is also at our disposal we have, instead

of the value of D found above, to use

D' = DIVG = {Ri + R\){VG + RJVG).

This gives in addition to (113)

that is, G = R2 (114)

Thus we have in the latter case as the conditions for maximum
sensibility, R\ = R„ R^^G (115)

66. Condition that Carey Foster's method may be " null." If it can

be arranged to maintain the two points A, E always at the same
potential, we may use a telephone instead of a galvanometer as observ-

ing instrument. To find the necessary condition consider the secondary

circuit AC2EA. Since there is no current between A and E, we have

Lx + Mil + i?2* = ^•

But if z be the current passing the condenser, that is, through the

resistance R^, at this instant we must have (Fig. 190)

ui-x = ij

and so - i; is the current which charges the condenser. This gives

x = z-u,

so that the former equation becomes

{M - L)u + L'z -h R^x = 0,

or x=-l {{M-L)u + Lz}.

The charge of the condenser is then CR^t, so that

GR^t^ -
\ xdt = ~{{M-L)u + Li),
Jo ^2

or {M-L)u = {CR^R2-L)i.

But in any case in which there has been no integral flow through

the galvanometer during the rising of the current from zero to its steady
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value we have seen that CliJ{2 = M. Thus the equation just found

becomes

(M-X)(U-;e)=0,

wliith asserts that either M = L, or u = i. The latter is only true

when the current ii in the battery has attained its steady value y. If

however 3/ = L it will be possible to make the difference of potential

between A and E always zero and to employ a tele[>hone.

67. Practical example o! Carey Foster's method. The following

results obtained in I'rof. Carey Foster's laboratory by Mr. F. Womack
illustrate the method. A small induction coil was used with fixed

primary and coaxial secondary capable of being moved in the direction

of the axis so as to alter the mutual inductance of the coils. The
dimensions, etc., of the coils were:

—

Primary, length 11-5 cm, mean
radius 2 cm, wire 1-65 ohms of No. 20 b.w.g : Secondary, length

10-4 cm, inside radius 2-55 cm, outside radius 3-53 cm, wire 194 ohms
of No. 30 B.W.G. Two Grove's cells were used and a condenser of

4-926 microfarads capacity, with a galvanometer of about 135 ohms
resistance.

A'> Res. of Secondary
+ Res. from Box.

Jt,R.,= 3//C.

15 ohms.

14 „

13 „

12 „

11 „

10 „

9 ,.

8 „

7 „

6 „

441 ohms.

441 „

476 „

516 „

561 „

617 „

684 „

770 „

882 „

1029 „

6165 X 10»8

6174

6188

6192

6171

6170

6156

6160

6174

6174

Idean 6172-4x1018

Thus in c.g.s. units

M = 4-926 x 10-15 X 6172 x 1018 = 3-0403 x 10^.

The total resistance in the battery circuit was about 1-65 + -6 + /?!,

or R\ = 2-25. Thus for greatest sensibility

RJR^ = GIR\ = 135/2-25 = 60.

Some very concordant results were also obtained with a 7-inch spark

induction coil. The resistance of the primary was -278 ohm ; of the
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secondary 7394 ohms. One Grove's cell was used with the same con-

denser as before and a galvjanometer of resistance 135-6 ohms.

^A Ih /?l/j*2

27 ohms.

28 „

29 „

30 „

31 ,,

32 „

8944 ohms.

8640 „

8334 „

8044 „

7784 „

7544 „

2-415x1023 C.g.s.

2-419

2-417

2-413

2-413

2-414

Mean 2-415 x 1023 c.g.s.

Thus M = 4-926 x lO-i^ x 2-415 x 1023 = 1-1896 x 10^

in c.g.s. units, or 1-1896 henry.



CHAPTEli XV.

AHSOLUTK MEASUUEMF.NT OV KlvSISTANCK.

1. Importance of realized standards of resistance. In order that all

the results of electrical experiments Jiiay be expressed in absolute units,

realized absolute units of resistance must be available. An electric

current can be measured at any time in absolute units, as we have

seen, by means of a proper standard galvanometer or current balance.

When the absolute value, R, of the resistance of a coil of wire is known,

a difference of potential expressed by any chosen number of absolute

units can be produced by causing a current of the proper strength,

y, to flow through the wire. If the wire is not the seat of any electro-

motive force, the difference of potential between two points in the

wire, close to the ends, is yR. By this mode of realizing differences

of potential the electromotive forces of voltaic cells have been deter-

mined ; and such cells can be used in their turn as practical standards

for the comparison of differences of potential. A realized standard

of resistance is thus of fundamental importance in absolute electrical

measurement.

2. Absolute measurement of resistance : methods. Various methods

for the absolute measurement of resistances have been devised, and

a few of these most suited to give exact results have been carried out

with great care and experimental skill by several experimenters. We
give here a general account of such investigations, going however

into full detail regarding only one or two of the more recent, and, on

account of the accumulation of experience, presumably the more exact

of them.

The methods may be classed in three divisions : I. Those in which

electromagnetic induction, of which the amount can be calculated, is

employed to generate a current in the conductor the resistance of

which is to be determined. The strength of the current depends on

this resistance, and is measured directly or indirectly so that it enables

the resistance to be found. II. Those based on Lorenz's method, in

which a continuous difference of potential between the terminals of

the given conductor is produced by electromagnetic induction, and

is balanced by a difference of potential independently produced by a

current y flowing in the conductor. III. Joule's method, in which

O.A.M. oJKi 2 P
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the rate, y'^R, of generation of heat produced by a measured current

y in the conductor is determined, and the resistance deduced by
dividing by y^.

3. Kirchhofl's method. The first method of type I, which we describe

is that due to Kirchhoff.* Two coils, C^, Cg, between which there is

a mutual inductance, M, are joined up, as shown diagrammatically

in Fig. 191, with a battery and galvanometer, and the resistance R to

be determined. The steady current deflection of the needle is first

obserred. C^ is then removed from the position in which the mutual

inductance is M, to one in which the mutual inductance is zero, and

the first throw of the galvanometer is noted (together with the succeed-

ing deflections to enable a correction for damping to be applied). If

Fig. 191.

X be the total induction-flow through the galvanometer, Xg the steady

current in G, and the resistances P, Q, of AC^B, BC2A, respectively,

be each great in comparison with R, we have very approximately, as

will be shown below,

R^M^ (1)
X

If the galvanometer deflections for steady currents follow the tangent

law, and f?j be the deflection produced by the steady current, O2 the

induction throw, corrected for damping and torsion of the fibre if it

exists, and T the complete period of oscillation of the needle,

x,^ TT tan ^1

X T sin 1^2'

TT tan f?j
so that R =M

Tsinia
(2)

If two different galvanometers are used, one of constant G^ to

measure the steady current, and a ballistic galvanometer, of constant

G^, to measure the transient current, and H, H', be the values of the

earth's horizontal components at their respective needles, then instead

of (2) we have

R =m"^'^^P^ (2')

H Gi T sm ^Oo

* Pogg, Ann. 76 (1849),
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4. Theory of Kirchhofis method. To prove equation (I) let ti, i;,

be tlie curriMit in the hattcry an<l in the galvanometer at any instant

during the change of the inductance, and L,, L^, the self-inductances

of the two circuits AC^BA, ABC^A, R being 8uj)i>ose<i devoid of self-

inductance. Then these circuits give

L^y, + Mu + {Q + R)x-Ru = 0, f

where E is the electromotive force of the battery.

Integrating these equations over the (very short) interval t of change

of the mutual inductance from M to 0, we get

-Mx, + {P + R)u-Rx={Edt = 0,\
^^j

-Mu, + {Q + R)x-Ru = 0. J
^'

But when the currents are steady the second of (3) is

{Q+R)x,-Ru, = 0.

Eliminating u between the two equations of (4), and putting

Ug = ±g{Q-\- R)/R, as given by the last equation, we find after reduction

x^M (P+R) {Q + R)+J^
X, R {P+R){Q + R)-R^

= RV\p^RnQ^R)^'''-}
^'^

If P, Q, be each great in comparison with R, this gives (1). Equation

(2) follows by the theory of the ballistic galvanometer.

This investigation is practically Maxwell's version of the process

followed originally by Kirchhoff. The result may however be obtained

somewhat more directly as follows. When M is annulled an integral

electromotive force of amount Mtlg acts in C2, and another of amount
Mxg in Cj. The induction-flow due to each through the galvanometer

has the same direction, since, on account of the opposite signs of the

inductions through C^, C^y the currents induced in them are in opposite

directions round these coils. The flow through the galvanometer due

to Mug is

Ma, R *'• M(P-\-R)(Q + R)

.

Xg.
PR PR RQ{P+R) +PR

^^P+R ^^P+R
That due to Mx^ is

Mx, R M R^ .

QR Q + R R P{Q + R)+QR
Q + R
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Adding these we get for the total flow through the galvanometer

_M {P + R){Q + R) + R^ .

"^'R {P + R){Q + R)-R^''''

which agrees with (5).

5. Glazebrook's experiments. Determinations by this method have

been made by Rowland at Baltimore and Glazebrook at Cambridge.

In both sets of experiments the arrangement of coils was not disturbed
;

but the induction-flow was produced by the simple expedient of revers-

ing the current in the coil Oj. Rowland used a special ballistic galvano-

meter to measure the transient current, and a comparison of its constant

with that of the galvanometer used for the steady current gave the

necessary data for calculating Xg/x.

In Glazebrook's determination,* however, the same galvanometer

was used for the measurement of both transient and steady currents,

being shunted for the latter purpose so that only a fraction h of the

current Xg produced the deflection ^j of the needle. Thus instead of

(2) the formula of calculation

TT tan ^1 1
R =2M TmnW^h (6)

2"2

was applied, the deflections of course being corrected for damping,

etc. The factor 2 is introduced on the right-hand side as the current

was reversed, and therefore the induction changed by 2ilf

.

The following are the particulars of the coils used by Glazebrook,

which were wound with great care by Professor Chrystal for a similar

investigation. The two coils are distinguished as A and B. They
were wound with well-insulated copper wire.

A B Mean.

Mean radius in cm {a) 25-753 25-766 25-760

Axial breadth of section (2fc) 1-896 1-899 1-897

Radial depth of section {2d) 1-92 1-90 1-91

Number of turns of wire - 797 791 794

Resistance (approx.) in b.a. units 84 83 167/2

The positions of the mean planes were estimated from the dimen-
sions of the ring channels in which the wire was wound, and any doubt
as to the exact positions in these channels was eliminated by reversing

the bobbins relatively to the distance pieces between them.
The galvanometer used was an instrument also specially wound by

Professor Chrystal. It consisted of two coils about 4 inches in diameter

and 23/32 of an inch apart. These coils were movable about a vertical

axis round a graduated circle, and could be fixed in the magnetic

meridian.
Phil. Tran^. R.S. 1883.
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The needle was of hard steel, and 1*5 cm in length, and weighed
•708 graimne. It was suspended in a stirrup of brass on which was
fixed the mirror, and a projecting stem of brass, on which brass weights

were screwed to increase the period. The whole weighed G-6 grammes,
and was suspended by three fibres of silk 60 cm long.

The scale was of paper divided to millimetres, and compared with

a standard scale.

Each experiment made included eight observations of throw, and
two of steady current deflection, and each set of experiments consisted

of four, one for each of the four positions in which the pair of coils

could be i)Iaced by reversing them without changing the distance

between their centres. Three such sets were made for the distance

15019 cm of mean planes. These gave as a result

1 B.A. unit = -98598 x 10® cm per second.

[By a " B.A. unit " is meant the value of the ohm as determined by
the British Association Committee in 1863, using the method of the

revolving coil. See 16 below.]

Three series of experiments were afterwards made in like manner
for three different distances of mean planes 15-019 cm, 18-252 cm,
26-692 cm.

Different batteries were used so that the currents through the coil

were varied. The mean result obtained was

i2 = 158xlO»c.g.s.

As a precaution when the conductor, the resistance of which is to

be determined, is a coil of copper wire, it is necessary lest the result

should be affected by variation of temperature to make frequent com-
parisons of the resistance of the coil with that of a platinum, silver

or German silver standard.

Expressed in b.a. units, R was found by such a comparison with

B.A. standards to be 160-520 at 12° C, and the results reduced to this

temperature for comparison gave for the b.a. unit the following

values: Series A. 4 sets.

•98633 X 10® c.g.s.

Series B. 2 sets.

•98558 X 10« c.g.s.

Series C. 3 sets.

•98676 X 10® c.g.s.

Including the preliminary results, with half-weights given to them,

the whole investigation gave

1 B.A. unit = -986271 x 10® c.g.s.

Glazebrook made a redetermination by this method of the value of

the B.A. unit, and gave * as the mean of all his results

1 B.A. unit = -98665 x 10» c.g.s.

* B.A. Report, 1890.
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6. Accuracy of method. In tliis method, apart from observations

of galvanometer deflections, accuracy depends on the exact determina-

tion of M, which is a linear quantity. The coils used have had generally

the same radius, and the effect of errors in the measurement of their

radii and distances apart were estimated as follows by the late Lord

Rayleigh.* If we denote the mean radius of the coils (supposed the

same in both) by a, and the distance apart of their mean planes by
b, and {a/M)dMlda, {blM)dM/db, by X, /u,

X + /i 1

since M is linear, and
dM da db

M a ^ b

which enables the effects of the errors daja, db/b, to be estimated.

The expression for M in terms of a and b is given by (32) at p. 192

above, and the known values (see Appendix) of M/{4:7r\/aa') for

different values of y [ = sin-'^ {2Vaa /V(a + a' )^ + b^}], enable those of

X and jijL to be found. It is clear that since M increases as b diminishes,

and vice versa, jj. must always be negative ; X must therefore be always

greater than unity.

If b be great in comparison with a it is clear that M will vary as

a'^jb^, and therefore X = 4, //= -3. This is a very unfavourable case,

as then errors in a and b are unduly multiplied in M.
Again, if b be small, it is clear that /x is nearly zero, and this may

be verified by differentiating the approximate expression

47ralog(8a/6-2).

Still any error db in b may, if b is small, be comparable with b itself,

and thus, although jjl may be small,
fj.
db/b may be sensible. Further,

the correction for cross-section is of greater relative importance in this

case ; and thus' for two reasons it is preferable to keep b of moderate

value. Lord Rayleigh gives the following table for intermediate

values of b :

7 h/'la X M M

60° •577 ' 2^61 -1-61 •316

70° •364 2^18 -M8 •597

75° •268 L98 -0-98 •829

80° •176 L76 -0-76 M86

This table shows that for equal values of da/a, and db/b, the numerical

values of the errors in M are roughly as 2 to 1.

With regard to the current measurements, it is to be noticed that

the method does not involve any determinations of distances of scales

* Phil. Mag. Nov. 1882 ; Collected Papers, ii. p. 134.
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from inirrorH, except uh a means of correcting the approximate value

of tun f^j/sin Jf g K^^^n by the ratio of the deflections as read off in

scale divisions (see 5 above).

The late Lord Rayleigh was {Ujc. cit.) of opinion that by using still

larger coils than those employed by Glazebrook, with the same number
of turns of wire, the a((turacy of experiments by this method might

probably be still further increased. The greater value of M, and the

greater conductance of the wire, would give greater sensibility, and the

linear measurements could be more exactly made. A relatively small

value of the radial breadth of section, the chief element in the correc-

tion of croMs-soction, might then also be used.

7. Rowland's experiments. The induction coils used in Rowland's
experiments* were made by winding 154 turns of fine silk-covered

wire in each of three accurately turned brass bobbins {Ay B, C). Their

mean radii were respectively 13-710 cm, 13-G90cm, L3-720cm, and
each had a radial depth of •90 cm and an axial width of •84 cm.

These bobbins were used two at a time, and were made with care-

fully ground ends so that they could be fitted end to end with their

axes in line. Each pair could of course be placed in four positions

relative to one another without altering the distance between their

mean planes, and as all four were used in each case, the slightest un-

certainty as to the exact distance of the coils apart was eliminated by
combination of the results. The distance of the bobbins was measured
for each position by means of a cathetom^ter applied at three different

points in the circumference.

The values of M were calculated by the elliptic integral formula

already given, and a correction was made for the cross-section of each

coil according to the formula at p. 434 above [see also XIIL 31].

The results were as follows :

A juul Ji. A and C. B aiul C.

Mean distance apart - 6-534 cm 9-574 cm 11471cm

Value of M- 3775500 cm 2561974 cm 2051320 cm

The ballistic galvanometer was composed of two coils containing

between them 1790 turns of No. 22 silk-covered copper wire, wound
on a brass cylinder 8-2 cm long, and 11-6 cm in diameter, in rectangular

grooves 3 cm deep and 2-5 cm wide. A saw-cut along the cylinder

prevented the circulation of induction currents round it. The coil

was mounted so that it could be turned about a vertical axis to any
required azimuth, and its position determined by a horizontal circle

below. This circle was finely graduated, and was read to 30" by a

couple of verniers.

* Silliman's American Journal, 15 (1878).
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Two different needles were used in each, consisting of two thin

laminae of hard steel attached to the two sides of a square piece of

wood so that the magnetic axis could not vary in position. One needle

was 1-27 cm long, and had a period of 7-8 seconds ; the length of the

other w^as 1-20 cm^ and its period 11-5 seconds. The moment of inertia

of each was augmented by brass weights carried by wires extending in

the direction of the magnetic axis. Each needle was suspended by

three single fibres 43 cm long. The torsion of these fibres was eliminated

from the result, as will be seen below, except as regarded the period

of vibration, and for this an allowance was made.

A brass bar, passing through the opening below the needle, carried

a small telescope by which the mirror was observed when the constant

of the coil was compared with that of another.

The constant, G^, of the coil was determined first by calculation

from its dimensions, and by comparison with that of the large double

coil of an electrodynamometer constructed on Helmholtz's plan (p.

217 above). This coil had a constant of 78-37 by calculation. In the

comparison the ballistic galvanometer was used with its graduated

horizontal circle as a sine galvanometer.

After a comparison had been made the instruments were interchanged,

and the comparison repeated to eliminate the ratio of the values of H at

the two places.

Seven determinations gave as a mean result G,^=\'^'^?>-^l , with a

probable error of ±-09, and calculation gave 6r2 = 1832-24:. The former

result, being probably considerably the more accurate, was given double

weight, and a mean then taken with the latter, which gave G^2 = 1^33-19.

8. Details and use of tangent galvanometer in Rowland's experiments.

A tangent galvanometer was used to measure the steady current.

This was a circle 50 cm in diameter, and had a needle 2-7 cm long, the

deflection of which was read by a pointer moving round a graduated

circle 20 cm in diameter. Parallactic error was avoided by placing

the circle on a level with the needle which moved round inside it.

The constant of this galvanometer was compared with that of a

single circle of wire 82-7 cm in diameter, wound on a ring made of

pieces of wood laid together with the grain in the direction of the

circumference, and carefully turned with a small groove near one

side to receive the wire. The length of the wire was 259-58 cm, giving

a mean radius of 41-31344 cm. This circle was made to surround the

ballistic galvanometer coil, but at a distance of 1-1 cm on one side,

to allow the tube carrying the suspension fibre to pass. Thus the

constant of the circle was -151925.

The same current being sent through the tangent galvanometer coil

and the ring, and G^, G\ being their respective constants, we have,

if a, a', be the angular deflections of the needles,

;^tan a = ~^7 tana ,
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*k ^ ti G, tan a'
80 that „, = -*

,

H' G' tana'

and this replacen /////' in (2'), which becomes

„_ ^TT 6*2 tana' tan f^j .^.

T G' tan a sin Jf ^

where 0^ is the ballistic deflection corrected for damping.
This method avoids the difficulty of accurately determining /////'

by vibration of a needle at the two places, and gives the further great

advantage that the distance of the mirror from the scale of the ballistic

galvanometer only enters as a correction on the ratio tan a'/sin J^2-
The same factor of correction for torsion affected both tan a and
sin Jf^2» ^o that, with the exception of a small correction on the period

T of the needle of the ballistic galvanometer, all allowances for torsion

were eliminated. Still further, since a and can be made nearly equal,

the correction for length of needle in tan f^/tan a is almost entirely

obviated.

The apparatus was set up in a separate building in two rooms on

the ground floor. The galvanometers were on brick piers, with marble

tops, and were very carefully adjusted, and all connecting wires were

twisted together to avoid magnetic effect. This adjustment, as well

as the insulation everywhere, was carefully tested.

The experiments were mainly made by simply reversing the battery

current and observing the throw ; but the method of recoil was also

used. Series of experiments were made with each pair of induction

coils A and B, B and C, C and A.

The time of vibration was observed at the beginning and end of

each series of observations. The needle was allowed to vibrate for

10 seconds, and ten observations were made before and after that

interval. Time was taken on an accurate marine chronometer.

The mean result of a long series of experiments gave, after all correc-

tions for temperature of coils, etc., 34-719x10^ cm per sec. as the

value of R. Comparing with " 10 ohm " standard coils in his posses-

sion, and with a resistance box by Elliott, Professor Rowland came to

the conclusion that (in ordinary electromagnetic units)

1 B.A. unit = -9911 X 10^ cm per sec.

9. Weber's earth inductor method. Two methods of the first class

are due to W. Weber. The first is very simple. A coil mounted with

its axis of figure horizontal and in the magnetic meridian, and having

its circuit completed through a ballistic galvanometer, is quickly

turned through half a revolution round a vertical axis. If A be the

effective area of the coil (the sum of the areas of its spires), and H
the horizontal component of the earth's field-intensity, a change of

induction of amount 2AH through the coil is produced. This measures

the integral electromotive force in the coil, and hence if the circuit
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be completed, and include a total resistance R, the total quantity of

electricity which flows through the circuit is 2AH/R, This is not

affected in the least by the inductance of the circuit.

The galvanometer deflection is observed, and also the elongations

following, to allow damping to be corrected for. By the theory of

the ballistic galvanometer, if T be the complete period of the needle,

G the principal galvanometer constant, H' the horizontal component
of the earth's magnetic field at the needle, and the observed de-

flection, the total flow through the instrument is HTsin^O/TrG.
Thus

2AH' HT . ,^

^-'-^¥^0 •

••••^'^

In general H is very nearly equal to H' , but it will not do to assume

absolute equality ; and the two quantities must be compared by
obserlfing the periods of vibration of a horizontally suspended needle

at the two places.
^

10. Weber's mode of experimenting. Weber employed the method of

recoil (XII. 42 above) in his observations. Turning the coil first through
180° from the initial position, he observed one deflection (positive, say)

and the following elongation. Then when the needle was passing

through zero the second time, he brought the coil back to its original

position. This brought the needle to rest, and finally deflected it to

the negative side of zero. This deflection was observed, and the follow-

ing elongation, and then, at the second passage through zero, the same
series of operations was begun afresh.

It was pointed out by the late Lord Rayleigh that if a, a', be the

mean radius of the inductor and galvanometer coils respectively, the

product 2

GA=2ir^%,
a

so that error of mean radius has double the importance in the inductor

coil that it has in the galvanometer.

Great care is necessary in levelling the inductor as, on account of

the largeness of the vertical component of the earth's field in high lati-

tudes, any deviation in the plane of the meridian of the axis of rotation

from verticality will lead to error of the same order in the result. Thus
if the axis be inclined to the vertical at a small angle a in the plane of

the meridian, we must use instead of A the value A{\ + a tan D), where

D is the magnetic dip.

11. Weber and Zbllner's experiments. This method was used by

Weber himself, and later by Weber and F. Zollner. In the latter

experiments very large inductor and galvanometer coils were used.

Each consisted of 12 layers of copper wire 3 mm thick, 66 turns in a
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layer, wound on bobbins of weU-seasoned, oil-8oaked mahogany. The
diniensionH were :

Int. UadiuM. Kxt. KadiuM. length.

Inductor- - 480414 cm 51-9461 cm 25-420 cm
Galvanometer - 48032 cm 520797 cm 25-420 cm

For the galvanometer needle was used one or other of two magnets

of lengths 10 cm and 20 cm respectively, and the deflections were read

by means of a tehvscope and scale in the ordinary manner. The research

was carried out in a room of the observatory at Leipzig, subject to

varying magnetic disturbances and to variations of temperature, and
was intended merely as a test of the apparatus.

The resistance of the circuit of the inductor given by the experi-

ments came out slightly greater with the shorter needle than with

the other. This was to be expected as the deflection, 0, with the shorter

magnet must, on account of the greater distance on the whole of its

magnetic distribution from the current, have been slightly smaller

than the deflection in the other case. It is obvious that the needles

were much too long.

12. Wiedemann's experiments. A careful determination of the ohm
has been made with these coils by Professor G. Wiedemann.* The
apparatus was set up in a room of very constant temperature in the

University of Leipzig. A rhombus-shaped steel plate, with attached

glass mirror, was hung with its plane vertical and its longest diameter

horizontal, and being magnetized in the direction of this diagonal

served as needle. The needle carried beneath it a horizontal metal

bar on which weights could be slided to alter the moment of inertia

of the suspended system.

The coils, having been levelled, were each adjusted until the same
current sent in opposite directions produced equal deflections of a

needle hung within the coil. Their axes were then at right angles to

the magnetic meridian. The galvanometer coil was then fixed, and the

inductor turned through an angle of 90°. This angle was measured

by means of a right-angled glass prism, by observing a telescope scale

by reflection in one of the rectangular faces (which were vertical),

and turning the coil until the same division came to the cross-wires by
reflection from the other face.

An arrangement of stops was then provided so that the coil could

be turned from this position through exactly 180° and back again.

The coil was turned a number of times in succession suddenly through

this angle, always when the needle had returned to its zero position,

so that the deflection was multiplied as far as the limits of the scale

would allow.

The successive deflections O^y f^2» ^^^-y ^^ *^® current was applied

when the needle was accurately at zero in each case, were related

* Abhandl. Berlin A had. der Wissensch. 1884, or Wiedemann's ElektriciUit, Band 4,

p. 913.
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to the quantity Q of electricity which flowed through the circuit at

ea-ch half turn of the coil as follows :

9, = KQ, 0^ = KQe-\ Zg(l-e 2A),...,

where K has the value stated in XII. 42 (45) above. These were

observed and the observations combined in a single formula for Q,

which equated to lAHjR enabled R to be calculated.

The periods T, T', of a needle vibrated at the galvanometer and

inductor respectively were observed, and the ratio T^jT'^ gave the

value of H'/H required as shown in (8). These were obtained by
observing the oscillations with a telescope and scale, and registering

the passages of different points of the scale across the wires by means
of a chronograph.

The effect of torsion of the suspension fibre was found by turning a

torsion head, to which the fibre was attached, through a measured

angle, and observing the corresponding deflection of the needle. Thus

when the torsion head was turned through an angle a, and the needle

through an angle /5, the return couple on the needle was MH sin /3,

and the torsional couple C{a- ^), where (7 is a constant. Thus

^ MH sin 8 T..J,C = ^ = MHt, say.

Hence, when the needle in the experiments was deflected through

an angle 0, the return couple upon it was MH{sin + rO), or nearly

enough, as the deflections were small, MH{1 + t)0. Thus instead of

the value of H at the galvanometer needle ^(1 +t) was used.

The dimensions of the coils were measured by determining their

inner and outer circumferences with a steel tape, and as a check by

measuring three diameters at intervals of 60° apart, by means of a

cathetometer.

The distance of the scale from the mirror was first measured by

means of a steel tape on which were sliding pieces furnished with

points, which were brought against the mirror and scale respectively
;

then, by means of an auxiliary scale placed horizontally in the vertical

plane through the centres of the telescope and mirror, on which the

corresponding positions of the mirror and reading scale were observed

by means of a cathetometer.

Experiments were made first with Weber and ZoUner's coils in the

state in which they were left by these experimenters ; then with the

same coils rewound, and the number of turns increased from 792 to 804.

The experiments were then repeated with 10 mercury (Siemens)

units included with the coils in the circuit.

Different series were made with the sliding weights on the needle

at distances 2 cm, 1-5 cm, 1cm, 0, from the end of the bar, so that

the periods were altered through a considerable range.

The resistance of the Siemens' units was compared with a standard

resistance of pure mercury, consisting of a mercury column contained
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in a carefully calibrated tube 106-398 cm Um*i, the ends of which com-

municated with electrodes made of amalgamated copi)er-foil immersed

in mercury in two vessels terminating the tube. It was found as a

final mean result that 1 ohm or 10^ c.g.s. units of resistance is equal

to the resistance at 0° of a column of mercury 106-162 cm long and

1 sq. mm in cross-section.

13. Experiments of Maseart, de Nerville. and Benoit. This method

has also been used by Mascart, do Nerville, and Benoit,* in a very

elaborate series of experiments. Five coils were used, two of 27 cm
internal and 30 cm external diameter, and 3 cm length, and three

smaller coils each of 14 cm internal and 17 cm external diameter, and

the same length as before. These were wound with silk-covered wire

•5 mm in diameter. One of the large coils and two of the small ones

were wound with separate layers, so that, by joining these layers up
differently, nine different arrangements could be obtained. The winding

was })erformed with the wire under tension produced by passing it over

loaded rollers when on its way from the reel to the bobbin. The length

of the wire was measured as it was laid on, and the diameter of every

turn was also observed by means of callipers.

Both the smaller and larger coils were mounted after completion

on stands with suitable stops so as to admit of being turned when
required through an angle of exactly 180°, and were set up with their

axes horizontal and in the magnetic meridian.

At the centre of the larger coil when in position was placed a small

magnetometer needle suspended by a single fibre of silk. By turning

the coil round a vertical axis through 90° from its position when
arranged for inductive use, and fixing it in its new position, it could

be used as a galvanometer bobbin, and its galvanometer constant

compared with that of the galvanometer bobbin itself. By this process,

previously used by Rowland, the ratio of the horizontal magnetic

forces, H'/H, at the inductor and the galvanometer was eliminated

from the formula of calculation. For suppose the same current to be

sent through the two coils, and a, a', to be the deflections for the

galvanometer and the inductor respectively, G, G\ the galvanometer

constants of the two coils, we have, as at p. GOO,

W G'tana

H ~GtSina''

This substituted in (8) gives

fl =2xG'^^,^-.U^ (9)
tan a Tsm-^O

[Full details of the mode of comparing two galvanometer constant-s

are given in XII. 50 above.]

This proceeding had the advantage (already pointed out in 8 above)

that since the ratio of tan a/sin ^0 appears in the value of R the import^

* Av7i. de Ch. et de Phys. 6, p. 5 (1886).
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ance of an exact determination of the distance of the galvanometer

scale from the mirror was greatly lessened. The value however of

tan a' had to be accurately known, and involved careful measurement

of the corresponding distance for the other scale.

From the measured length of the wire the value of G'A which appears

in (9) could be approximated to. For a being the mean radius of the

coil, and n the number of turns ^ = W7ra% and G' = ^n'7rla^ nearly, so

that G'A = ^v^ir'^a = nizl^ where I is the length of the wire. The quantities

therefore which required accurate determination were /, T, and the

distance of the scale from the mirror of the magnetometer in the

induction coil. The latter was found by means of a graduated measur-

ing bar carrying sliding pieces, which were run up to the fibre and

scale respectively. The positions of the contact faces of these pieces

were read off from the scale and gave the distance required.

Observations were made by first reading off two successive elonga-

tions of the needle when it had nearly come to rest, and then turning

the inductor when the needle was passing through zero, and reading

the following deflections on the same side of zero.

If r, r\ be the first two of these readings on the scale (supposed

graduated from one end), in an induction throw, the (uncorrected)

zero reading is (/ + r)/2. If the next two readings be r^, r^ the first

deflection from zero is rj - (/ + r)/2. The next reading being r^ the

diminution in one swing due to damping is (r^ - r^l^l. The diminution

of the first elongation must have been approximately \ of this or

(^1 ~ '*2)M- This correction applied to the first elongation gives for the

deflection r^ - (/ 4- r)/2 + (r^ - ^2)/^. There remains the correction for

the initial motion, which is simply the correction of the zero for the

decrement of that motion. If r' be taken as the greater reading the

correction is (/*' - r)/2, and must be added or subtracted according to

the direction of the initial motion. Thus the deflection was

r' -\-r r. -r^ r' — r
''--2- +-V-*-2--

The readings it was found did not vary more than ^ per cent.

The torsion of the suspension fibre of the ballistic galvanometer was

eliminated, as approximately it multiplied tana and sin|6' in (9)

by a common factor. That of the suspension fibre of the inductor was

determined in the usual way by turning the upper end of the fibre

round through 360°.

Experiments were made with the various coils arranged in different

ways ; and their effective areas were also compared by observing the

effects which they produced on the galvanometer needle when turned

in the earth's field.

The absolute resistance of the circuit in the various experiments

having been obtained it was compared by Carey Foster's method of

Tesistance comparison with four b.a. units, with four Siemens' mercury
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unitfi, and with six specially constructed mercury units in spiral tubes.

Careful comparisons of the temperature coefficients of the different coils

were made, and all the resistances corrected to the temperature of

expcrinient. The results were expressed finally as the absolute resist-

ance of four mercury standards made of carefully calibrated tubes

filled with mercury. These tubes were terminated by wide electrodes

of mercury, and an allowance of a length of the tube equal to -82 of

its diameter was made to correct for the additional resistance due to

the abrupt change of section of the tube at each end. The final result

obtained was
j ^^,„ ^ j.^j^j b.a. unit,

or

1 ohm = resistance at 0° C. of a column of mercury 106-37 cm long

and 1 sq. mm in section.

14. Weber's method by damping. Weber's second method consists

in oscillating a magnet suspended within a coil, when the circuit is

open, and again when the circuit is closed, and observing the period

and logarithmic decrement in both cases. The induced currents assist

the damping in the second case, and hence from a comparison of the

results the resistance of the coil can be calculated.

When the circuit is open the equation of motion of the swinging

%^^'U^1>-0, (10)
ar at /m

where M is the magnetic moment, H the horizontal field intensity,

and /x the moment of inertia of the magnet. Putting n^ for MH/ju we
get for the solution of the equation

(l>
= A€-'' COS {Vf^l(^t + e) (11)

Here k= 2X/T if X be the logarithmic decrement of the oscillation

and T the observed period ( = 27r/{n^ - k^y.

If now the circuit be parallel to the meridian and be closed, the

magnet will be acted on by the induced current produced by its motion.

The magnetic induction through the coil due to the needle is MG sin

approximately, where G is the principal galvanometer constant of

the coil. For let a current y flow in the coil, then the mutual energy

of the coil and magnet is equal to the product of the magnetic induction

of the magnet through the coil and the current. But when =
this energy is obviously zero and the work done against the current

in deflecting the magnet through the angle
<f)

is MGy sin </>, and so the

magnetic induction through the circuit is MG sin (/). Supposing then

the magnet swinging through a small range there will be a force exerted

on the magnet by the current of amount MGy. Hence the equation

of motion of the magnet is

d^
+ 2A-^f+~V—̂ -y = (12)
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But we have also for the electromotive force in the circuit - MG d*f>ldt,

and if L be the self-inductance of the coil

L'^+Ry +MG^= (13)
at ' at

Operating on equation (12) by Ldjdt + R, and on (13) by MG/fA,
and adding, we eliminate y, and find

v^dt'-^)w^^^dt^n'^^-irr ^''^

If we suppose that the motion is simple harmonic with diminishing

range, and put A', T\ for the logarithmic decrement and period we
may write conveniently for our present purpose

'I'

,^p-a'+ ?a)/^

where i = \/ -l^ k' = 2yIT, a =:27r/r. Thus we find

d

dt
=^-{k' + ia),

and (14) becomes

{-{k' + ia)L + R}{k'^ - a'^^-2^A:'a-2A;(A;' + ^a) + w2}

"^
'^{k' + ia) = 1

A^

(15)

The real and imaginary parts of this equation must vanish separately,

and therefore picking out the imaginary terms, equating them to zero

and solving for R, we obtain, since n^-k'^ = a^,

^=2M(Fr^i^)^*'^r -^^"^-T-; ^^'^

A controlling equation is obtained in like manner from the real

terms in (15).

This method has been used by W. Weber himself, and with modifica-

tions by H. F. Weber, Dorn, Wild, and F. Kohlrausch. It is against

the method that M^, (r^, enter to the second power, inasmuch as the

very exact determination of either quantity is a matter of some diffi-

culty. The value of jj. also involves the square of the dimensions of

the magnet.

15. Eolilrausch's modification of method by damping. The modifica-

tion of this method used by Kohlrausch amounted to a combination
of the first and second methods of Weber, in which he eliminated the

constant of the galvanometer with which the earth-inductor was con-

nected by determining the logarithmic decrement of the motion of the

needle first when the circuit of the galvanometer was open, and again

when it was closed. Calling these decrements Aq, A, and putting a, p,
for the arcs of vibration in the method of recoil (which was used), Tq
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the j)(;rio(l of the needle when the circuit was oj)cn, we inay write

KohlruuHch'H formula in the approximate form

16/l«//«ro(X-Xo) g^

This formula incliidt's si'veral (juantiticH which are dithcuit to observe

with accuracy, hut its chief defect lies in the fact that it involves the

fourth power of the radius of tlu' inductor. Kohlrausch's final result,

corrected for an error in the data usckI in his original calculations, is

1 HA. unit = -990 xl0»c.g.8.

16. Method of revolving coil. Another method of this class, suggested

also by Sir William Thomson to the Committee of the British Associa-

tion, seems to have been first proposed by Weber. It consists in

spinning with uniform velocity about a vertical axis a circular coil, at

the centre of which is suspended a small magnetic needle. A periodic

current is thus made to flow in the coil in one direction (relative to

the coil) in one half-turn from a {wsition at right angles to the magnetic

meridian, and in the opposite direction in the next half-turn. But
the position of the coil being reversed in every half-turn as well as

the current in it, the current flows on the whole in the; same average

direction relative to the needle and (apart from self-induction) has

its maximum value always when the plane of the coil is in the magnetic

meridian.

This method was used by the British Association Committee in their

famous experiments, carried out principally by Clerk Maxwell, Balfour

Stewart, and Fleejning Jenkin in 1863. Its theory was first fully

given by Maxwell, and the following statement follows on the whole

his notation and metliod.

17. Theory of the revolving coil method. If L be the self-inductance,

y the current at any time t, the electrokinetic energy of the circuit

due to its own induction is \Ly'^. Again if M be the magnetic moment
of the needle, and G the galvanometer constant of the coil, that is,

the magnetic force at the centre which unit current in the coil would
produce, the magnetic force at the needle due to the current y is Gy.
If be the angle which the axis of the needle makes with the magnetic

meridian, and Q the angle which the coil makes with the same plane,

the direction of the magnetic force due to the coil and the axis of the

needle are inclined at an angle 7r/2-(f^-0). Thus the mutual energy

of the needle and current is numerically MGy sin (6^ - </>). This, if

taken as potential energy, must be written with the positive sign, and
if taken as kinetic energy with the negative sign prefixed to give the

corresponding force. For the magnet 's deflected in the direction of

rotation, and hence, if f^>0 say, the magnetic force on the needle

due to the coil nmst be in the direction to increase 0, that is to diminish

6^-0. Hence MGy sin {d -
(f)

tends to diminution by the action of

G.A.M. 2y
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the mutual forces. We shall reckon it as kinetic energy of amount
- MGy sin {0 -(/)).

Again if the effective area of the coil be A, there is mutual energy

between it and the field of numerical amount AHy sin 0. This may
be taken as kinetic energy of amount -^^ysin^. Also the magnet
is deflected in the field, and therefore between it and the field there

is mutual energy MH cos (p when reckoned as kinetic.

Lastly, if mk^ be the moment of inertia of the needle about the axis

of suspension it has kinetic energy \mk^(j)^.

Collecting these terms we get for the total kinetic energy

T= \Ly^-AHy&me-MGy&m(0-(f>) + MHcos(f) + lmk^^. ...(17)

Besides this there is potential energy F, due to the torsion of the

fibre, depending on the angle through which the needle has been turned

from the position of no torsion. If a be the angle which the needle

makes with the meridian when the torsion is zero, the angle through

which the fibre has been turned is - a. Denoting by MHt the tor-

sional couple which the wire gives when the lower end is turned through

unit angle relatively to the upper, we have

V=^ MHT(<p-a)dil) = lMHT{<t>-aY
J a

The equation of currents is

dt 'dy By

where F is the dissipation function. This gives by (17)

L^+Ry = AHdcosO + MG{e-cj>) cos {0-<j,) (19)

There are two possible distinct motions for the magnet, one of

oscillation in its own proper period (which we suppose great in com-

parison with the period of rotation of the coil), and the other of period

equal to half that of rotation. So far as the former is concerned, we
may take the magnet as at rest in computing the current, and for

the latter we shall suppose at present the amplitude very small, so

that the part of (p depending upon it may also be neglected and

may be taken as constant. Thus being constant, =0), say, and

6 = cot, we have

L ^+Ry= AHo) cos wt + MGco cos {ci>t-(l>) (20)
dt

Let a solution of this equation be .

y = C cos wt + C" sin at.

Then i^ y" + Ry = {LwC' + RC) cos cot - {LcoC - RC) sin wt (21)
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This with (19) gives by equation of coefficients

MO{Rcm{9-<it) + L»m(9-<f»)}] (22)

A term, C exp.(- Rt/L), is required to complete the solution, but
this dies out soon after the starting of the coil, and has no effect

provided the rotation is uniform. The current therefore on the sup-

position iiKuif' is given by (22).

18. Equation of motion of the needle and deduction of resistance of

circuit. The expression for the kinetic and potential energies gives

for the equation of motion of the magnet

d dT dT 'dV

dt 3(^"d'A"^cV>~ '

or mkh'f - MGy cos {0 - (/>) +MH sin «/. + MIIt{,I> - n)^0 (23)

This equation may be obtained also by considering that the needle

is acted on by three couples, one due to the current tending to produce
further deflection, the second a return couple due to the earth's

magnetic field, and the third also a return couple due to the torsion

of the fibre. The numerical values of these are from the notation

already explained, MGycoa{0 - (/)), MH sin <p, MHt{(I)-u). Hence
the. total deflecting couple is

MGy cos {0 - 0) - M//{8in + T(r/, - a)},

and this is equal to the rate of increase mJ(^<p of angular momentum.
The needle is found to take up a nearly constant position if the

rotation of the coil is kept uniform, and in this case <p may be taken
as very nearly zero. Thus we have, integrating over any finite interval

of time, |0cZ^ = O. The position must therefore be such that the

mean resultant deflecting couple applied by the current must be
equal to the return couple M/^{sin </>-f-T((/)- a)} due to the com-
bined action of the magnetic field and torsion. This average couple

is obtained from MGy cos (6^ - </>) by inserting the value of y given

by (22) and integrating each term over a whole turn on the supposition

that
(J)

is a constant, and dividing the result by 27r. The following

integrals enter into the expression

1 r'
r— I cos ^ cos {0-(l))d9= i cos 0.

"
j

sin ^ cos {0 - </)) dO = l sin (/>.

^f\osH9-<l>)dO = i.

1 (-'— I sin {0 - (/>) cog {0 - (ji) dO = 0.
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Therefore the average couple is

1 ^^^^y^^{AH{Rcoscli + (eLsmcl>) + MGR}=MH{mn<l) + T</>) ...(24)
2 R + CO L

for equilibrium, if a = 0. Since r is very small we may write r sin </>

for T</>, and we get

R^-hR- cot(/)(l + -r-,ysec0) + i.W-_— = 0. ...(24 ;
^ 1 +T ' AH ^ 2 1 + T

This may be written in the form

R''-aR-h = 0,

XI, w t I.' X.- T>
«±Va2 + 46

the solution oi which is K =
^

.

The value of 6 is positive in the experiments made, and hence, since

R cannot be negative, the + sign in the solution must be taken. Ex-

panding the radical, having regard to the fact that MG/AH and r are

small, we get

R = ^AGw cot
1
1 + ^rf sec - a?i\jJ,

- 1 ) tan^^

;(S)'(S-)'"-*-!' ;«
[If T is not negligible and a is not zero, instead of the coefficient

J on the right of (25) should be written 1/[2{1 + t((/)- a)/sin0}].

It appears that the term in tan^0 is not quite insensible, so that on

the whole it would probably have been more convenient to use the

value R={a + Va^-^4:b}/2 directly. This was done in Rayleigh and

Schuster's repetition of the experiments with the B.A. apparatus. See

21 below.]

This is the expression for R used by the B.A. Committee in the

reduction of the results of their experiments.

19. Criticisms of method. Taking the first term only we may write

R = ^AG(ji)Cot (/) = TT^n^aco cot 0, (26)

where a denotes the mean radius and n the number of turns in the

coil. This formula is convenient for the discussion of the advantages

and disadvantages of the method. These were examined by the late

Lord Rayleigh in papers on this method * and in his " Comparison

of Methods for the Determination of Resistances in Absolute Measure." f

As regards the measurement of dimensions of the apparatus, it is

to be noticed that the method involves only one fundamental linear

quantity a, and that only to the first power. The observation of the

deflection corresponding to (p and the evaluation of cot (p involve no

* Lord Rayleigh and Arthur Schuster, " On the Determination of the Ohm,"
Proc. R.S. No. 213, 1881. Lord Rayleigh, Phil. Trans. R.S. Part II. 1882.

t Phil. Mag. Nov. 1882.
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gn'ut«T difficulty than those \viii< ii ainnti onliiiary angular measure-

ment, and in this rcHpcct the method Ih on a par with Weber's method
by earth inductor. The main difficulties lie in the determination of

o) and the avoidance of mechanical disturbance, and of error due to

currents in the ring and alterations in the magnetization of the needle.

It will be seen below that, by the employment of what may be

called the stroboscojHC method of observation, the late Lord Kayleigh,

who repeated the determination with the same apparatus, was able

to control and measure the; speed with great exactness. A correction

is easily matle for the currents induced in the coil in consequence of

its motion in tlie field of the needle, in fact a small term appears in

the result above [M(r mc (jt/AH in (24')], by means of which this

correction is made. This involves the determination of MG/AH, but,

as will be seen below, about this there is no difficulty whatever.

The currents ])roduced in the metal ring can be allowed for by

rotating the coil (1) with the wire circuit open, (2) with that circuit

closed. Further, these currents can be reduced by dividing the ring

into two parts along a diameter and putting them together with

ebonite separating pieces. The currents are then confined to circuits

which are on the whole at right angles to the plane of the coil, and

their effect can easily be eliminated by the method just stated. The
existence of these currents in the ring has one advantage, pointed

out by Lord Rayleigh, that by rotating the ring before winding, and

again with the wire circuit open after winding, the insulation can be

tested. For if any difference is found between the deflections of the

needle it must be due to leakage.

20. Effect of self-induction. The method has been objected to on

the ground of tlie influence of self-induction in the result, that is on

account of the terms in (25) which involve L. Now the value of the

coefficient {U, say) of tan^f/) in (25), and therefore of tan'**/), etc.,

may be calculated with considerable accuracy from the dimensions

and arrangement of the rotating coil, and any want of exact knowledge

of the value of U can be eliminated by using different speeds of rotation.

In coniparing Weber's method by earth inductor with the present

method, it is to be noticed that at half the lowest speed used by Lord

Rayleigh the sensitiveness of the latter method would be considerably

greater than that of the former, and the correction for self-induction,

known with fair accuracy, would be only about J per cent.

The effect of self-induction could be diminished, as pointed out by
Lord Rayleigh, by duplicating the revolving coil by the addition of

a second coil at right angles to the other, and giving an independent

circuit. Thus the sensitiveness of the arrangement would be increased

without entailing an increased correction for self-induction such as

would be necessary if the increase of deflection were produced by
running the coil at a higher speed. The two circuits in this arrange-

ment also would be conjugate, that is the currents in one would be
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unaffected by those in the other, and would give a more nearly constant

field of magnetic force.

21. Later experiments with the revolving coil method. We now give

some account of later determinations by this method, beginning with

the experiments made by Lord Rayleigh and Prof. Schuster in 1881.*

The coil used by the B.A. Committee was employed, but its constants

were carefully redetermined. The constant A of the coil was found

by unwinding the wire, and carefully measuring the circumference

of the successive layers. The thickness of the wire used was 1*37 mm,
which ought to have produced a difference in the circumference of

the successive layers of 2-747r mm. The turns in each layer sinking

a little into those below gave on the average 8-1 mm for this difference.

The coil was made up of two parts, between which the needle was
suspended. On each part there were 156-5 turns arranged in one case

in 12 layers of 13 turns each, with half a turn outside, and in the other

in 12 layers containing 155 turns with IJ turns outside. Allowing for

the outside parts these measurements gave

Mean radius of double coil - - - .
- 15-789 cm.

Axial dimension of each groove - - - - 1-833 cm.

Distance of mean plane from axis of motion - 1-918 cm.

The value of A was calculated by the formula

^ = x„a^(l+|5). (27)

where a denotes the mean radius, 2d the radial dimension of the

section, and n the total number of turns. This formula may be proved

thus. Since the number of layers in each coil was 12,

nearly.

The value of the galvanometer constant G was calculated by an

equation equivalent to that obtained from (9), p. 212 above, by taking

the first term lirya^jr^, putting y = 1, multiplying by n, and substituting

for a^/r^, on account of the axial breadth 26 and radial depth 2d, of

the sections the value given in (20), p. 219, that is from

6^= 27rn|^3 + ^'^^4a^2_^2)+^'!^(2^4_n^2^2 + 2a4)j, ...(28)

where x = distance of the mean plane of either coil from the suspension

fibre, and n is the total number of turns in the double coil.

The value of GA obtained after applying all corrections, and including

in it allowances for non-verticality of the axis and for torsion of the

fibre, was 29887600. The axis of rotation was found to be inclined

towards the north at an angle 0-0003 radian. This necessitated a

* Proc. U.S. No. 213, 1881.
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correcting factor in GA of 1+0-0003 tan JJ, where D is the magnetic
dip, that is, a factor 1 -f 0-0008.

22. Calculation of self-induction of coil. Th(^ value of L was found

by Ciihuhitin<^ the indu* tanc «• for a coil of mean radius a and rectangular

cross-section of which the length of diagonal was r. This was found
from the formula [^ = tan~*(6/a)]

L = 47rn2a{log- +
t^.^

- f^O cot 29 - \Tr tan 9
f

- \ cot«<9 log cos e - H tan*^ log sin 6}, ...(29)

which is simply the formula i-7rn^a{\og{SalR)-2} (see XIII. 13 above),

with the value of the logarithm of the geometric mean distance of the

cross-section from itself, given by XIII. 8 (35), put for log/?. The
dimensions of the coil used were those given by the B.A. Committee,

viz. rt= 15-8191 cm, a.xial breadth of each coil 1-841 cm, radial depth
1-608 cm, and distance of mean planes apart 3-851 cm.

The inductance was computed for the double coil by adding together

the self-inductances of the coils taken separately, and twice the mutual
inductance of the two coils. For if Lj, Lg, be the self-inductances,

and M their mutual inductance, the whole electrokinetic energy of a

current y is ^y^Li + L2 + 2M) = ly^L if L be the self-inductance of the

whole system. To the approximation given by (29) Lord Rayleigh

found for L^^L^ 30192000cm, and for 2M 14582000cm. Corrections

for the finite size of the cross-section, and (since the introduction of

the geometric mean distance is made on the supposition that the

coil may be regarded as straight) for curvature were made. The latter

can be calculated by the series (54), p. 199, or by the elliptic integral

formula by dividing the coil up into concentric circular filaments, and
integrating over the cross-section. [See XIII. 29 above.] Lord
Rayleigh found that for a single coil of circular cross-section of radius

p the value of L is given by the equation

i = 4.„^.og«;-;.3';:(.og^%J)}, (30,

so that the correction for curvature increases L. The correction term

for curvature in the case of a coil of the same mean radius a and
square cross-section of the same area is very nearly the same as in this

formula. It is thus an addition to the approximate value given by
the equation (29) above. The corrections in Lj and Lg were each

11950 cm, and the correction on 23/ 346900 cm, so that finally

L = 45144800 cm.

[See IX. 15 above for the derivation of (30).]

The value of 2M found by the formula of quadratures given on

p. 434, from the value given by the elliptic integral formula for two
circles, was 14939400 cm, agreeing very closely with the value 14928900

cm, (14582000 + 346900) cm, already obtained.
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23. Experimental determination of inductance. An experimental

determination of L was made by the method described above, and

gave 45000000 cm on the supposition that the b.a. unit was 1 per

cent, less than the ohm. The value given by Maxwell * uncorrected

for curvature, is 43744000, and the allowance for curvature, 734500 cm,

was apparently subtracted from instead of added to this value, giving

finally, with a correction for the finite diameters of the wires and varia-

tion of the current over the cross-section, L = 43016500 cm. It was

suggested by Lord Rayleigh that the discrepance might be due mainly

to an interchange of the breadth and depth of the coils, together with

the mistake just noticed as to the correction for curvature.

The observations included (1) the resistance of the experimental

coil as compared with a standard coil of German silver of nearly the

same resistance, viz. 4-6 ohms, (2) the deflections produced by the

spinning of the coil, (3) the speed of rotation.

The comparison of resistances was made by a balance arranged by

Mr. J. A. Fleming, in which Prof. Carey Foster's method (see XL)
of interchanging the resistance to be compared with the standard

was used to give the difference between the two resistances in terms

of a certain length of the bridge wire. Error due to thermo-electric

currents was eliminated by making the comparison with the battery

current first in one direction, then in the other. A comparison was

made at the beginning and end of each set of spinnings.

The needle consisted of four magnetized needles, each 0-5 cm long,

mounted on four parallel edges of a small cube of cork, to which the

mirror was also fixed. This arrangement was adopted because four

equal, thin, uniformly magnetized magnets placed along the parallel

edges of a cube of length of edge 1/V3 of the length of the magnets

gave a lighter arrangement than a magnetized sphere of steel which

was used by the B.A. Committee, and formed a needle the action of

which was to a high degree of approximation the same as that of an

infinitely small needle at the centre of the cube. The magnets were

made about 2-3 times the edge of the cube in length to allow for

non-uniformity of magnetization.

The needle was adjusted in position by raising or lowering the cube

until it was midway between the highest and lowest points of the

circular frame, and then adjusting it in the two other directions, by

attaching a pointer to the frame reaching in nearly to the centre, then

turning the plane round, and observing whether the centre of the cube

coincided with the centre of the small circle described by the point.

The needle was in the usual manner caused to deflect another

horizontally suspended needle in order to determine the ratio MjH
of the magnetic moment to the horizontal component of the earth's

magnetic field. At a distance of one foot the suspended needle was

* " On a Dynamical Theory of the Electromagnetic Field," Phil. Trans. R.S.

vol. civ. (1864), and Reprint of Papers, vol. i. p. 596.
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<l«'M«;ctt»(l through tan~*0'000298, and henn- ii u .ii.-^iau. . r<jual to the

iman radiuH of the coil, 15-85 cm, the deHection of the needle would

have been -0021 aj)|)roxiniateIy.

Now if r denote the mean radius of the coil, and /* the deflection

of the needle, we have by (21), p. 96 above, since the length of the

nijii^net was «ruMll rn?iif»)in*d with r,

2M
tan^ = ^^;

and apj)roximately 6'' = 27rw/r, and A=mrr^, where n is the number
of turns. Thus r^ = 2A/G and t&n fi = GM/HA. This was used as the

value of CjM/IIA in the term in (24) in which that quantity occurs.

The telescoj)e and scale (which was straight) were adjusted in the

usual manner (sec XI. 1). The distance of the scale from the mirror

was compared with the scale directly, so that the absolute length

of a scale division did not enter in the result. The following were

the numbers :

• Distance of scale from mirror - - - - 252-28 cm
Correction for glass plate 3-2 mm thick through

which mirror was viewed, 3-2(1— j - - 0-11 cm

Distance (reduced) - - 252-17 cm

The heights of the centre of the mirror and the centre of the objec-

tive above the line of the scale divisions were measured by means of

a cathetometer, to obtain the data necessary for finding the angle

between the normal to the mirror and the horizontal. For this a

correction was applied to the readings.

The torsion of the silk fibre, which was 4 feet long, was also estimated

by turning the magnet through 5 complete turns, and observing the

deflection of the magnet. It was found that the magnet was shifted

5-6 divisions per turn, or through an angle of -001107. Opposite turning

of the magnet gave 001117, so that the correction for torsion was

obtained by calculating r = -001 1 1/2 tt, and using for A the value A/{I + r).

A correction for level of the coil was also applied, as it was found

that the upper end of the axis was inclined towards the north by an

angle -0003 radian. The component of force at right angles to the

axis was thus, if / be the intensity of the field, and D the dip,

Icoa{D- -0003) = ^(1 + -0003 tan D) nearly.

Thus for A was used finally the value

^(1 + -0003 tan 2))/(1+t).

24. Mode oi driving the coil and regulating speed. The spins were

taken in sets of four at eacli speed. The coil was driven by a long

cord from a water motor acting by the impulse of water on metal cups.
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To insure a constant pressure the motor was driven by water from
a small cistern, which gave a head of 50 feet. The regulation of the

motor was effected by observing that the work done by the motor is

proportional to the difference between the speed of the jet and that

of the cups, and to the speed of the cups. For, if the water is just

reduced to rest the momentum of unit mass of water destroyed is v,

the speed of the jet, and the mass of water received per unit of time

is a{v - Vj) if f 1 be the speed of the cups, and a the area of the jet. Thus
the rate at which momentum is given by the jet to the cups is av{v - Vj).

The rate at which the motor works is therefore av{v-Vj)Vj^. Thus at

zero speed, and at the speed of the jet the water motor does no work.

At half the latter speed the motor does work at the maximum rate.

Thus the diagram of activity is a parabola with vertex upwards if

speeds of the motor be taken as abscissae.

Drawing on this diagram the curve of work done against resistances,

we obtain from the points of intersection of the two curves the possible

uniform speeds of running, and these speeds are more sharply defined

the more nearly the curves are at right angles. Now the activity

spent in overcoming resistance to the motion of the coil is a function

of the speed v^ of the ioim Avj^ + Bvj^ + Cv^^ + etc, since there are

included constant or frictional resistances, which give the first term,

resistances such as viscous resistances which are proportional to the

speed, which give rise to the second term, and resistances which vary

as higher powers of the speed, such as resistance due to air set in

motion by the cups, etc.

The curve of activity against resistance is therefore convex down-
wards, and at high speeds in the experiments there is no difficulty in

obtaining definite enough intersection, but at low speeds this is not

the case. It was necessary therefore at low speeds of the coil to run

the motor fast and use a reducing pulley, in order to enable the curve

of resistances to intersect at a suitable place.

The speed of rotation was observed by the stroboscopic method, in

which a card marked with circles of alternately black and white spaces

(or " teeth ") is viewed through narrow slits in thin plates of metal

attached in the plane of vibration to the prongs of a tuning-fork.

The slits overlap when the fork is at rest, so that to an observer looking

through them the card is visible ; when the fork is in vibration vision

is possible through the slits twice only in every complete vibration.

(See Fig. 212 below.)

The fork was electrically maintaine4, and had a frequency of about

63J (more nearly 63-69). Thus the card could be seen 127 times a

second through the slits. Hence if a circle on the card marked with

alternate black and white teeth was carried round at such a speed

that the number of black teeth which passed the mean position of the

slits in each second was equal to twice the frequency of the fork,

the circle appeared to be at rest.
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The curd wuh ^nuiimtt'd with five circh'H containing 60, 32, 24, 20,

IG hhick teeth respectively, to enable a variety of H|>eed8 to be observed

witliout any change in the frequency of the fork. Looked at over

one end of one of the vibrating plates the card could be seen only once

in each complete vibration, and thus the 60 teeth circle could be used

for the lower speeds.

The contacts of the fork were made and broken with a platinum

point and mercury cup covered with pure alcohol. The arrangement
worked exceedingly well, and went for hours without requiring the

smallest attention. A comparison was made, by means of beats,

between the pitch of the fork and that of a standard fork.

It was found that the speed of the disk could be regulated by the

observer by applying slight friction to the driving cord, when the teeth

showed any tendency to pass. He therefore allowed the cord to run

lightly through his fingers, and after a little practice it was jxissible

so perfectly to regulate the speed that a tooth never passed the pointer

except perhaps by inadvertence, when he at once brought it back by
slightly retarding the cord. The passage of one tooth in each second

meant of course only a variation of 1 in 127 in the speed.

25. Various corrections. In the course of the observations note was
taken of the changes of magnetic declination by means of an auxiliary

magnetometer set up near enough the revolving coil to be practically

in the same magnetic field with it, but at the same time so far away
as to be unaffected by the induced currents produced by the spinning.

The scale was read by means of a telescope, and the distance from
mirror to scale, 2J metres, was the same as that of the mirror of the

magnet in the coil from its scale, so that the corrections could be made
by simple comparison of readings.

Some trouble was caused by air currents in the box containing the

magnet ; these currents caused change of zero during a set of spin-

nings. They were mainly due to radiation of the lamp and gas jets,

and precautions were taken to diminish the effect by covering the

magnet box with gold-leaf to reflect the heat as much as possible. The
error from this cause, however, was not greater than that which neces-

sarily affected the determinations of the mean radius of the coil, and the

distance of the mirror from the scale.

If cj) be the deflection of the mirror, d the observed reading, and
D the distance of the mirror from the scale, S the distance of the zero

position of the spot of light from the zero of the scale, then, approxi-

mately, _
2Z>tan0 =.Z-^-(rf-^)^^+(ll^ (31)

This formula was used for calculating tan </>, (5 being taken positive

when in the same direction as d. Irregularities in the scale were allowed

for, and, as stated above, a correction applied for the slight non-

horizontality of the normal to the mirror. The vertical distance between
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the centre of the objective and the point in which the normal inter-

sected the scale being denoted by p, the angle bet*veen the normal

and the horizontal by a, the correction was dpajD, which amounted
to ^x 0-00014.

The resistance comparisons generally showed a rise of resistance

during each set of experiments. This was corrected for on the supposi-

tion that the rise of temperature was uniform during the time elapsing

between two successive measurements of resistance. The error arising

from uncertainty of temperature did not amount to more than -05

per cent.

26. Specimen set of readings. The following is one set of readings in

which C denotes the resistance of the coil, S the resistance of the standard:

Time.

9 h. 17 m. Resistance compared (7 = 5 + -0225

'Reading of Auxiliary Mag-^l

netometer for change of
J

26-9

magnetic declination J

Position of rest of needle 766-48

9 h. 32 m.

Time. Direction of
Rotation.

Deflected
Reading.

Auxiliary
Magnetometei

Reading.

9 h. 37 m.

9 h. 42 m.

9 h. 47 m.

9 h. 53 m.

Negative

Positive

Negative

Positive

367-60

1166-40

366-23

1166-09

27-55

28-24

28-50

28-30

Time.

9 h. 57 m.

rReading of Au.xiliary Mag-
'1 netometer

27-2

767-08

C = >S + -0272

t Position of rest of needle

10 h. m. Resistance compared

From these the following table of corrected readings and deflections

was found :

Position of
Rest.

Deflection
observed.

Deflection
corrected for

. Scale Errors
and Temperature.

766-28

765-59

765-33

765-53

-398-61

+ 400-81

-399-10

+ 400-56

-396-55

+ 397-93

-397-23

+ 397-23

Mean 397-42

C = >S' + -0248.



ABSOLUTE MEASUREMENT OF RESISTANrE 621

27. Value of resistance of B.A. unit. Tho value of R was cal< ulated

(iirectly from tlir solution of tin? (juadratic (24) above. If A' be put

for /i(l +-0(XJ;5 taji />)/(! +t), the value of the area of the coil when
it is made to include the correction for torsion and level, and tan //

denote OM/HA as determined in 23 above, this solution may be written

R = mrGA'cot </> {1 + tan yu sec + V{ I + tan /x sec </>)* - U tan *</»}, (32)

where U = {2LI(iA')/{2LIGA' -\), and w denotes the number of turns

of the coil per second

= 2 frequency of fork / number of teeth in stationary circle.

The following table gives the result of all the experiments. Colunm 1

gives the date of the experiment, 2 the speed in terms of the number
of teeth on the apj)arently stationary circle, 3 the deflection corrected

for scale errors and variation of temperature during the set of experi-

ments, 4 the absolute resistance of the revolving coil on the assumption

that the inductance of the coil was 4-5x10^ cm, and 5 the absolute

resistance of the standard Gern)an silver coil at ll°-5 C. as given by
the different experiments, subject to a correction for the copper rods

connecting the rotating coil with the resistance bridge.

Date.
Teeth on
Card.

Dellectiou. RxlO 'J
for

Standard
CoU.

Mean.

Dec. 7

10
120

110-42

110-22

4-5486

4-5568

4-5419

4-5309
\4-5364

Dec. 2

6

10

60

218-61

218-30

218-72

4-5580

4-5620

4-5531

4-5487

4-5471

4-5422

4-5467

Dec. 2

6

10

32

397-75

397-39

397-26

4-5639

4-5672

4-5687

4-5417

4-5415

4-5448

4-5427

Dec. 2

6
24

513-73

513-58

4-5719

4-5734

4-5446

4-5438
\4-5442

Mean /? = 4-5427 x 10^, in cm per sec.

The value of L here used was slightly less than that found by Lord
Rayleigh, and agreed very closely with a value (4-5130 x 10' cm)
deduced by the method of least squares from the results for different

speeds.

The German silver standard was then compared with the original

standards prepared by the B.A. Committee. The standard was found
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to be 4-595 b.a. units at 11°'5 C, and the resistance of the copper

rods connecting the rotating coil with the bridge was found to be
•003 unit. Thus 4-592 b.a. units were found to be equivalent to

4-5427 X 10^ in cm per second, or

1 B.A. unit = -9893 x 10^, in cm per second.

28. Lord Rayleigh's further experiments with the revolving coil

method. The investigation just described was repeated by Lord Ray-
leigh with improved apparatus, with the assistance of Dr. Arthur

Schuster and Mrs. H. Sidgwick. The coil was made more massive to

remove risk of deformation by the winding, and its dimensions were

Fig. 192.

increased in the ratio of about 3 to 2. The ring was in two halves,

joined along the horizontal diameter by projecting flanges, and insu-

lated from one another by a layer of ebonite. Its construction with

driving arrangements, etc., is shown in Fig. 192.

The ring having been wound was spun with its circuit open, and
it was found that a perceptible effect on the magnet was produced.

This was traced to currents circulating in the parts of the ring adjacent

to the ebonite layer, where there was sufficient body of metal to give

currents in circuits at right angles to the windings. These currents

were afterwards allowed for.

To obviate air disturbances of the needle caused by rotation of

the coil, the magnet box was screwed air-tight to the lower end of a

brass tube which passed through the upper part of the axis of rotation.

By unscrewing the box and pulling up the brass tube the magnet
could be withdrawn with the fibre intact. The level of the needle
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was adjuHtiible by means of a sliding piece, to which the upj)er end of

the fibn^ was attached. The whole arrangement was so rigid that

no disturbance was produced by the air even at tin; highest sfK^eds.

The needle was on the same plan as before. Its moment was how-

ever six or seven times as great, with, on account of the greater dimen-

sions of the coil, a value of -0012 for MO'/AH, (tan/i), or only about

twice the former value. (This was determined in a manner similar to

that already described.) The horizontal breadth of the mirror'lwas

diminished, and thus with greater magnetic moment and smaller

mirror tin; disturbance from air currents inside the box was brought

down to about 1/15 of what it was in the former apparatus. The
period of oscillation was brought uj) to a convenient amount by an

inertia ring J inch in diameter added to the magnet. The weight of

the whole was so small that it was easily borne by a single fibre of silk.

Fig. 193.

A. Stand for 8tLsi>ciuletl parts.

B Frame of revolving coil.

C. Driving cord.
I). Fork and telescope.
E. Wat4.T-inotor.
F. Telescope and scale for observing

intlcctions.

G. Copper bars connecting to bridge.
//. Flenung's bridge.
/. IMatinuni silver standard.
J. IJridge galvanometer.
K. Telescope and scale of auxiliary

mjignetonu'ter.
L. Auxiliary magnetometer.

The coil was driven and its speed determined as in the former experi-

ments.

The resistance of the coil being 23 units as compared with the former

value 4*6 units, arrangements were made to add resistances to the

copper circuit when the variation of resistance passed beyond the

range of the slide wire, and a platinum-silver standard of about 24

units was employed.

The general arrangement of the apparatus is shown in Fig. 193.

A first set of spinnings gave less accurate results than were expected,

and the cause was traced to the paper scales. These were then replaced

by scales engraved on glass. Some trouble was also caused by an
imperfect mercury contact at the junction of the copper coil with the

bridge connections ; but when this was remedied the arrangements
worked satisfactorily.
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29. Dimensions and windings of coil. Self-inductance. The dimen
sions of the coil were as follows :

Mean circumf.
era.

Mean radius,
cm.

Axial
breadth.
cm.

Radial
breadth.

cm.

Coil^
Coil 5

148-53

148-35

23-639

23-611 •

1-99

1-99

1-59

1-54

Mean 148-44 Mean 23-625

Each coil was wound with sixteen layers of eighteen turns in each

layer, except the eleventh layer of A, which had seventeen turns. An
extra turn was laid on A outside the sixteenth layer.

Each layer was measured during winding, and again on unwinding

after the experiments had been made. Thus the effect of the pressure

of the layers in diminishing their radii was estimated. The mean of

the mean radii of the two coils was then 23-616. Weights of two and
one were given to the last result and the former respectively, so that

a mean of 23-619 cm was adopted.

GA was calculated from the formulae (27), (28), above, multiplied

together, and it was found that log ((r^) = 8-17682. The correction

for level and torsion, it was found, increased this number only to

8-17686.

The value of L for the coil was found by calculating L^, L^, and
M for the two coils as explained above (p. 615), L^, L^ were found by

(29), and M by the formula of approximation given at p. 434 above
[see also XIIL 31]. Thus

Lj (for A) = 1029-3 x 16^ x 18^ cm,

L^ (for B) = 1031-9 x 16^ x 18^ cm,

2M = 832-88x162x182 cm,

so that L = Lj^ + L2 + 2M = 2-4004 x 10^ cm,

subject to a very small correction for curvature.

L was also determined experimentally. A full account of the deter-

mination is given in XIV. 39... 41 above. The final result thus found

wasL = 2-4052xl08cm.
The currents in the ring were allowed for as follows. Putting tan fx

for MG/AH as at p. 621 above, and A\ G' , L\ R, for the quantities

depending on the ring and corresponding to A, G, L, R, we have

from (24)

(j) ^ GAw
tan (j) + T

R^ + w^L^
{R + Ztt)tan (/) + R tan ju sec f/>)

cos (/)

+ J^ ^-,2 (^' + L'wtsin (j) + R' tan
fj.

sec 0) (33)
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if the wire circuit is closed. If the wire circuit is open and the speed
is the same

' cos f/)Q

f^' A'

-i j^,^^J^^,^{R' + L'(oUin^, + R' tan finec </,,). ...{^i)

l*utting T tan </> for t</>/cos </>, and t tan tf>Q for T<f)Jco» 0^, neglect-

ing the terms multiplied by ^'tan^, and subtracting, we get after

reduction

tan </>
- tan 0, = J^^ -^

-^^^l^^^^^ {R + Lw tan

1 + J^tan^J (35)

Thus the ofFoct of L' would be to increase the deflections at high

speeds beyond their proper values, whereas that of L is to diminish

them. The value of L/R for the wire circuit was 01 second : for the

ring L'/R^ was no doubt nmch less, and further wtanr/)^ at the highest

speed was only 1/26. The last factor of the expression on the right

of (35) may be taken as unity. Hence R is given by (32) above with

tan - tan (pQ used instead of tan </>, (but sec left unchanged), and

U = {2L/GiA){2LIGiA - tan 0/tan - tan 0o)},

where 6rj denotes 6^/(1 +t).

30. Mode of carrying out observations. With regard to the observa-

tions, the general mode of carrying out the work and correcting the

results was the same as in the former investigation. An auxiliary

magnetometer was used as before to trace changes of declination
;

and the speed and deflections were read of! as formerly. For the

highest speed it was found that

tan 0^/tan = 7-81/439-41,

and this with the value of Gj^A stated above gave logj^ U = -84325.

The standard coil was kept immersed in water the temperature of

which was observed, and the temperatures of the air were also observed

in the neighbourhood of the copper coil, and near the standard tuning

fork by which the frequency of the speed-measuring fork was deter-

mined.

Comparisons of the resistance of the copper coil with the platinum-

silver coil were made before and after each set of spinnings. The

resistance of the copper circuit w^as equal to that of the standard coil

4- or - the resistance of the bridge wire required for balance.

A specimen set of readings is here given with the necessary correc-

tions. The first set of six were made with the wire circuit open, the

second set with it closed. The spins were successively in opposite

directions, as indicated by the signs - , +

.

O.A.M. 3h
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Wire
circuit

open

Wire
circuits

closed

No. of
spinning.

Time.

H. M.

1- 8 16

2 + 8 18

3- 8 20

4 + —
5- 8 23

6 + 8 25

7 + 8 45

8- 8 47

9 + 8 50
10- 8 52

11 + 8 55
12- 8 58

Magnet reading
corrected by

auxiliary magneto-
meter.

593-38

603-86

593-41

604-10

593-45

604-05

901-58

296-11

901-54

296-42

901-33

296-56

Dilf.

10-48

10-45

10-69

10-65

10-60

605-47

605-43

605-12

604-91

604-77

Mean
dcHections.

5-29

302-56

31. Correction of results and value of B.A. unit deduced. The resist-

ance of the standard - the resistance of the copper circuit expressed

in terms of the resistance of one division of the bridge wire as unit,

was 212 at the beginning of the second six observations, and -316-5

at the end, giving a mean of - 52 during the interval. But each division

of the bridge wire was about 1/480000 of the whole resistance of twenty-

four ohms, so that if balance had been obtained on the average at the

middle of the bridge wire the deflection would have been 302-59.

Again the temperature of the standard during the experiments had
a mean value of 10°-025, so that the resistance of the standard which

for this series was taken as normal at 13°, was below its normal value,

and the deflections were too large. The variation of resistance of the

standard per degree was 3 parts in 10000, so that the deflection fell to

be diminished by about 2-8 parts in 3000 or by -27.

The standard number of beats per minute between the standard

fork and the electrically-maintained fork (at 17° C.) was taken as 59

during the series of observations, and in the set of observations "iiere

taken as a specimen the number of beats was 56j per minute, so that

the electrically-maintained fork was too sharp by 2J parts in 60 x 127,

127 being very nearly twice the frequency of the latter fork, that is

the speed was too great by this amount. This gives as the correction

of the deflection for excess of speed - -10.

But the standard fork which was at normal frequency at 17° was
at 13°-05, and therefore vibrated more quickly than the normal rate.

The amount of quickening was about I in 10000 per degree of differ-
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ence of temperature. Thus there was a further temperature correction

on th(! (h'flection of --12.

Adtlinj:^ to^othcr and applying these three negative corrections, we
get for the deflection which would have been obtained if everything

had been in its normal state as specified 302-10.

From the series of exiH*riments made at diflferent speeds, it was
seen that there was a tendency for the value of the resistance to rise

with the speed. This would have been the effect of an under-estimate

of th<! vuiui' of //, but as the error to account for the discrepancies at

the different speeds would have had to be about 1 per cent., it was

taken as more i)robable that there were ring currents generated which

were not conjugate to those in the wire circuit. There was no doubt,

however, that the true value would be obtained, no matter which of

these views was taken, by applying a correction proportional to the

square of the si)ee(l. This correction was calculated from two extreme

speeds and applied to the results. Thus the principal series of cx])eri-

ments, consisting of many different sets of spinnings, gave the numbers
in the following table as their final corrected result

:

Speed in teeth
on card.

Uncorrected resist-

ance of standard at
13°(unitl0'c.g.8.).

Correction propor-
tional to srinare of

speed.

corrected resist-

ance of standard
(unit 10' c.g.s.).

60

45

35

30

23-619

23-621

23-630

23-638

-006

•Oil

•018

•025

23-613

23-610

23-612

23-613

Mean 23-627 Mean 23612

The result of this set of experiments was taken as that with which

the B.A. standards should be compared. Another series made, how-

ever, gave practically the same result, viz. 23-618 x 10^ c.g.s. units as

the resistance of the standard coil at 13°.

A careful comparison of the resistance of the standard coil with the

B.A. unit gave

23-612 X 10^ c.g.s. units of resistance = 23-9348 b.a. units,

or 1 B.A. unit = -98651 x 10^ c.g.s. units.

32. Method of Lorenz. Lord Rayleigh and Mrs. Sidgwick made a de-

termination of the value of the b.a. unit of resistance by the method of

Lorenz [Pogg. Ami. 149, 1873]. A disk of metal touched near its centre

and at its circumference by the terminals of a conductor was spun round

its axis of figure at a uniform observed speed, in the magnetic field of

a coaxial coil carrying a current. The electromotive force produced

in the circuit thus formed was balanced by the difference of potential
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between the terminals of a resistance through which flowed the current,

or a known fraction of the current producing the magnetic field.

The theory of the method is exceedingly simple. If the disk be

touched at its centre, the total change in the flux of induction through

the circuit in one turn is equal to the induction produced by the coil

through the circular edge of the disk, or if M denote the mutual induct-

ance of the coil and this circle, and y the current, it is My. If n
revolutions of the disk be made per second the electromotive force is

nMy. This is balanced by the difference of potential Ry between

the terminals of a conductor of resistance, R, and so we have

R =nM (36)

M is calculated from the known data of the coil and thus R is found.

If the disk is touched, not at the centre, but at a distance a from
the centre, the induction M for the annular space between the edge

and the circle of radius a is to be taken.

33. Lord Rayleigb and Mrs. Sidgwick's experiments. In no practical

case can nM be large, and therefore R must be small, and a difficulty

Fig. 194.

arises on this account in the carrying out of the method. This was
overcome in Lord Rayleigh and Mrs. Sidgwick's experiments by
arranging that the main current should flow along AC (Fig. 194),

through a resistance a small compared with the resistance c between

A and B, while at the two points B and C, including a resistance h

also small compared with a, the terminals connected with the revolving

disk were applied. Thus h was the resistance which was evaluated by
the experiment. The connections at ^, B, C were made by means
of mercury cups.

The main current being y, and no current flowing in the disk circuit

applied at BC, the current through ABC was ya/{a + b + c). Hence
the difference of potential between B and C was yab/{a + h + c). This

was therefore the electromotive force generated by the motion of the

disk. It will be convenient to regard it as the difference of potential

produced by the current y between the ends of a conductor of resistance

abl{a-\-h + c).

34. Arrangement of apparatus. The pair of coils used by Glazebrook

in his determination of the ohm (see above, p. 596) were employed,

and were at first placed close together with the disk between them,

so as to give a maximum inductive effect. The axle was mounted
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vertically in the frame already used for tfie Hpinning coil determina-

tions, 80 that the arrangements then used for driving and measuring

the speed were available also in the present case.

The diameter of the disk was about -6 of that of the coils. This

size was chosen as, on the one hand, it was not desirable to have any

part of the disk near the wire, on account of the more rapid variation

there of the magnetic induction, and the consequent greater imi>ortance

of errors in the estimation of the radius of the coils or disk, and on

the other hand too small a radius rendered the arrangement in-

sensitive.

After some trials it was decided to make the edge cylindrical, and
to make the edge contact by a brush of fine cojiper wires placed tan-

gentially to the edge and amalgamated with mercury.

M

Fig. 1'.).-).

The arrangement of the apparatus is shown diagrammatically in

Fig. 195. The battery A is connected with a mercury cup commutator
B, by which the current can be sent in either direction through R.

R is here taken as a simple conductor, but the shunt arrangement was

of course used, and R may be taken as standing for the resistance

abl{a + b-\-c).

The terminals F and H attached to the centre and circumference

of the disk were connected with a mercury reversing key /, and in

one of them was included a reflecting galvanometer G. From / the

wires of the disk circuit proceeded to the terminals of R, one of them
however having included in it a portion, JK, of a circuit containing a

sawdust Daniell L, and a resistance coil of 100 ohms.

The latter circuit was designed to balance the effect of thermo-

electric force at the sliding contacts of the brush on the disk, and the
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inductive effect of tlie earth's magnetic field in which the disk rotated,

which would have given a current through the sliding contacts, thereby

bringing these resistances into the account. The function of the

galvanometer G was to test this balance, and that required when the

disk was rotated in the field of the coil.

The battery and frame carrying the disk were insulated from the

ground, and the coils insulated by ebonite supports, and for definite-

ness one point of the galvanometer was connected to earth at E. It

was found that there was no error from leakage.

In the carrying out of the experiments the test of perfect balance

of the electromotive force of the disk, together with the thermo-

electric force and inductive action of the earth's field, above referred

to, was absence of deflection of the galvanometer needle when the

battery current was reversed. It was not however thought desirable

to seek accurate balance, but to make observations of the effect on

the galvanometer reading of reversal of the battery current with a

resistance R^, very little different from that [R) needed for balance.

After a series of readings had been taken, R^ was changed to R^^ which
was such that the same reversal of the current was accompanied by
a galvanometer deflection of opposite sign to the former. The two
series of results gave R by interpolation.

To eliminate ^progressive change in the battery electromotive force,

the observations for R^ were interspersed with those for R^. As soon

as each series of results had been obtained for one direction of driving,

the driving cord was reversed and a similar series of observations made.
The speed of rotation was found by the stroboscopic method [24 above].

Preliminary trials proved that the shunt arrangement represented

in Fig. 194 was faulty. The pieces dipping into the cup G were moved
from day to day to verify the contacts, and the fact was overlooked

that as the main current also traversed C, a small change in the

positions of the contacts might make a considerable difference.

For any uncertainty, even of very small absolute amount, would
affect both a and h, which were small, and therefore seriously also

ahl{a + h + c).

35. Shunt arrangement for balancing e.m.f. of disk. The arrange-

ment shown in Fig. 196 was accordingly adopted. Two cups, A, D,
were connected by two 1 unit coils, through which the main current

flowed, while two other mercury cups, B, C, received the galvanometer
terminals of the disk circuit. G was connected with Z) by a stout rod

of copper. A resistance box E was placed as a shunt across A to

enable the resistance of the shunt to be adjusted.

Two series of results were taken with the coils close together, and
a third series with the coils separated to a position in which the disk,

midway between them, was so situated that the induction through it

was as nearly as possible independent of variations of the mean radius

of the coils. That there was such a position is clear from the fact that,
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for ^ivcn valiU'H of ihv radius of the disk and the distance of the plane

of the disk from th«' mean plane of either coil, the induction is zero,

both when the mean radius of the coil is and when it is infinite. Hence

there was some value of the mean radius of the coils for which the

induction was a maximum, and at wliich therefore the rate of variation

of M with change of mean radius was zero.

For this purpose the coils were separated by distance-pieces of

proper size ; and to eliminate uncertainty as to the position of the

mean planes relative to the bobbins, after one set of observations had
been com])Ieted, the bobbins were reversed on the distance-pieces, and
another set of observations taken.

The dimensions of the coils are given above (p. 596), and the distance

of their mean planes apart in the close position was 3-275 cm. In the

separated positions the distances apart of the mean planes were 30-681

cm and 30-710 cm respectively.

The diameter of the disk was measured by callipers, and its circum-

ference by a steel tape. It was found that the edge was slightly conical,

and it was estimated that the mean diameter at the contact of the

brush was 31-072 cm. The other contact was made at the shaft, and
the diameter of the circle of contact there was 2-096 cm.

36. Calculation of mutual inductance of coils and disk. The coefficient

of mutual induction was calculated first by the elliptic integral formula

(by aid of the tables given in the Appendix) for two circles of radius

equal to the mean radii of either coil and disk, and at a distance apart

equal to the distance of the mean plane of the coil from that of the disk.

Then the cross-section of the coil was taken into account by the formula
of quadratures given above (p. 434).

If a, a', be put for the radii of the coils and disk respectively, and
X for the distance apart of the mean plane of the coil and of contact

on the disk, 26 and 2d the axial breadth and radial depth of the coils,
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and M{a, a\ x) the result for the two circles, the results per turn of

wire were as follows :

Coils Near Together.

a = 25-760cm a' = 15-536cm x = l-637cm

b= •948 cm d= -955 cm

M{a, a', x) = 2154674

M{a + d, a', x) = 205-1917

M{a-d, a', x) = 226-9836

M{a, a', a; + 6) = 211-7246

M(a, a\ a; -6) = 217-5972.

Adding to twice the first of these values the sum of the others,

and taking \ of the result, the average value of M for one turn of

wire was given by j^^ 215-405.

When the coils were separated by the insertion of distance-pieces,

so that x = 15-3472 cm, without change of the other data, the corre-

sponding values found were

M(a, «',») = 110-9240

Jf(a + ^, a', a;) = 111-2573

M{a-d,a', a;) = 110-2442

M(a, a', a; + 6) = 104-5571

M{a, a', X- 6) = 117-6579,

which gave (again for one turn)

ilf = 110-926.

The effect of errors in the measurement of a, a', and x can be esti-

mated by the formula

,-. cM , 'dM , , c'M ,dM ==- - da + 7^-y da' + ^— dx,
ca da ox

• ...,. a dM a' dM x dM ^
conjomedwith ^_ +^ _, + _ __ = l,

which holds because the expression for M is homogeneous in a, a', x.

Writing the last equation in the form

\ + IJ. + V=l,

v i: j.r £ i
d^ N ^^ da' dx

we have tor the first ^^^ = \ — + a—r + v— 'M a ^ a X

Now we may take it that approximately

. _ M{a + d, a', x)-M{a - d, a, x) a

2d M'
and similarly for ju, i/.
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Thus for the case of the coiI« near together

X=-1'3G, /i--02, t> = 2-38,
^

and for that of the separated coils

X=123, ;x=--956, »= 1-833.

In the former case an overestimate of the mean radius would lead

to an underestimate of M, and vice versa, while the reverse would be

the case for the coils so far apart as here indicated. There must of

course be a distance apart of the coils for which the effect of an over-

estimate or underestimate of mean radius would be zero to the first

order of small quantities.

In the former case here specified the inijwrtance of an error in the

estimation of a is of rather more than half the importance of an equal

proportional error in Xy while an error in the estimation of a is rela-

tively unimportant. On the other hand, by the separation of the

coils the importance of an error in a is diminished to about 1/11 of its

former amount, while that of an error in a is enhanced. The numbers
show that the separation had been carried rather beyond its proper

amount.

From the values of M in both cases had to be subtracted the part,

Mq, say, corresponding to the small circle touched by the inner brush.

The area of this circle was Jtt x 2-096^
; and therefore taking the mag-

netic force at the centre of the disk due to unit current in the coil of

mean radius a as a sufficiently near approximation to the average

induction over this circle, we get

^^ _27ra2^
2.0962

{a^ + x^Y
This was equal to -836 in the first case, and to -534 in the other.

37. Comparison of absolute resistance with B.A. unit. The resist-

ances, the arrangement of which is shown in Fig. 196, were the same
in all three series of experiments. The coil b was of German silver

and had a resistance of ^^ unit nearly, the resistance, a, between A
and D was made up of two standard single units, and a resistance of

7 or 8 B.A. units from the box and all placed in parallel.

In the first series of experiments c was a [10], in the second

[10]-f-[5] + [l], and in the third series [10] + [5] -I- [5']. The resistances

of the single units were already known, the others, that is the [10], [5],

[5'], [i\)], had to be carefully compared with standard b.a. units. The
[5]'s were compared by comparing first one of them with 5 units in

series, and then the two [5]'s with one another ; afterw^ards the sum
of the two [5]'s was compared with the [10], the value of which was
found by a special process.

Three German silver coils of about 3 units each wound on the same
tube, had their ends arranged so that they could by mercury cups be
put either in parallel or in series, and a change made in a very small
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interval of time from one arrangement to the other. In parallel

they were compared with a standard [1], and found to have a resist-

ance 1 + a.m The arrangement was now rapidly changed to series, and

the resistance became very nearly 9(1 + a). The standard unit was now
added, and the resistance became 10 + 9a. This was compared with

the [10], the value of which was to be found. If there was a difference

/5, then [10] = 10 + 9a + /3.

The [1/10] was determined as follows. Two standard units, the

[10] and the [1/10], were joined as shown in Fig. 197 as a Wheatstone

BATTERY

bridge, in which the battery and galvanometer terminals were, as

shown, brought into direct contact with those of the [1/10] in the

mercury cups. A resistance box containing coils up to 10000 was
placed in parallel with one of the units to enable the latter to be adjusted

to balance with all necessary accuracy. The four coils were so nearly

in proportion that a resistance of several hundred units was required

from the box fco give balance, so that the delicacy of the arrangement
was very great.

38. Specimen set of results. As a specimen of the results showing
the mode of applying the various corrections the table of results given

for the second series of experiments with the coils near together is

reproduced on the opposite page.
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39. Final results of experiments. The first series gave

jK = -00443407 x 10'^ b.a. units
;

hence the ratio of the b.a. unit to 10^ c.g.s. units of resistance being x,

the absolute value of R was x x -00443407 x 10^ c.g.s. But the value of

M was Mj_ multiplied by the number of turns in the coil (1588), and n

the number of revolutions per second = 2 x frequency -f-number of teeth

stationary on the stroboscopic card. Hence by (36) for the first series,

^^^^^^
w = 128-407/10,

X X -00443407 x 10» = 12-8407 x 214-569 x 1588

or a; = -98674.

The second series gave, since for it

^ = 129-340/16 and i2 = -00279157 x 10^,

214-569x1588x129-340
^" -00279157x10^x16

-•^^^^^•

In the third series w = 129-340/10, and i2 = -00229762 x 10^, so that

^^^^ ^^
_ 110-392x1588x129-340

^" .00229762x10^x10
-'^^^^'^-

Taking the mean of the first two results, and, giving it the same

weight as the last, Lord Rayleigh found as the final result of the in-

vestigation,
I B^ unit = -98677 x 10^ c.g.s.

With the value of the specific resistance of mercury in terms of the

B.A. unit found by Lord Rayleigh and Mrs. Sidgwick, this gives

1 ohm = resistance at 0° C. of a column of mercury 106-214 cm long

and 1 sq. mm in cross-section.

40. Absolute determination of sp. resistance of mercury. A carefully

planned and executed determination by Lorenz's method was made
in 1891 by Prof. J. V. Jones,* of Cardiff, who used in the construction

of his apparatus the most accurate obtainable engineering appliances.

The disposition of the apparatus is shown in Figs. 198, 199.

The standard coil consisted of a single layer of double silk-covered

wire, -02 in in diameter, wound on a cylinder of brass about 10-5 in

in radius, in a screw thread of pitch -025 in. This cylinder was very

carefully turned, and the screw thread cut on an accurate Whitworth

lathe, and great care was taken to test the figure of the cylinder after

it was finished. It was found that the cross-section of the cylinder,

instead of being circular, was always slightly oval, however many cuts

were made over its surface, showing apparently an effect of internal

stresses.

41. Adjustment of parts of apparatus to position. After the screw

had been cut the mean plane of the coil was determined for the after

* Phil. Treats. 1891, A.
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placing of the dJHk in the following nianiicr. J lie slide-rest of the

lathe was made to carry a V tool, and a microscope, so adjusted that

the image of the ])oint of the tool was seen eicactly at the centre of

a
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the graduated plate in the focal plane of the eyepiece. When the slide-

rest was moved along the bed, the tool passed inside the cylinder while

the microscope remained outside. The guide-screw of the slide-rest

(of pitch -25 in) was turned by a wheel 9-75 in in radius divided into

360 parts, and it was possible to estimate the position of the wheel
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to 1/10 of a division. By drawing, then, a generating line along the

cylinder, and reading on this wheel the position of the microscope

when the ridges of the first and second threads on this line were

focussed in the field of view, then running the microscope along the

generating line, and taking in like manner the readings for the last ridge

and last ridge but one, the reading for the mean plane could be at once

found. The mean of the first two readings subtracted from the mean
of the last two gave obviously the distance between the first hollow

and the last, and half the sum of these two means therefore gave the

required reading. The tool was then moved to this position by the

Fig. 199.

wheel and guide-screw, and a cut made round the inside of the cylinder

at the plane thus found.

At the intersection of the first and last hollows with this generating

line small holes were bored radially through the brass of the cylinder,

and were bushed with paraffined ebonite to receive the ends of the

wire. The wire was secured at one end in the hole there, and was then

laid on in the screw-thread by the lathe, under uniform tension given

by a weighted pulley. The ends of the wire were secured by melted

paraffin run into the bushes, and blocks of ebonite attached to the

cylinder at the ends of the generating line, on which the coil began and
ended, carried binding screws, to which the ends of the wire were

soldered.

The disk was insulated from the axle by ebonite, and was fixed

coaxially as described below in the mean plane of the coil. It was

driven by an electromotor coupled direct, and was rotated in position

and ground true by an emery wheel driven rapidly by an electromotor.

Its diameter was measured by a Whitworth measuring-machine. This

consisted of a graduated bed carrying two headstocks, one fixed, the
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other movablo alon^ the bed by a ^uide-screw turned by a divided

wheel. The distances used on tlie bed were compared with a standard

scale.

A side view ul tin' toil, disk, stroboHcopic cylinder, etc. (for explana-

tion of reference letters see Fig. 198), is given in Fig. 199, and an end

view showing the disk and edge-brush, Q, in Fig. 200.

42. Contact brushes : measurement of speed. The brush finally

adopted for the edge of the disk was a single wire perforated by a

channel, through which was supi)licd a small stream of mercury. A
piece of copper an inch long was drilled to a depth of | in, to meet
another hole at right angles, which received the phosphor wire brush.

The perforation drilled along the wire of the brush was connected with

that in the copper piece, and an india-rubber tube slipped over the

free end of the latter kept up a constant supply of mercury. This gave

a constantly fresh surface for contact. The central brush was fed also

with mercury but more slowly.

The speed of driving was measured by the stroboscopic method by
observing one of a set of rows of teeth, marked round a cylinder,

through slits in brass plates attached to the prongs of a tuning fork,

which vibrated at right angles to the circles of teeth. The fork was
bowed, not electrically maintained : the number of turns per second

n was given as in Lord Rayleigh's experiments by n = 2//iV, where / is

the frequency, and N the number of teeth in the stationary circle.

The pitch of the fork was determined by driving the cylinder ; keep-

ing a row of teeth stationary, and causing the cylinder by means of a
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lever to make and break a battery circuit every revolution, so that for

about half the time of revolution the contact was made and for the

other half broken. This registered on a telegraph tape a series of

alternate dashes and spaces, and on the same tape a mark was made
once a second by the laboratory standard clock. The observations

being continued over three or four minutes, N and n were obtained

with accuracy, and / was deduced by the equation /= ^nN.
43. Arrangement of mercury column. The resistance used for

balancing the electromotive force of the disk was a column of mercury,

so that the experiment gave the specific resistance of mercury directly.

The mercury was placed in a long rectangular trough, Figs. 198 and 201,

carefully cut, as described below, in paraffin by machinery, and two
electrodes dipped into the mercury at some distance from the ends of the

trough. One of these electrodes was kept fixed, the other was attached

to the movable headstock of the Whitworth measuring-machine, by
which its position was altered by the difference of distance between
the electrodes necessary for two different speeds of the disk. Thus the

difference only of two distances between the electrodes (and this could

be obtained with accuracy) was used in deducing the final result. For
if Wj, Wg, be the two speeds of rotation of the disk, p the specific resist-

ance of mercury, A the cross-section of the column, and I the distance

between the two positions of the electrodes, the resistance of the

column between the two positions was

jp = M{n,-n,) _. (37)

The capillary depression at the sides of the trough was allowed for

by taking observations for two different depths of mercury in the

trough. For if AA be the change in area produced by increasing the

depth from h to h', n^, n^, I the speeds of rotation and difference of

lengths of column in the first case, n\, n\^ V those in the second, then

we have by (37), assuming that the groove is true and the temperature

the same in both experiments,

A + AA =

and therefore AA =

M{n\-n\y

P f V I

M x,^ 1

or since AA = b{h' -h), where h is the breadth of the trough and h', h

the two depths,

Mb{h'-h) •

.„«s

p^—f ir
^^^^

n .-71 „ n.-n.
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The trough (shown in Bcction in Fip;. 201) was cut in paraffin wax
melted in a longitudinal groove left in a strong casting of iron. The
wax was melted in the groove and allowed to solidify on the surface^

after which melted wax was jwured through a hole in the crust to the

interior in order to obtain a perfectly homogeneous mass. A channel

was then cut and covered with a thin layer of paraffin to fill up air-

holes, after which it was recut and scrajKid true.

A length of 10 in of the trough was used in the experiments, and
this was carefully calibrated by internal callipers of special construction.

The position of the surface of the mercury was determined by placing

a spherometer in a fixed position over the trough and screwing down
the movable point until contact was indicated by the completion of

a battery circuit through the mercury and point. The division on the

head of the micrometer corresponded to 1/5040 in, and the size of the

head allowed of an estimation of tenths of a division. Successive

Fig. 201.

measurements did not differ by more than 1/20000 of an inch when the

point was kept clean by being carefully wiped with filter paper, and

sparking was prevented as far as possible by including a large resistance

in the circuit and breaking the circuit before removing the point from

the mercury after a reading.

The temperature of the mercury in the trough was determined by
two thermometers, one at each end of the trough. A third thermometer

was placed between the prongs of the speed-measuring fork. These

thermometers were corrected by comparison at Kew.
To prevent warping of the trough by change of temperature, and

to make as certain as possible that the mercury in contact with the

poorly conducting wax should be all at one temperature, the tempera-

ture was kept as nearly constant as possible by enclosing the trough,

etc., in a wooden box covered with felt paper, and protected round

about with felt curtains. The thermometers were read through windows

in the box by lifting the curtain.

The galvanometer used to test for balance was a Thomson reflecting

galvanometer of 0-968 ohm resistance, the needle of which was carried

by a quartz fibre 13 in long.
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44. Adjustment of the disk in position : observations. The axis of

rotation was placed at right angles to the magnetic meridian, so that

the plane of the disk might be in the meridian and thus avoid any
current due to earth induction. When the disk was rotated without

current in the standard coil any displacement of the light spot could be

annulled by a slight movement of a compensating magnet on the table.

The bearings of the disk were made as nearly as possible perfectly

true, and were each provided with a sight-feed lubricator. The disk

was adjusted in position in the coil by arranging an arm to fit upon the

disk so that a carefully scraped face on the arm should be a prolonga-

tion of the mean plane of the disk. The coil was then placed in position

so that the outside edge of this face should travel round the interior

circle cut in the mean plane of the coil as already described.

The mercury trough was carefully levelled and adjusted parallel to

the bed of the measuring machine. The last adjustment was made
by attaching to the movable headstock a cylinder projecting vertically

downwards into the trough, running the headstock from end to end

and testing at the extremities the distance from the cylinder to the

same side of the groove by pushing a wooden wedge lightly between

them. Further, by making the wedge-reading the same on both sides

of the cylinder, the headstock was adjusted so that when an electrode

was substituted for the cylinder it dipped into the medial plane of the

mercury column.

A slight direct effect on the needle produced by the current was

observed, and was compensated by placing a coil of three turns of the

battery wire close to the needle.

The insulation of the wire of the coil from the bobbin and of the

disk from the axle were tested and found satisfactory.

Lord Rayleigh's plan (XV. 34 above) of taking two sets of galvano-

meter readings for each equilibrium position was followed. One set

gave the change of galvanometer reading for reversal of current when
the resistance was slightly below that required for balance, the other

set the corresponding change when the resistance was a little above

the proper current. To eliminate uncertainties owing to variations

of speed and of the brush contacts, a number of reversals were quickly

taken for each resistance and combined to give a mean result. The
readings were taken without waiting for the needle to come to rest,

but elongations were observed which with a previously determined

damping coefficient enabled the position of rest to be calculated.

45. Reduction of results. The dimensions of the coil and disk, and

the calculation from them of the mutual inductance, M, are given

in Chapter XIT. above, which is devoted to calculation of inductances,

and so are not repeated here. It only remains to state the mode of

reduction of the observations and the final result.

If pt and Af be the specific resistance of mercury and the cross-

section of the column at temperature t, and p. A, the same quantities
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at 15°'5, to which the results were in the first iiiHtance reduced, L the

distance between tfi«' «'l«Mtr<)de8 in any equilibrium {>OHition, then

A,

Now if / be the, frcqui-ncy of the fork at the Htandard tem{>erature

15°-5, an<l/« the friMHiciicy at temperature 9, wc have

2/i 2/{l+*(»-16''-5)}

"=iv iv~ '

where /;( = - -OOOU) was a temperature coefficient. Also

Pr
= p{l+«(<-15°-5)},

where a is the temperature coefficient for the specific resistance, and

y the coefficient of cubical dilatation of mercury. Hence

^ 2Mf{\ + k{9-
\6°'5)} Lp{l + a{t- 15°-5)}

N ~A{l+y{t-lb°-b)}

or -^ = 2Mfv,A
1 + A;(6> - 15°-5) + (y -a)(<-15°'5)

where v= .,
iV

If now Ai' be the difference of two values of v for equilibrium positions

separated by an interval /, ^ 2MfAs
iis = Apll.

As stated above, two observations were made with the mercury at

different levels h' and h to eliminate error from capillarity. Calling

the two values of Av/l for these observations s', s, and the areas of cross-

section of the trough A', A, we have, if h be the mean breadth of the

trough over the length used,

A'-A=h(h'-h),

and from this the specific resistance of mercury at 15°-5 was calculated.

The coefficient a was obtained from the formula

/?, = i?„(l + -0008649< + -00000112<8), (40)

given by Mascart, de Nerville, and Benoit for the resistance of a column

of mercury at t^ in a glass tube. Thus

i2,5 5= i2oX 1013675

and . R, = R^{l+{a-^)t}, (41)
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where /3 is the coefficient of cubical expansion of glass ( = -000008).

Thus (« - /3) X 15-5 = -013675,

or ax 15-5 = -013799.

This gave the mean value of a from to 15°-5 which was used to

obtain the specific resistance of mercury at 0° from its value at 15°-5.

The equation of reduction was thus

/)i5 5 = /0oxl-013 (42)

The value of a at 15°-5 or ajg.. was obtained by calculating from

(40) above ^n

P = RqX (-0008649 + -00000224 x 15-5)
(It

= i2oX -00089962.

But by (41) ^'= i?o(ai5 5-,3),

and therefore a,... = -0009076,

which was used to correct the experimental results for the small differ-

ences between 15°-5 and the observed temperatures.

The final result of five sets of experiments gave

p = 94067 c.g.s.

as the resistance at 0° C. of a column of mercury one square centimetre

in cross-section and one centimetre in length.

According to this result the ohm is equal to the resistance at 0° of

a column of mercury 106-307 centimetres long and one square milli-

metre in cross-section.

46. Final result of Jones's determination. The extreme variation

from the mean result was about 4 parts in 10,000. Much of this Professor

Jones deemed to be due to the paraffin trough, which varied slightly

in temperature. Accordingly he made a little later,* by this apparatus,

a determination of the values in terms of the true ohm of a resistance

the value of which was known in terms of the Board of Trade or Inter-

national Ohm. It was made up according to Lord Rayleigh's arrange-

ment from coils which had been carefully compared and tested by
Glazebrook. The ratio of the true to the international ohm came
out as a result of a very concordant series of determinations to be

106-326/106-30. Working direct in mercury Professor Jones had, as

stated above, obtained in 1890 a somewhat lower result, 106-307 with

a probable error of =t*011.

47. Ayrton and Jones's determination by method of Lorenz. An
apparatus similar to that constructed by Viriamu Jones at Cardiff

was built by Messrs. Nalder Brothers of London for the Physical Insti-

tute of the McGill University, Montreal, and advantage was taken of

* B.A. Rep. 1894. •
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the experience gained with the former apparatus to effect various

improvements. An account of a determination made with this apparatus

was given at the Toronto Meeting of the British Association, in 1897,

by Professors Ayrton and Jones.

The field coil was a single layer of wire laid on in a helical groove

cut on an accurately turned marble cylinder or ring, of 21 in outside

diameter and 15 in inside diameter. The groove consisted of 201 turns

of step 0-025 in, so that the axial length of the helix was 5-025 in.

At first bare wire of mean thickness 0-02136 in was used, and the out-

side diameter of the coil was measured for 18 diameters inclined at

successive angles of 10°, for (a) the front face (next the disk), (b) the

middle section, and (c) the back face. The means for these were,

in inches, 2104797, 21-04784, 2104872, giving a general mean of

21-04818 in, at the mean temj)erature 20°-4 C.

As the insulation was not quite satisfactory the bare wire was replaced

by double silk-covered wire of mean thickness -01914 in, which gave by
the measurements already made a mean outside diameter of 21-04488 in

at 20°-4 C. It was found that the coefficient of expansion of the

marble was about 0-000004 i)er 1° C. A direct measurement of the

outside diameter of the coil as rewound gave 21-04687 in as its mean
value. The difference was probably to be attributed to the fact that

after the rewinding the coil had been brushed over with melted paraffin

wax, then sewed over with silk ribbon, and finally covered with a wide

silk ribbon that had been passed through the melted wax, so that the

silk covering of the wire had probably swelled a little. [The covering

was carefully removed down to the silk covering of the wire to allow

the measurement to be made for two diameters at right angles.]

The thickness of the wire gave 21-02773 in at 20°-4 C. as the diameter

of the coil from axis to axis of the wire.

The disk was of phosphor bronze, and was ground in position so as

to be exactly coaxial with the coil, and its diameter was then measured

and found to be 13-01435 in at 19°-5 C. Its linear expansion coefficient

had previously been found to be 0-0000125 per 1° C, so that, at

20°-4 C, its diameter was 13-01451 in. The disk was placed in the

medial plane of the coil with all proper precautions as in the Cardiff

instrument.

48. Mutual induction of coil and disk. The mutual induction of the

coil and disk had been calculated by Mr. W. G. Rhodes for the bare

wire winding and the diameter 13-01997 in of the disk, and had been

found to be, in cm, 45862-3. This was corrected to 18037-51 in, or

45814-45 cm for the values 21-02773 in and 13-0451 in for the new
diameters of the coil and disk. The equation of correction was found

""'
^^ = lW^.2.346<'%0.0997^M A a X

where 2A was the radius of the coil, 2a that of the disk, and 2x
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the axial length of the coil, all taken in inches. The data finally

were thus

:

Diameter of coil, 2A = 21-02773 in.

Diameter of disk, 2a = 13-04:51 „

Axial length of coil, 2x= 5-025 „

Number of convolutions 201

ilf = 18037-51 in.

= 45814-45 cm.

49. Arrangement of brushes : result obtained. The contact with

the edge of the disk was made by three small phosphor bronze. tubes,

120° apart, placed tangential to the edge and lightly pressed on it,

and conveying a small stream of mercury by which the contact was
made continuous and certain ; the contact with the centre was a single

tube (also supplying a small stream of mercury) which projected

into an axial hole of 0-144 in in diameter. The mercury which

dropped from the central brush was kept off the disk by an ebonite bar

cemented to the face of the disk. The value of M was thus reduced

to 45809-95 cm.

The electromotive force of the revolving disk was balanced by a

derived current from the coil circuit as in Lord Rayleigh's deter-

mination. The coils used were those which had been used in the

Cardiff determination, and had been carefully compared with standards

by Glazebrook in 1894 and again in 1896 at the Board of Trade

Standardizing Laboratory.

The result of nine determinations made after everything had been

got into working order was to give the result

1 Board of Trade Ohm = 1-00026 true ohm.

It may be recalled that the ohm [10^ cm/sec] was, by an Order in

Council of date August 23, 1894, taken to be represented by the resistance

of a uniform column of mercury 14-4521 grammes in mass and 106-3

cm in length. This received the name Board of Trade Ohm ; the

specification was based in the main on at least seven closely concordant

determinations by Mascart, Rowland, Kohlrausch, Glazebrook, Ray-
leigh, Wuilleumeier, and Duncan and Wilkes, and Mrs. Sidgwick's

determination.

50. Apparatus of National Physical Laboratory. In his paper to the

British Association in 1893 Viriamu Jones made various suggestions

as to the corrections to be made in discussing the results of a deter-

mination of resistance by the method of Lorenz, and stated that in

his opinion a well-constructed Lorenz apparatus, in a national labora-

tory, would prove to be the best ultimate standard of electrical resist-

ance. In 1900 the Drapers' Company of London expressed to him their

willingness to undertake the construction of such a standard. Professor

Jones, however, died in 1901, and thereafter the Company made a
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grant of £700 in his memory, to enable the apparatus to be made at

the National Physical Laboratory, under the superintendence of

Professor Ayrton and Dr. Glazebrook.

Professor Ayrton died in 1908, before the design of the national

instrument had been completed ; he had, however, given much atten-

tion to the subject in connection with the Montreal instrument, and

had spent much time in the work of constructing and testing the

Ayrton Jones Current Balance (see Chapter XII. above), which waa
not finished until 1907.

A full account of the new instrument is given in a paper by Mr. F. E.

Smith in the R. S. Transactions 214 (1914). The design as finally adopted

differed considerably from the Cardiff and Montreal instruments. The
arrangement is shown diagrammatically in Fig. 202. It was decided

M W
-«<yrw

Fig. 202,

M, motor; IF, Jly-wheel ; DI>, discs ; CCCC, colls on cylinders.

to use two disks, Z), D, on two aligned shafts connected by a coupling

as there shown. These were arranged to run in the fields of two double

coils, and to be driven by a motor and fly-wheel as shown to the left

of the diagram. The diameter of a disk was 53 cm, that of the shaft

5 cm.

51. Modification of method of Lorenz. Round the edge of each disk

were ten circular segments of phosphor bronze mounted on the insulat-

ing substance called stabilit [Fig. 203]. To each segment was attached

one end of a copper wire which travelled round a groove cut in the

stabilit, until a radial channel was reached by which it was led to the

shaft. In this passage were collected thus all the wires, to be carried

to the shaft, which they entered by a brass tube and radial hole, to be

then carried along an axial boring to the coupling midway between the

disks, on which were arranged ebonite blocks furnished with terminals

for the wires. Each wire was of No. 26 gauge, double silk covered,

insulated with a coating of shellac, within a tube of silk.

Ten wires were thus arranged for each disk, and brought to terminals

at the coupling by which they can be made into ten wires passing

from the edge of one disk to the edge of the other.

The segments are touched by brushes of phosphor bronze wire, five

on each disk. These brushes were formed somewhat like violin bows,

with the hair replaced by the bronze wire, wound round two screw-

threaded rods across the bow near the ends, and capable of being

tightened by screws after the manner of an ordinary bow. Their

form and arrangement are indicated in Fig. 203. The ten brushes

(five on each disk) can be joined in two ways (a) so as to put the
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successive wires from disk (1) to disk (2), and from disk (2) to disk

(1), and so on alternately, in series, (6) so that the brushes are arranged

in two sets of five each in parallel. They were lubricated with paraffin

oil, without which the contacts were not satisfactory.

In the first case when each brush is in contact with a single segment,

the differences of potential are added together for five rotating con-

ductors ; when each brush touches two segments five rotating con-

ductors are joined in parallel, but each now consists of the wires from

two neighbouring segments in parallel. The differences of potential

Fig. 203.

for five disk-to-disk-conductors are thus added together, whether the

brush contact be with one segment or with two.

In the other case the difference of potential is simply that for a

single conductor.

The function of the disks is simply to support the wires and carry

them round in the rotation. The wires thus cut the lines of force of

the fields of the coils, which are joined so that the two fields are oppo-

sitely directed, as shown in the diagram of Fig. 204. As stated above,

the wires come radially along a passage in the side of each of the disks

to the shaft ; but it will be seen that a wire passing anyhow from
A to B will have the same electromotive force produced in it by the

rotation, inasmuch as it cuts across the same lines however it may
be situated.
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52. Cod traction and tests o! materials, etc. The apparatus has been

very strongly and exactly made, and is HUpix>rted on massive founda-

tions. All the materials were very carefully tested for strength, and

for absence of magnetic matter, and only specimens which passed the

tests satisfactorily were used.

The coils were single layers of bare wire wound in screw threads cut

on hollow cylinders of what is called " First Statuary " Carrara marble,

which was found to insulate well and to have negligible magnetic

susceptibility. The cylinders were selected carefully, and are free from

flaws and cavities. The coefficients of linear expansion of the marble

was found by comparison with an invar bar to be 5-0 x IQ-^.

FlO. 204.

Each coil was about 36 cm in diameter, and had an axial length very

slightly over 16 cm. For the exact dimensions and other details, the

reader should refer to Mr. Smith's paper {loc. cit. supra) for a full record

of all the measurements and adjustments, which were very elaborate,

and were made with all necessary precautions. The windings were

tested for insulation and for variation of pitch.

53. Calculation of M and final result. The value of M was calculated

by the equation (26) of Chapter VI. above, namely

M = ep{A+a)fiy{^-^" + -^'} {G-U),

where is the total angle of the helix, A the radius of the helix, a the

radius of the contact circle on the disk, y^ = iAa/ {{A + a)^ + x^}

,

/3^ = 4:Aa/{A + a)2, so that y was the modulus of the elliptic integrals

G, H, n of the first, second, and third kinds, p the pitch of the helix,

and ^^ the parameter of the elliptic integral of the third kind. Details

of the method of computation will be found in the Chapter referred to.

For further particulars of this investigation we have no space. The
final result is given in the following statement.
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The ohm (10^ cm/sec) is represented by the resistance at 0° C. of a

column of mercury 144446 dr 0-0006 gramme in mass, of a constant

cross-sectional area {the same as for the international ohm) and having

a length of 106-245 ±0-004 cm. Thus the result is claimed to be correct

to 4 parts in 100,000.

54. Method of Joule. Joule's method is in principle very simple.

Supposing a current of strength y to flow through a wire of resistance

R for a time t, a quantity of energy- yRH is spent in the conductor.

This is expressed in ergs if y and R are taken in c.g.s. units, and t in

mean solar seconds of time. If H be the heat generated in the conductor

in that time, and J be the work equivalent of heat, we have

y^Rt =JH and R=-^^-

The absolute measurement of the current might be made with suffi-

cient accuracy, though it is of very nearly the same order of difficulty

as the determination of the ohm ; but there are also involved exact

calorimetric determinations which require the greatest care and skill.

Over and above all these is the determination of J with an accuracy

equal or superior to that to which it is required to find the ohm say

to 1 in 10,000. That would be a research of difficulty far transcending

that of the measurement of absolute resistance by most other methods.

For descriptions of other methods the reader may refer to Wiede-

mann's Elektricitdt, Bd. 4, 2^*" Abtheilung.

55. Carey Foster's modification of method of revolving coil. It has

been proposed by Carey Foster to modify the method of the revolving

coil by rotating the coil on open circuit, and applying to its terminals,

at the instant when the inductive electromotive force is a maximum,
a difference of potential equal and opposite to that then existing at

the terminals of the coil. This will not be exactly the instant at which

the coil passes through the meridian, as on account of the capacity

of the conductors a certain retardation of phase will exist.

This applied difference of potential may be that existing between the

terminals of a conductor in which a current y is flowing. The current

is measured by a tangent galvanometer of principal constant G, and

therefore has for absolute value H tan a/G ; so that the applied differ-

ence of potential is RH tan a/G. The induced difference of potential

has the value AHco only. Assuming H to be the same for the revolving

coil and the galvanometer, we have therefore

R = GAw cot a = 27r^nn'co -7 cot a,
a

if a be the mean radius of the revolving coil, a' that of the galvanometer,

n, n', the numbers of turns in the coils.

Thus error of measurement of the mean radius a is of twice the

importance of equal proportional error in a'.



Addition to Results Collectku on Page 651.

The table of collected result* of the absolute measurement of resistance

given on p. 661 gives the value of the ohm in cms of mercury, that is, the

length of a column of mercury 1 sq. mm in cross-section which at the tempera-

ture 0° C. would have one true ohm resistance. The values quoted in the

table are those given by the experimenters. If the resulte are given in terms

of the National Physical Laboratory mercury sUndards of resistance, the

numbers are slightly altered. They are

:

1882. Rayleigh 106-26

1883. Rayleigh and Sidgwlck 106-24

1882. Glazebrook 106-29

Professor J. V. Jones repeated his determination by the method of Lorenz,

using the same apparatus, but with certain coils which had been carefully

measured by Glazebrook in terms of the international ohm. On the assump'

tion that the international ohm is the resistance at 0° C. of a column of

mercury of 1 sq. mm sectional area, and 106-30 cm long, the result obtained

by this determination gave the true ohm as the resistance at 0° C, of a

column of mercury of the same cross-section and 106-326 cms in length.

A determination was made by Albert Campbell in 1912, by comparing

a resistance with a mutual inductance. Two nearly equal sine-wave alternat-

ing currents Oj cos n/, Cg sin nt (so that they are in quadrature) flow respec.

tively through a resistance R (known in terms of the international ohm),

and the primary circuit of a variable mutual inductance. The voltages

produced across the resistance R and across the secondary circuit of the

mutual inductance, were balanced against one another by varying the mutual
inductance and testing the balance with a vibration galvanometer. The
value M of the mutual inductance was determined by comparing it with

a standard mutual inductance. The resistance R is then found from this

value of M, and the known value of the frequency of the alternations.

The result obtained was 106-273 cms of mercury.

Mr. F. E. Smith concludes that

The international ohm is equal to 1'00052 ± 0*00004 ohm (10* cm/sec)*

where the probable error 0*00004 is approximately the sum of those of the

realization of the ohm and the international ohm.

His results are summed up in the statement

:

The ohm 10® cm/sec is represented by the resistance at 0° C. of a column
of mercury 14*4446 ± 0*0006 grammes in mass, of a constant cross-sectional

area of 1 sq. mm and having a length of 106*245 ± 0*004 cm.

The numerical table of values of the quantities Xj, X.^, ete., defined in

(78), XIII. 25, promised on p. 501, has been inadvertently omitted. It is

given in vol. 8, No. 1, of the Bulletin of the Bureau of Standards^ Washington,
which is either in the possession of most laboratories or in an accessible library

of reference.

Messrs. Griineisen and Giebe, of the Reichanstalt, Berlin, now give as

the result of researches on the value of the ohm

1 international ohm =(1 00051 ± 0*00003)10" c.g.s.

The most probable value of the e.m.f. of the Weston normal cell is now
given as 1-0188 volts at 20° C.
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The main advantage of this method lies in the elimination of self-

induction, as the current is almost zero at each instant. In its practical

use error from thermo-electric force at the rubbing surfaces, and from

mutual induction between the wire circuit and secondary circuits in

the ring currents would have to be guarded against.

The method does not seem to have been applied to a complete deter-

mination of absolute resistance.

56. Table of collected results. The following table, mainly derived

Absolute Resistance of Mercury** by R. T.

Report, 1891), contains the principal results

from a Report on tli<'-

Glazebrook {Brit. Assn
obtained since 1881 :

Date.

1882

1883

1884

1884

1887

1887
1882 and

1888
1890
1890

1891
1897

1913

1884

1884
1885

1883

1889

1885

Observer.

and
\

and\

/

/ Lord Rayleigh

\ Schuster

i Lord Rayleigh

t Mrs. Sidgwick
G. Wiedemann -

fMaacart, de Nerville,
\

\^
and Bonoit - I

Rowland

Kohlrauscli -

Glazebrook -

Wuillcumeier
Duncan and Wilkes

J. V. Jones -

Ayrton and Jones

F. E. Smith and others

*H. F. Weber
*H. F. Weber
Roiti . - - -

Himstedt

Wild - . - -

Dorn -

Lorenz

Method.

Revolving Coil

Method of I»renz -

Earth Inductor

Induced Currents -

( Mean of Several
^

\ Methods - ]

Damping of Magnet

Induced Currents -

Induced Currents -

Method of Lorenz -

Mean

Method of Ix>rcnz

Method of Lorenz

(
Method of Lorenz

)

I (modified) - j

Induced Currents
Rotating Coil -

.

Induced Currents

f Damping of a^

\ Magnet /

(Damping of al

\ Magnet /

Method of Lorenz •

Value of
B.A. unit
In Ohnu.

•98651

•98677

98611

•98644

•98660

98686
•98634

•98653

Value of
Ohm in
Cms of
Mercury.

106-24

10621

106 19

106-33

10632

10632

106-29
106-27

106-34

106-307
106-27

106-245

105 37
10616
105-89

105 98

10603

10624

105 93

It was decided in 1892 by the British Association Committee on Electrical

Standards to define the ohm for practical purposes as the resistance at 0° of a

uniform column of mercury weighing 14-4521 grammes, in a tube 106-3 cm long.

This corresponds to cross-section 1 sq. mm, and density of mercury 13 -5950. It

will be seen that there is a slight discrepance between this statement and that

given in 12 above as expressing the result of the N.P.L. determination.

* The absolute measurements here referred to were compared with standards of

German silver by Siemens or Strecker. The values in mercury units of these

standards were certified by the makers.



CHAPTER XVI.

COMPARISON OF UNITS.

1. Ratio of units. Relation to speed of propagation of electromagnetic

action. The experimental comparison of the ordinary electrostatic

and electromagnetic units of an electrical quantity is of great import-

ance in the electromagnetic theory of light, as it enables the velocity

of propagation, according to that theory, of an electromagnetic dis-

turbance to be determined numerically, and compared with the observed

velocity of light. That the ratio of the two units of the same quantity

gives the speed of propagation of electromagnetic action is an im-

portant proposition of Clerk Maxwell's electromagnetic Theory of

Light, which is set forth in his celebrated essay on that subject. We
begin the present chapter with one or two illustrations of this relation,

modifying however the mode of applying them in accordance with the

more general theory of dimensions adopted in Chapter I. above.

It has been shown (V. 34) that the electromagnetic force acting on

an element ds of a conductor carrying a current y in a magnetic field

is By sin ds, if B be the magnetic induction at the element, and 9 the

angle between the element and the direction of the magnetic induction.

If the field be produced by a current y' in a straight conductor

parallel to ds at distance b from it, and infinitely extended both ways,

we get, by integration of the expression y'sin6'ds'/r^ (p. 178 above)

along the conductor, the expression 2'y'/h for the field intensity at ds

due to the current y'. Hence, if /m be the magnetic inductivity of the

medium, the electromagnetic force on ds is 2jUL'yy'ds/b ; and if the first

conductor be straight the force on a length b/2 is /xyy'.

Now let the quantities of electricity yt, y't, conveyed by the currents

in time t, be used to charge two spheres whose centres are at a distance

r apart great in comparison with the radius of either. The electrostatic

repulsion between the spheres would then be yy't^JKr^, if k denote

the electric inductivity of the medium. If r be chosen so that this

force is the same as the attraction between the conductors exerted

on a length equal to half the distance between them, we have

Myy = -,-..

or -\='\ (1)

652
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that is, Ajy/fiK may be c»x[)n'KHed aH a Hpeed. ThJH is true whatever

hypotheHJH aH to diineiiKionH jh adoptt'd for fi and k, and all such

hypothcHCH which may be framed must fulfil this condition.

This speed, moreover, is jierfectly definite. For, if ^/r* remain

constant, the electrostatic force of repulsion between the spheres will

remain unchanged, while their charges are increased at the time-rates

y, y', respectively; and, therefore, l/VfiK is equal to the speed r/t

with which the spheres must be separated in order that their mutual

repulsion may be kept equal to the force of attraction on a length of

either of the parallel conductors equal to half the distance between

them. It is proved in the electromagnetic theory of light that I/V/c/m

is the speed of propagation of an electromagnetic wave in an isotropic

insulating medium. See Maxwell, Electricity and Magnetism, or Gray,

Treatise on Magnetif^m and Electricity.

2. Ratio o! the units of quantity considered as a speed. If now we
denote by v the ratio of the electromagnetic to the electrostatic unit

of quantity, the charges on the spheres expressed in ordinary electro-

static units are, if y, y', now denote the ordinary electromagnetic

measure of the currents, vyt, vy't. Hence the force between the two
spheres is

t;2yy'^

where K^ denotes the specific inductive capacity of the medium, defined

in the ordinary way as the ratio of the electric inductive capacity to

that of the medium of reference (air or vacuum for example). But if

o7 denote the ordinary electromagnetic value of the permeability,

that is v^ = T:yKg^,

or by (1) v2= ?^* (2)

If the medium be air, for which Kg = l nT = l, we have

i^= -f-. (3)

or V is equal to the speed of propagation of an electromagnetic disturb-

ance in air.

3. A moving electrified surface regarded as a current. The following

illustration, also due to Maxwell, gives a remarkable physical meaning

to the velocity 1/vjulk of propagation of an electromagnetic disturb-

ance. In the first place it is assumed that an electrified surface in

motion may be regarded as equivalent to a current.

This assumption is justified by the experiments of Rowland, who
found that a statically electrified surface set into rapid motion affects
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a magnet properly placed in its vicinity, and has made measurements
of the magnitude of the effect produced.

Considering then a plane surface of indefinitely great extent elec-

trified to a surface density cr taken in any chosen system of units, we
have U(T as the measure of the convection current across unit breadth
at right angles to the direction of motion, if u be the velocity. Let
now another indefinitely extended surface parallel to the first and at

a distance h from it be electrified to a uniform density a-', and move
with velocity w', in the same direction as in the former case. A current

in this case of strength u'a, per unit of breadth of the electrified sur-

face, may be regarded as flowing parallel to the former current.

The two surfaces will repel one another electrostatically and attract

one another electromagnetically. The electrostatic repulsion between
two elements of surface dS, dS', at distance r is a-dS . ar'dS'/Kr^, and
integrating over the first surface we get ^iraa-' dS'jk for the resultant

force on an element dS' of the second surface. Hence the force over

unit area is ^iraaJK.

The electromagnetic force between the two plane current sheets can
be found as follows. Consider two narrow strips of the two planes

with their lengths in the direction of motion. Let dz, dz\ be their

breadths, and z' the distance of the second strip from a plane coinciding

with the first strip, and cutting the two moving plane surfaces at right

angles. The distance between the two strips is Vh^ + z'^. The attrac-

tion between them is fxucrdz .1u'a dz'\\/h^ + z"^ per unit of length of

either. The total attraction, F say, per unit of length on the strip

of breadth dz, is at right angles to the planes, and can be found by
resolving the attraction just found in that direction, and integrating

from 2;' --= - GO to s' = + 00 . Thus

(-1
'^ ^2!

= 27rjuiUu'cr<T'dz.

Thus the electromagnetic attraction on unit area of either plane is

27rjiiuu'(T(r'.

If the electrostatic repulsion be supposed to balance the electro-

magnetic attraction and u be taken equal to u', we get

27ro-o-' ^ 2 '— =27ryuwVo-
/

K

or t^2 = i- (4)
/ULK

Thus the speed of propagation of an electromagnetic disturbance in

the medium is equal to the speed with which the two electrified planes

must move relatively to the medium in order that there may be no

mutual force between them.

4. Methods of determining v. It has been shown above (p. 34)

that V may be obtained from the ratio of the electrostatic and electro-
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magnetic measures of any electric or magnetic quantity. It has been

found experimentally in at least six of the following different ways :

I. By measuring electrostatically and electromagnetically a given

quantity of electricity.

II. By measuring electrostatically and electromagnetically a given

difference of potential.

III. By comparing the value of the electrostatic capacity of a given

standard condenser, obtained by calculation from its dimensions and

arrangement, with its capacity in electromagnetic measure as given

by experiment.

IV. By comi)aring an electrostatic capacity, obtained by calculation

as in III., with the self-inductance of a coil.

V. By determining (in either system of units) the product CL of

the capacity of a given condenser, and the self-inductance of a given

coil, and comparing this with the product of the electrostatic value Cg

of the capacity and the electromagnetic value L^ of the self-inductance.

[The product GL is the same in both systems of units.]

VI. By measuring electrostatically and electromagnetically a given

resistance.

VII. By observation of the period of oscillatory discharge of a

condenser of known capacity (in electrostatic units), through a circuit

of known self-inductance.

5. Experiments of Weber and Kohlrausch : Rowland's experiments.

The first attempt to determine v was made by Webor and Kohlrausch,

who employed method I.* A Leyden jar was charged to a potential

measured electrostatically by means of an electrometer, and was then

discharged through a ballistic galvanometer, which measured by the

throw of the needle the quantity of electricity with which the jar was
charged. This quantity was known in electrostatic measure from the

measured potential and the capacity of the jar, which was obtained

by comparison with that of a sphere insulated at a distance from other

conductors. The value obtained for v was 31,074,000,000 cm per

secgnd.

This determination cannot be regarded as one of high accuracy,

chiefly on account of the unsuitableness of a condenser with a solid

dielectric for exact experiment. The construction also of absolute

electrometers for exact work had not then been brought to so high a

pitch of excellence as has since been reached.

An accurate determination by this method was carried out at a more
recent date by the late Professor Rowland at Baltimore,! and of this

we give here a more detailed account.

The electrometer employed was an absolute instrument made on
the guard-ring principle. The protected disk was circular and 10-18

cm in diameter, and was suspended in an aperture in the guard-ring

of 1 mm greater radius.

*Ahh. d. Konigl. Sachs. Oes. d. Wissens, 1856. ^ Phil, Mag. Oct. 1889.



656 ABSOLUTE MEASUREMENTS IN ELECTRICITY chap.

The diameters of the guard-plate and attracting-plate were each

330 cm. The surfaces were all nickel plated, and worked true, so that

the distance between the surfaces could be accurately found. The

disk could be adjusted in the plane of the guard-ring, and the attracting-

plate and disk to parallelism, to ^q mm. External action was screened

from the disks by a case of sheet brass.

The protected disk was hung from one arm of a sensitive balance,

and the exact position of the beam was observed by means of a hair

moving in front of a scale in the manner described at p. 695 below.

In the actual use of the electrometer, since the suspended disk could

not be in stable equilibrium under the action of electrostatic attraction,

its swing was limited to a range of iV^^ ^^ ^^^^ ^i^® ^^ ^^® sighted

position ; and the attracting-plate was then placed successively at

two near positions, for one of which the plate rose above the sighted

position, for the other fell below it. The mean of these was taken as

the reading for the position of the attracting-plate.

If d be the distance of the electrometer plates apart, w the weight

on the balance, and S the area of the disk, we have for the electrostatic

measure, F^, of the difference of potential between them

7.»=?^ (5)

For the energy of the charge, Q say, on S is JF^Q, which since the

electrostatic capacity of the disk is S/i-rrd, has the value VJ^S/STrd.

But if F be the attraction on the charged plate, this is Fd. Hence

if F = wg, we get (5).

By a formula given by Maxwell * for the effective area of a protected

disk of radius R, in an opening of radius R\

S= i7riR^ + R^-{R'^-R^)^'^\, (6)

where a^{R'-R) (log 2)1tt = -221 {R - R) nearly.

Thus the working equation for Vg was

V,= 17221dVw{l+'^') ....(7)

[A more exact correction of the allowance for the circular gap, made
(according to a note in the 3rd edition of the El. and Mag.) for the

effect of curvature, brings down the charge per unit potential by the

amount (R' - R)^/lQ{d + a'), that is, diminishes the value of S in (6)

by l7r{R' - R)H/{d + a'). We leave, however, the working equation

as it was used by Rowland.]

6. Standard condenser and galvanometer, etc. The standard con-

denser consisted of two concentric spheres. The spheres were very

accurately constructed, and the inner was hung concentrically within

the outer by a silk cord (see also p. 672 below). A section of the con-

denser is shown in Fig. 205, which also indicates the arrangement of

* El. and Mag. vol. i. Art. 201.
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charging wiroH, etc., Bhown in Fig. 2()(). Two ball8 of different diameters

were provided for UHe uh inner Hpheres. The electrostatic capacity was
obtained by determining the diameters of the ball* by weighing in

water, and was 50069 c.g.s. or 29-556 c.g.s. according &» the larger

or smaller inner sphere was used.

Fio, 205.—Section of Spherical Condenser.

The inner sphere is suspended by the silk cord 5 at the centre of the shell. The two
charging wires Wi and IF* are guided by the fixed tubes Ti and 7'*. The outside ends of

Wi and IV-i dip into the small mercury cups Ci and C,. These mercury cups were joined
by the wires IF, and U\ to the rotating commutator."

The galvanometer used for the discharges was a specially constructed

and carefully insulated instrument. It had two coils, each of about

5600 turns of No. 36 silk-covered copper wire. These were fixed on

the two sides of a plate of vulcanite. The needle was surrounded by
a metal box to screen of! possible electrostatic action of the coils from

the needle.

The constant of this galvanometer was determined by comparison

with the galvanometer described above (p. 435). The constant of this

had been slightly altered, and was now found to be by measurement
of its coils 1833-24, by comparison with an electrodynamometer 1833-67,

and by comparison with a single circle (p. 386) 1832-56, giving a mean
G.A.M. 2t
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of 1832-82 instead of 1833-19 as before. The ratio of the constant of

the new galvanometer to this was found to be 10-4141, so that for the

ballistic galvanometer used G = 190S7

including the factor for the number of turns.

An absolute electrodynamometer on Helmholtz's double-coil prin-

ciple, almost an exact copy of the instrument described at p. 396

above, but on a smaller scale, was used to find the directive force H
at the ballistic galvanometer, at any instant during the progress of

the experiment, so as to eliminate magnetic changes which were con-

tinually going on in the building used for the investigation ; changes

which were all the more important as H was only about ^ of the hori-

zontal component of the earth's field at the place. The suspension of

the instrument was a bifilar one, and it was found that, for the small

angles used, no correction was necessary for the torsion of the wire.

The electrodynamometer gave the absolute value of a steady current,

which was made to flow also through the ballistic galvanometer, and

thus enabled H to be found from the deflection of the latter, and the

galvanometer constant.

It follows from p. 398 above, that if c be a constant depending on

the coils, and the electrodynamometer be set up so that H does not

affect it, or readings be taken so as to eliminute it, and the same

current pass through both coils, we may write

y= cA/i^Vsin^, (8)

where F is the coefficient of sin /3, in the couple applied by the bifilar,

/3 being the angle through which the suspension head is turned to

bring the suspended coil back to parallelism with the fixed coil. But

it is clear that, if mF be the moment of inertia of the coil, by the theory

of simple harmonic motion we have ^//5= -iTr^/T^, and

/3= -F sin /3lmk\

so that, if /3 be a small angle,

VF= ^VmF.

Thus, including 27r in the constant c, we have

y= -^—Vsm/3 (9)

for the electrodynamometer.

The value of c was calculated from the particulars of the coils, which

were Large Coils, Suspended Coils.

Mean radius ----- 13-741 cm 2-760 cm
Mean distance - _ - - 13-786 „ 2-707 „

Radial depth ----- -84 „ -41 „

Axial width ----- -86 „ -38 „

No. of turns - - - - - 240 126
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From which by (10), p. 397 above, and the valu^A of 6?„ g^, given at

I'-
2*^'^'

c- •012914.*

To verify thiH eonHtaiit a circle HOcnn in diameter waw made and
used as the coil of a tangent galvanomett^r. The ballistic galvanometer

was set up so that its needle was at the centre of this circle, and acted,

whc^n required, as the suspended needle of the tangent galvanometer

of which the circle was the coil. The current from the electrodynamo-

metcr was passed through tlie circle, and the horizontal field intensity

// deduced from the galvanometer deflection and the current as given

by the electrodynamometer. The value of // was found also by the

magnetic method, and the two results were found to diifer by only

about 1 in 1000. Thus the tangent galvanometer gave ^0 = -006451,

and the mean 006454 of this and the former result was used.

The moment of inertia mk^ was found by placing weights at different

distances along a tube passed through the centre of the suspended

coil, and observing the period of free swing of the coil. It was thus

found that m^^ = 826*6 in gramme-centimetre units.

The value of H at the needle of the ballistic galvanometer was found,

when required, by sending the same current through the dynamometer
and the galvanometer, observing the deflections in the two cases, calcu-

lating the value of the current from the deflection from the former,

and hence deducing H by the tangent galvanometer formula.

7. Method of experimenting. The condenser was charged by being

connected to a large charged battery of Leyden jars. This battery

was kept connected to the electrometer. The potential reading was
first observed, then the battery connected to the condenser for an
instant, after which the condenser was disconnected from the Leyden
jar battery and discharged through the ballistic galvanometer. This

was repeated 1, 2, 3, 4, or 5 times in succession, so that the galvano-

meter received that number of very nearly equal impulses in the same
direction before it had moved far from the position of rest. The
reading of the position of the electrometer attracting disk was again

taken after the series of impulses, on disconnection of the battery

from the condenser, and was slightly less than before of course. Cor-

rections for the displacements of the needle from zero at the times of

the successive impulses were calculated and applied.

The mean of the electrometer readings before and after a single

discharge was, with a correction, taken as the potential of that dis-

charge. This correction arose from the fact that the first reading was
higher than that for the potential of discharge by a certain small

amount depending on the capacities of the battery of jars and the

condenser. It was obtained by multiplying the mean reading d of

distance between the plates by a factor 1 - -0013, when the larger

This is double the value given by Prof. Rowland in his paper. The full period
f vibration appears in equation (7), whereas Prof. Rowland used the half period.
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sphere was used in the condenser, and by the factor 1 - -0008 when
the smaller sphere was used. The other series were similarly corrected.

The values of d thus corrected and the corresponding values of S,

the swing caused by the discharge of the condenser, gave for each

set of observations, in number from ten to twenty, a series of values

of d/S, for the observations of the set. The mean value of d/8 was

taken as the result for the set.

Before and after each series of observations the times of vibration

of the suspended coil of the electrodynamometer and of the ballistic

galvanometer needle were observed. Also the logarithmic decrement

of the needle deflection was measured almost daily.

A correction was applied for the time occupied in producing the

series of impulses. This was calculated approximately on the supposi-

tion that the time between one impulse and the next was ^ of a second,

and without taking into account the altered position of the magnet
relative to the coil, or the induced magnetism of the needle. The
inclination, however, of the magnet to the plane of the coil would cause

the impulsive couple on the needle to be less for impulses later than

the first, while the induced magnetization of the needle brought about

by the same inclination would have an opposite effect. Prof. Rowland
came to the conclusion by experiment that no sensible error from

neglect of these refinements of correction could result.

8. Reduction of results. The principal equations used in reducing

the results were (7) above, and others obtained as follows :

First, the ballistic galvanometer equation for the quantity, Q (in

electromagnetic units), of electricity discharged, is

g = ^(l+iX)sini6>, (10)

where is the ballistic deflection, corrected for everything except damping.
But if Gg be the capacity of the condenser in electrostatic units,

and N the number of discharges,

Q^n''"^' (11)
V

Also H was obtained from the constant current measured by the

dynamometer while it flowed round the 80 cm circle, at the centre of

which the ballistic galvanometer needle was situated. Thus denoting

by
(J)

the deflection of the needle produced by the constant current,

by r the radius of the large circle, and by h the distance of its plane

from the centre of the ballistic needle, we have by (9) and the elementary
theory of the tangent galvanometer

,, , „ 27rr^cVmk^sm B ,,«v
so that H= (12)

T{r^ + h^ftan (/)
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Using thJH in (10), equating to (11), and Bolving for v we find

(r« + 6«)^6Wr,6',tan'/>

where V^ in given by (7), and C, by the dimensionfi of the condenser

The approximate equation

(13)

28in26^^
16

2
(14)

was used to find the value of m\ \0 from the observed deflection > and
the scale distance D. This approximation is easily obtained as follows :

smce
^/Z)= tau26; = 28inf^co8f^/(l -28in«6^),

. ^ U l-28in«6^
or sm fr = « >, , — - — .

2/)\/l-flin2f?

Putting sinf^ = Jrt7Z) on the right the equation becomes approxi-

or 2 sin̂'^2^ = 21)1

13 ^\

8W-v/l-8in«i(9

In the last factor on the right, which is not very different from
unity, sin \0 may be put equal to Sj^D. The equation then becomes

o - 1^ l^^i 3^2W
\ ^\ \8 (, 11 ^\

= 2DV-3-D^h'''^'^y-

The value of tan was calculated, by successive approximation,

from the value of tan 20 given by Oj and the distance D^ of the scale

from the mirror, so that

tan0 = 2-^;(l-457^-^8^; ^^^^

The following are the results obtained :

Number of
discharges.

Mean result in cm
per second

Number of results
of which

mean was taken.

1

2

3

4

5

298-80 X 108

298-48x108
297-26 X 108

297-15x108
296-69 X 108

9

5

5

5

5
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To these were given weights inversely as the number of discharges,

except in the case of the first, which was given twice the weight of

the second, on account of the larger number of observations. Thus

the final result obtained was v = 2-9815 x 10^^ in cm per second.

9. Lord Kelvin's method. Determinations by method II., which is

due to Lord Kelvin, were made by Lord Kelvin himself,* Mr. D.

McKichan,t F. Exner,t and Mr. R. Shida.§

A current is made to flow through a coil the absolute value R of the

resistance of which is known, and the current is measured electro-

magnetically by an absolute current-meter, while the difference of

potential between the extremities of the coil is measured by an absolute

electrometer. If F be the difference of potential in electrostatic measure,

the work done in the passage of one electrostatic unit of electricity is

F. But one electrostatic unit of electricity is I/v of an electromagnetic

unit ; and if y be the measured current, the time t taken for a quantity

Xjv of electricity to pass is 1/vy. Hence the work done in the con-

ductor, or y'^Rt, is yRjv. Thus n
^= Y (16)

The result therefore involves the absolute value of a resistance R in

electromagnetic units. Now in the earlier experiments by this method
the resistance of a conductor was not known with accuracy, and the

results are unreliable, unless some means exists of correcting the values

of R which were used.

Lord Kelvin's first result (corrected for the value of the b.a. unit)

was 2-808 X I0^*> cm per second, Mr. D. McKichan's 2-896 x lO^^ cm
per second.

Shida's determination was made later and gave v = 2-955 x 10^^ cm
per second. The difference of potential at the terminals of a battery

of large tray Daniell cells was measured by a Thomson's absolute

electrometer, while the current maintained by the battery through a

tangent galvanometer was measured.

In reducing his results Mr. Shida multiplied both numerator and
denominator of (16) (unnecessarily) by the factor {R + r)/R, where r was
the resistance of the battery and connections. On this account the

accuracy of the result was mistakenly called in question. For though
the factor R + r was of uncertain value, its introduction in both

numerator and denominator could in no way affect the value of the

ratio yRjV. The real ground for uncertainty lay in the construction

of the tangent galvanometer, which could hardly work up to the

degree of accuracy required. Its coil was wound on a wooden bobbin,

and was said to have been made, many years before, in Manchester

under the superintendence of Dr. J. P. Joule. It required reconstruc-

tion and redetermination of its constant.

* Phil, Trans. R.8. 1868. f Ibid, 1879.

X Wien. Ber. 86, 1882. § Phil. Mag. 10, 1880.
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A incH8ureiiient of v was made by this method again in 1880 by
Lord Kelvin, by means of the electrostatic voltmeters of his own inven-

tion ; but the details of the investigation do not seem to have been

published. The result obtaine<l was

t;« 3-004 X 10'** cm per second.

Two of the electrostatic voltmeters dencribed in XVII. 20, below,

were carefully compared at Glasgow. One of them (A) was sent to

London, whore th(* values of its scale readings were determined by
ProfesHors Ayrton and Perry, with an ub-solute electrometer. A differ-

ence of potentials of about 80 voltH between the terminals of a coil of

resistance (KX) ohms was (let<'rmined elec^tromagnetically by measurement
of tlie current, 133 milliamperes, through it, by means of a Kelvin centi-

ampere balance. The graduation of this balance, if carried out in the

ordinary way, nmst have depended on the electrolysis of copper sulphate.

This difference of potential was multiplied 16 times by the step up
method of XVll. 21, below, and measured by voltmeter B.

From a comparison of all these measurements the result stated above
was derived.

Exner's result obtained by a modification of this method was, with

the value -941 ohm for one Siemens' unit, 2-92 x 10^ cm per second.

10. Maxwell's method. Another form of this method has been given

by Maxwell,* and used by him in a determination of v. The electro-

magnetic repulsion between two parallel coils produced by the same
current flowing in opposite directions through them, was balanced by
the attraction between two disks to the backs of which the coils were

attached, and between which a difference of potential was produced

by another current the ratio of which to the former current was known.

One of the disks was the protected disk of a Thomson's guard-ring

condenser, and to the back of this one of the coils was attached directly :

the other coil was carefully insulated from the attracting disk by a

plate of glass and a layer of insulating material.

The apparatus is shown in Fig. 206, and shortly described in the

list of references attached. The small disk (diameter four inches)

and attached coil were carried at one end of a torsion balance sus-

pended by a No. 20 copper wire from a graduated torsion head movable
by a tangent screw. The disk and coil were protected by a cylindrical

brass box 7 inches in diameter, one end of which formed the guard-ring.

The disk carried on the side towards the interior of the box a glass scale

divided to |^y of an inch, which was viewed by a reading microscope

fixed on the outside of the box.

To eliminate the turning couple due to the earth's field a coil was

attached to the other end of the balance, and connected with the first

coil in such a way that the current flowed through the coils in opposite

directions.

* Phil. Trans. R.S. 168 (1868), or Rep. of Papers, vol. ii. p. 126.
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The attracting disk (which was 6 inches in diameter) was, with its

attached coil, on a slide worked by a micrometer so that the distance

of the disks could be varied and measured. The plane of this disk

was adjusted parallel to the guard-ring, which was placed exactly

vertical by means of adjusting screws.

The graduations of the glass scale and the micrometer were com-

pared by pressing the suspended disk forward by a light spring against

the large disk, and then working the screw so as to send the small

disk back towards the plane of the guard-ring, while readings of the

micrometer were taken for successive divisions of the glass scale. This

Earth

Fig. 206.

A. Suspended disk and coil.

A\ Counterpoise disk and coil.

C. Fixed disk and coil,

^1. Great battery.
^2' Small battery.
Ox. First coil of Gtalvanometer.
G2. Second coil of Galvanometer.
R. Great resistance.
T. Torsion head and tangent screw.

K. Double key.
Graduated glass scale.

Electrode of fixed disk.
Current through the three coils

and Gi.
Ciurrent through R.

yo. Current through Gj.

Yi - y-i- Current through S.

yi-

motion was quite regular until the large disk came into contact with

the guard-ring at one point. It was found then that a motion of

about 1770 (F
^^ ^"^ i^c^ sufficed to bring the whole of the guard-ring

into contact with the large disk.

When the small disk had thus been brought into the plane of the

guard-ring, the reading microscope had its cross-wires focussed on a

known division of the glass-scale, and two pieces of silvered glass were

fixed, one to the back of the guard-ring, the other to the back of the

suspended disk, so that when the disk and guard-ring were in one plane

these mirrors were also, and gave a continuous image of objects in



XVI COMPARISON OF UNITS 665

front of them. This arrangement gavt* u tent (jf (•o]t\iiimnty of the

surfaces to
, ^^^^^ of an inch.

The torsion wire, which was of soft co|n*ir hinirlnMi to niraightness,

seemed in great measure free from imiKTfectness of elasticity. The
torsion balance could be adjusti'd by moving the supjiorting pillar,

which could be adjusted and clamped in {K)sition by screws at its

base. The balance itself could be raised or lowered, turned about

any horizontal axis by sliding weights attached to it, and about the

axis of suspension by the torsion head.

A large battery, the property of Mr. Gassiot, containing 2600 cells

charged with bichloride of mercury, was used to electrify the disks.

One terminal of the battery was connected through a key with the

large disk, the other with the case of the instrument, and the circuit

between was composed of a large resistance of over a megohm, in series

with one (hereafter called the first) coil of a standard galvanometer

shunted by a coil of resistance S.

A current was sent from another battery through a second coil of

the tangent galvanometer (in the direction opposed to the other coil),

through the coil behind the large disk, and thence to the suspended

coils by the suspension wires. A conmion connection was given to

earth, the case, and the other electrode of the battery, by a copper wire

hanging from the centre of the torsion balance, and dipping into a

mercury cup M.
When the suspended disk was at rest at zero the battery contacts

were made simultaneously, and, according as the suspended disk was
attracted or repelled, the other was moved farther from or nearer

to the suspended one. It was necessary, on account of the instability

of the small disk, when at the zero position under the action of the

electric forces, to work the micrometer disk gradually up by successive

trials from a distance initially too great, making contacts as zero was
approached, so as if possible to bring the suspended disk to rest under

the action of the opposing forces due to the disks and coils. An
observer at the galvanometer altered the shunt <S, while the contacts

were being made, so as to bring the needle to zero.

To compare the magnetic effects produced by the two galvanometer

coils at the needle, a current was sent through the second coil of the

galvanometer, then through a divided circuit, consisting of a resistance

of 31 B.A. units placed across a branch made up of the first coil of

the galvanometer and an added resistance S'. The latter resistance

was varied until the effects on the needle balanced one another.

11. Theory of Maxwell's method. Result. If V denote in electro-

static units the difference of potential between the disks, a the radius

of the small one, and b their distance apart, the attraction between
them was, clearly,

2 6 47r6 8
'^

6*
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The repulsion between the two coils is y^dM/dx, if y be the current

in each, x the distance apart of their mean planes, and M their mutual

inductance. Thus we have

l72«Lv2^^ (17)

But the difference of potential, F, between the disks is produced by
the large battery, which sends a current y^ through the resistance R,

and a current yiS/{G + S), ( = y', say), through the first coil of the

galvanometer, if G denote the resistance of that coil. Hence if E be

the electromagnetic measure of this difference of potential

^K^^cS)^' <^')

Again, if F^, F^, be the magnetic forces produced at the needle by
unit current in the two coils, we have

F^y = F^y, or F^yMG + S)==F^y.

But if in the comparison of the magnetic forces which was made
y'j, y'2, denote the currents in the two coils, Fiy\ = F2y'2J ^-nd

by the arrangement of the circuits {G + S')y\ = Sl/{y'2- y\), so that

F2IF^ = 2i\l{G + S' + ^\). This substituted in the former equation gives

G + S 31
"^1" S G + S + ?>\^'

and (18) becomes, with this value of y^.

E<-h^-^) G^kz^y ;

<^^'

But if y,„, y.s, denote the electromagnetic and electrostatic values

of the same current, Ey.,^^ = Vy^, since they denote the same rate of

working : and we have vy^ = y^. Hence F= E/v. Substituting this

value of Vm in (17) with that of E given by (19), and solving for v,

we set 1 r»^ V 01 1^
1 /RG „ „\ 31 a 1 .„^.

y dx

The value of dM/dx given in terms of elliptic integrals in XII. 48 (63)

above was used in the calculation of v by this formula. The numbers

of turns in the coils were 144 and 121, and their mean radius was

1-934 in.

The mean of 17 experiments gave

v = 2-8798 X 10^°, in cm per second,

on the assumption that 1 b.a. unit was 10^ c.g.s. The corrected result is

11 = 2-841 X 10^®, in cm per second,

if 1 B.A. unit be taken as -98674 ohm. [This requires further correc-

tion. It is the result as given : in the table at the end of this chapter,
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the more recent results arc in accordance with our knowledge of the

value of rr'siHtanccsJ

12. Third method of determining v. Method III. has been used by

Professors Ayrton and Perry, J. J. Thomson, E. B. Rosa, and others

(see also 17 below).

If C„, bo the capacity of the condenser in electromagnetic units

determined by any process, and C^ its capacity in electrostatic units

as given by measurement, then if 0„, and Q, denote the electromagnetic

i|i|i|i|ik ]'|i|'M
AW//

^/;art/t

FIO. 207.

and electrostatic values of the same charge, we have Q^mlOm
since each denotes the same quantity of electric energy. Thus

Q'.ic.

or "Vg (21)

The arrangement of Ayrton and Perry's apparatus* is shown in

Fig. 207. The attracting plate P of a guard-ring condenser was con-

nected to a key K, by which it would be put in contact with either

terminal, A or B, of a resistance of about 10,000 ohms. Unless the

key was depressed it was kept in contact with B by means of a spring.

The resistance was in circuit with a battery of 382 Daniell's cells, and
the point B was connected with the earth and with the guard-ring

as shown. A fork-shaped connecting piece turning round a pivot was
used to connect the guard-ring to the projecting electrode of the

protected disk, or the latter to earth through the galvanometer G.

The protected disk, D, of the condenser was a square of area of

1325-14 sq. cm, and was separated from the guard-ring by a gap 2-5 mm
Journ. Soc. Tel Eng. 1879.
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wide. The distance between the plates was -7728 cm. The plates

were supported on well paraffined levelling screws of ebonite, and were

strengthened by diagonal ribs on the upper side of the plate P, and

the under side of the disk D.

The galvanometer was a Thomson's astatic instrument of about

20 ohms resistance. The ordinary needles were however replaced by
small spheres each built up of a number of tiny magnets having their

like poles all turned the same way, the spheres being completed with

pieces of lead. The period T of the needle was 39-5 seconds, and its

logarithmic decrement -1565.

The mode of operating was as follows. The key K was depressed,

and the plate P thereby connected to ^ ; at the same time the elec-

trode e was connected to /. Thus the condenser was charged to the

difference of potential existing between A and B. Then the contact

was broken between e and/, and the key released so as to make con-

tact between P and B. This connected P and the guard-ring to earth

while D was left insulated. The electrode e was then connected to g
by the pivoted connector, and discharged the disk D through the

galvanometer, the reading of which was observed.

The difference of potential E given by the battery between A and

B was measured in the following manner. A very high resistance

R was put in the circuit of the galvanometer, and its terminals were

then connected to A and another point C in AB, enclosing between

them a known fraction k of the whole resistance. The difference of

potential between A and C was thus kE. The galvanometer was

shunted through a resistance S, so that G being the resistance of the

coil a current kESI{R{G + S) + GS} was sent through the instrument.

The deflection thus produced was observed.

Now if and a denote the angular deflections given by the transient

and the steady current respectively, and C^ the capacity in electro-

magnetic units of the protected disk D, we have by the ballistic and

tangent galvanometer formulae

C^E ^T sinjO

kES/{R{G + S) + GS}~7r tana'

_T kS sin^O
""^

"^'tt R{G + S) + GS tana'

Thus Cs denoting the calculated capacity, we find

, Cs TT R{G + S) + GS tana .^^.
"" ~C^~ 'T kS siniO ^ ^

Three series of experiments were made consisting of 39, 41, and 18

discharges for T, 25-3, 39-5, 42-2 seconds respectively. The mean

result obtained was

v = 2-98 X 10^^ in cm per second.
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This, however, miwt be corrected for the valin- of flir ».a. unit,

and becomes v- 2-965 x lO*^ in cm |)er Bccond

Thi.s method wa« used by Klemencic * with the modification that a

rapid succession of discharges was sent through the galvanometer so

that a constant deflection was produced. The mean result of two

different researches by this method was

i; = 3041xlO»o
in cm per second.

Similar experiments by Stoletow f gave

> 2-98 X 10»»

in cm per spcond.

13. Maxwell's bridge form of method III. The following form of the

method, due to Maxwell, J has the advantage over that just described

of being a null method, and therefore of not requiring any correction

FlO. 208.

for torsion, damping, etc., while it shares with the former the advantage

of involving the square root only of VCg/Cm, and therefore only half

of any error made in determining C^ or Cg. A Wheatstone bridge

(Fig. 208) has a gap in one of the arms at p, q, and a contact piece or

tongue, u, is made to vibrate across the gap so as to connect one plate

of a condenser alternately to p and to q, while the other plate is kept

permanently in contact with the point C. The resistances of the wires

Cp, qB are made inappreciable, so that the plates of the condenser are

alternately brought to the same potential, and charged to the potential

existing between C and B.

A succession of transient currents are thus produced in the same
direction through the galvanometer, and if P, Q, S are properly

adjusted, are prevented by a steady current in the opposite direction

from producing any deflection. From the condition, (29) below,

fulfilled by the resistances of the bridge, the value of C„ can be found,

and compared as before with the value Cg of the capacity in electro-

static units.

* Wien. Ber. 83, 1881. t ^oc. Franc, de Phys. Nov. 4, 1881.

t El. and Mag. vol. ii. art*. 775, 770.
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So far as Gg is concerned the error of this method (and of others

which require the capacity of a standard condenser) is only that

involved in the measurement of the dimensions of the condenser,

and reduces finally to that of the measurement of a length. Proper

allowances can easily be made for want of accurate adjustment of the

parts of the condenser.

The determination of G^ is limited in accuracy only by the error

involved in the use of the galvanometer, which must be so sensitive

as to detect a sufficiently small variation of resistance. This error in

the experiments described below was well within the limits of accuracy

aimed at. In Thomson and Searle's investigations below it was esti-

mated that the error from the galvanometer was not more than 1 in

2500 in the value of v.

14. Theory of Maxwell's bridge method. Calling the resistances

P, Q, S as marked on the figure, and denoting the currents from
G to p, G to D, and B to A, by i;, i, u, the resistance and self-induction

of the galvanometer by G and L, we have from the circuits AGDA,
ADBA, the equations of currents, supposing all the branches, except

GD, devoid of inductance,

P{x + t)-Q{u-x-t)-hLz + Gt = 0, )

Q{^-x-i)+S{u-x) + Bu-E = 0.)

At the beginning and end of the charging of the condenser the

currents have their steady values, and therefore these equations become

Q{Us-^,)-\-{B + S)its-E = 0,

where the suffixes indicate the steady values of the currents.

Subtracting these last equations from the corresponding equations

(23) for the variable state, and putting u^, z^, for li-Ug, z-tg, we find

P{h + x)-Q{u^-i^-x) + Lz + Gt^ = 0, \

^24)

The quantities 'd^, t^, it is to be noticed, denote the excess in each

case of the current flowing at any instant above the steady current,

in consequence of the charging of the condenser, while x is the charging

current.

Integrating, from the beginning of the charging to the end, the

equations just found, remembering that t has the value Zg at both

limits, and rearranging, we get

{P + Q)x + {G + P + Q)z^-Qu^ = 0,
\

-{Q + S)x-Qz^ + {Q + S + B)u,=0,)

where x denotes the whole charge of the condenser, and u^, z^, the

excess in each case of quantity of the electricity conducted by the

currents w, t, above that which would have flowed in the same time

if the current had remained constant.
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Kliniinatiii;^ "j ixun (25), we find

-{Q +S+B){a + P+Q)+Q' ^
"'~{P+Q){Q+8 + B)-Q{Q+8r' ^ '

But when the condenser is fully charged the difference of {)otential

between its coatings is x/C^t and this is Gi^ + Sii^f so that

Also clearly (G' + P)^,«0(!i#-i,), and therefore

and x=^QjQ-\-S^-''-J'~^-\t, (27)

If the condenser is charged and discharged n times a second, the

quantity of electricity which passes through the galvanometer over

and above that which passes in the steady current is nz^. Hence, if

there is no deflection, we must have 5;, + n2i=0, or i,= -nz-^. Thus

(27) becomes

x= -„0„(e+S^±|±^)2, (28)

This value of x used in (26) gives

*" {P(e+-s+5)+g5H;si((y+p+0)+G?0} ^ ^

If P and /S are very great in comparison with the other resistances,

this reduces to the approximate solution

«C„=|^ (30)

The electromagnetic value of the capacity of the condenser havnng

thus been found, that of v is of course obtained as before from the

ratio VC^ICfft . The result thus depends on the exactness of our know-
ledge of the absolute value of a resistance, that is, of the ohm.

16. Experiments of Rosa. The method has been carried out with

this mode of determining C„^ by Prof. J. J. Thomson * in a very careful

series of experiments, giving the result

V = 2-963 X 10^® in cm per second,

by Mr. E. B. Rosaf at Baltimore, and again by Prof. J. J. Thomson
and Mr. G. F. C. Searle J at Cambridge in an elaborate research made
with improved apparatus.

We shall describe here Mr. Rosa's experiments and the later investi-

gation of Thomson and Searle.

* Phil. Trans. R.S. 1883. ^ Phil. Mag. Oct. 1889.

X Phil. Trans. U.S. vol. 181 (1890).
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Mr. Rosa used the standard spherical condenser described in 6

above as made for Prof. Rowland's experiments on this subject. See

Fig. 205.

The vibrating tongue u (Fig. 208) was operated by one or other of

two forks made by Kcenig, of Paris, of frequencies 32 and 130 per second.

These were maintained in vibration in the ordinary way by an electro-

magnet between the prongs worked by the current from three or four /
Bunsen cells.

With the slower fork a commutator was used, but wath the faster

fork a different arrangement was adopted. A double branch wire led

from the inner coating of the condenser, and a branch was connected

by wax to the end face of each prong of the tuning-fork. The plane

of vibration was vertical, and each wire was turned so as to dip into

two mercury cups cut in fixed pieces of vulcanite, at a vertical distance

apart equal to that between the prongs of the fork. The upper cup
was connected with the point G of Fig. 208, the lower cup to B. Thus
when the prongs moved apart the lower wire dipped into the mercury,

connecting the inner ball of the condenser to B, while the upper broke

contact ; when the prongs approached one another the upper contact

was made and the lower broken, and the two plates of the condenser

were put into direct contact. Thus in the former case the condenser

was charged, in the latter discharged.

The galvanometer used was a very sensitive Thomson's astatic

instrument.

The battery consisted of about 40 cells of a storage battery, giving

an electromotive force of about 80 volts.

The resistances Q and S were taken from two resistance boxes by

Elliott, containing 12,000 ohms and 100,000 ohms respectively.

The resistance P, which was very great, was made by ruling pencil

lines on ground glass, and protecting the surface of glass and graphite

with a thick coat of shellac varnish. Connection was made at the

ends by tinfoil pressed against the graphite by rubber packing. Ten

such resistances were made and mounted in cylindrical cases, so that

their temperatures might be maintained as nearly constant as possible.

Their values were determined by a comparison (made by the method
of Wheatstone's bridge with a ratio of about 100) with the resistances

of the boxes used for Q and S, and proved very constant and reliable.

The capacity of the vibrating piece and the connecting wires was

determined experimentally by separating them from the condenser.

Special attention was given to the question as to whether the capacity

of the charging wire might be taken as the same when the wire was

in contact as when detached, and no appreciable difference was found.

The inner sphere was adjusted by lifting off the upper half of the

outer shell, and adjusting the position of the ball relatively to the

equatorial circumference of the shell, then replacing the hemisphere,

and moving the ball vertically from contact at top to contact at
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bottom of the mIicII, and cauHing the contact in each cafie to be indi-

cated by the closing of an electric circuit. The readings of a sliding

vernier gave the top and bottom positions, and the mean of thc»se read-

ings the central |M>Hition. It wan eHtimatcd that the ball was centred

to 0-1 mm vertically and ()-2 mm horizontally, or to an error of less than

1 per cent, of the distance between ball and shell.

Now, for an eccentric cylinder, theory shows * that a similar dis-

placement of 1 per cent, from centrality would give an error of capacity

of 1/200 per cent,, and a smaller error for a spherical condenser. A
displacement of four per cent., it was found by trial, caused a quite

inappreciable change in capacity.

The dimensions of the outer shell were determined by filling it with

water and weighing, and of the inner ball by weighing it sunk in water

by an attached mass, and making all necessary corrections for dis-

placed air, etc. The results were checked by measurements made by
callipers, compared with a standard metre bar. The results were :

RadiuM.

By wetgbiug.
By direct

tiie«»ureinent.

Shell -

Ball A -

Ball B -

12-6805 cm
10-1180 „

8-8735 „

12-6791 cm
101183 „

8-8736 „

The experiments were made with the larger ball, and four series

were made, the first, second, and fourth with both forks, the third

with the slow fork alone.

It was found that the results for the fast fork were slightly lower

than those for the slow fork, coming out according to the weights given

to the observations.

V = 2-9994 X W^ in cm per second for the fast fork, and

v = 3-0023 X 10*^ in cm per second for the slow fork.

The results for the fast fork were the more uniform and it was thought

the more accurate, and were given double weight in striking the final

mean. Thus the final result of all the experiments was

y = 3-0004 X 10^® in cm per second.

The results of Series II. and III. were greater than those of I. and

IV., and it was thought possible that the halves of the outer shell had

been very slightly separated in the former case by an obstruction in

the flange of junction. It is to be noticed that the results with the slow

fork are the greater, indicating too sftiall a value of C„. This is the

J. J. Thomson, " On the Determination of r," Phil, Trans, R.S, 1883.

(3. A.M. 2 U
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kind of result which the fast fork might be expected to give if the

period was not long enough to allow the condenser to be fully charged.

The rejection of the observations of Series II. and III. would give

pm
i; = 2-9993xlOio —

,

sec

which only differs from the former value by y^^^ per cent.

16. Determinations of Rosa and Dorsey. This investigation was

repeated in the period 1904 ... 1907 with the same spherical condenser,

and also with other condensers (cylindrical condensers and a new
parallel plate guard-ring condenser) by Messrs. E. B. Rosa and N. E.

Dorsey. The work was done at the laboratory of the Bureau of

Standards at Washington, and a full account of it appears in the

Bulletin of the Bureau, 3, 1907. The memoir is very elaborate, for the

investigation was really at least three independent and mutually

corroborative determinations, made with the utmost attention to all

details of observations and corrections. Only a very slight statement

of methods and results is possible here, with some details of the

apparatus employed.

Figs. 205, 206 show the spherical condenser, of which the dimensions,

at 20° C, were as follows, when measured in 1905 :

Radius of shell (in cm) - - - . 12-67140

Internal ball (A) „ . - - - 10-11790

Internal ball (B) „ - - . . 8-87380

Capacity with ball A - - - - 50-2095 \
. 20° C

Capacity with ball B - . . - 29-6092 J
^

Some trouble was caused by uncertainty as to the effect of variation

of capacity of the charging wire which passed, as the diagram shows,

through a small hole in the top of the outer shell to touch the inner

sphere, and, of course, changed in capacity when the latter contact

was broken. This difficulty was met by the employment of the other

condensers, and, independently, by taking the capacity with two
charging wires, one at the pole and one at the equator. The difference

in electromagnetic capacity caused by the withdrawal of the polar

wire gave the capacity of the wire itself. Then replacement of the polar

wire and withdrawal of the equatorial gave the capacity of the latter.

With regard to the cylindrical condensers, consisting of two coaxial

circular cylinders of radii R and r, and of length /, the capacity C is

^'""'^
C =i^„ (31)

21ogf

where SI is a correction of the length for end effect. The correction

SI could be obtained in two ways, (1) by using guard cylinders to pro-

long the inner cylinders both ways
; (2) by varying the length I, taking
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care to make the end conditions identical in the two cases. The
equation for C can be written in the approximate form 7^

80 tijilt it was n<'ccH«ary to ohtuin the value of H-r with all the i)re-

cision required for r, which made it undesirable that R-r should be

very Hiiiall.

The cylinders were ground on their ends in pairs, so that the two
ends of the space between them could be closed water tightly by a

pair of truly plane glass plates, slightly greased. The volumes of the

outer cylinder, and the coa.xial space between the two were determined

by a process similar to that used for the spheres, and indicated above

(p. 673).

The length of each cylinder along each of four generating lines was
measured by means of a comparator. The following dimensions are

here stated to give an idea of the size of the apparatus.

Condenser No. 2 at 20° C.

(Dimensions in centimetres.)

Outer cylinder, mean radius 7-24411

Inner „ „ „ 6-25760

Length - - - 19-99946

Condenser No. 3 at 20° C.

(Dimensions in centimetres.)

Outer cylinder, mean radius 7-23831

Inner „ „ ,,
6-25740

Length - - - - 20-00718

The capacities (in centimetres) without corrections for the guard

ring gap, etc., were as follows :

No. 2, 68-3080, at 20° C.

No. 3, 68-6965, „

17. Comparison of methods. We cannot afford space for a descrip-

tion of tlic parallel i)late guard-ring condenser, of the rotating contact

breaker, the special chronograph used for determining the speed of

charge and discharge, or the details of corrections. The arrangement

of the guard-ring and other parts of the plate condenser is shown in

Fig. 209. The contact-making pieces and the observing microscope

will be easily made out. We can only state the final result, which was

V = 2-9963 X 1 010 — [Int. Ohm],
sec

with an uncertainty of not more than I in 10,000.
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Assuming the dielectric constant of air at pressure 760 mm and
temperature 20° C. to be 1-00055, this gives for the value of v in vacuo

cm
= 2-9971x1010

sec

Some instructive critical remarks are given in this paper on the

advantages of the different methods enumerated above (p. 655) for

the determination of v. As the authors point out, method I. was
favoured by the earlier experimenters, as all the other methods really

S^S

Fig. 20^.

Plate condenser showing manner in wliich tbc guard-ring and plates are sup-
ported and adjusted, switch for connecting the collector plate to either guard-ring or
charging wire, and the microscope for determining the position of the lower plate.

required exact knowledge of the absolute value of a resistance, a

knowledge which these experimenters did not possess. The method
II. requires no condenser, and has thus an advantage over I., but
involves a knowledge of the resistance between the terminals of which
the electromagnetic difference of potentials is measured, and also the

exact measurement of that difference of potential by an absolute

electrometer, a measurement of considerable difficulty.

Method VI. gives
R.

.(32)



XVI COMPARISON OF UNITS 077

where R^ in the electromagnetic value of a resistance and R, the

electroHtatic value. Here any error or uncertainty in the value of the

ohm is halved in taking the square root of the ratio, /t^/Zf,. But there

is the difficulty of measuring Rg. As we shall see, the difficulty resolves

itself into one of finding the time in which the difference of potential

betwecHi the j)late8 of an exceedingly well constructed air condenser

falls from an initial K to a value Vq, when it is discharged through a

very high resistance. This air condenser must have a very considerable

capacity, and so can hardly itself be capable of having its capacity

determined by direct compuUition from its form and dimensions. Its

capacity can thus only be found by comparison with an absolute air

condenser of very imich smaller capacity, an ©iteration difficult of

accurate performance.

Of the four methods I., II., III., VI., the authors very much prefer

III. There are several ways of determining 0^ which are all capable

of considerable accuracy when a resistance is accurately known in

absolute value. We mention only two or three of these which experi-

ence has found most practical and accurate.

At first a condenser of known electrostatic capacity was charged

by means of a battery and discharged through a ballistic galvanometer.

The same battery was used for charging the condenser and for cali-

brating the galvanometer, so that the galvanometer really measured

Qml^m==^m- The elimination in this way of E, the electromotive force

of the battery, introduced a resistance which had to be known in

absolute value.

Next a fork or rotating commutator was used to charge and dis-

charge the condenser a certain ascertained number of times per second
;

the average value of this discontinuous current was then compared
with a steady current j^roduced by the same battery through a known
resistance. This, of course, was a great improvement over a single

discharge sent through a ballistic galvanometer.

But the best way of carrying out the method is the Maxwell bridge*

arrangement described above. Condenser and commutator are placed

in one arm of the bridge, and balance is obtained by variation either

of a resistance or of the speed of the fork or commutator. The method
has the advantage of being a null one, and sensibility can be obtained

by using high voltages and high frequencies. It was used by J. J.

Thomson at Cambridge in 1883, by Himstedt in 1887, by Rosa at

Baltimore in 1888, by Thomson and Searle at Cambridge in 1890,

and by Rosa and Dorsey in their researches as described in the memoirs
now referred to.

The interrupted current from the condenser and the steady current

from the battery may be made to pass at the same time through the

coils of a differential galvanometer and balance one another. This

method has practically the same advantages as that of Maxwell's

bridge. It has been employed by Klemenfid (Vienna, 1884), Himstedt
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(Freiburg, 1886 ; Darmstadt, 1888), Abraham (Paris, 1892), and Rosa
and Dorsey (Washington, 1905-1907).

18. Thomson and Searle's experiments. In Thomson and Searle's

investigation the condenser used was cylindrical, and was provided
with a guard-ring at top and bottom, so that the effect of the ends was
in great measure avoided. The condenser is shown in section in Fig.

210. The dimensions of the inner cylinder were measured by accurate

^ callipers in the most careful manner. It was
found that the cylinder was slightly elliptic in

section, as shown in the following statement of

results of measurement

:

Top end : maximum diameter

,, minimum ,,

Bottom end : maximum diameter -

„ minimum „

Mean

23-5302 cm.

23-5161 „

23-5348 „

23-5169 „

23-5245

Fia. 210.

The internal diameter of the outer cylinder was
measured by callipers specially provided for this

purpose with projecting steel pieces on their

jaws. The results obtained for two diameters at

right angles to one another at each end of the

cylinder gave a mean diameter of 25-4114 cm.

The internal cylinder was supported on pieces

of ebonite placed on the lower ring, and the

upper ring on similar pieces on the internal

cylinder. The outer cylinder was also in three

parts, two ring pieces for top and bottom, and
a long central piece corresponding to the inter-

nal cylinder.

The length of the internal cylinder was measured by applying the

jaws of a beam compass to its ends and measuring under microscopes

first the distance between two marks, one on each jaw, then the dis-

tance between these marks when the jaws were put close.

The length of the cylinder was found to be 60-9784 cm. The correc-

tion for want of equality in the distribution caused by the two equal

air spaces was calculated and found to amount, within 1 part in 2000,

to a lengthening of the internal cylinder by the breadth of one air-

space. The mean allowance for the gaps at the guard-ring was thus

found to be -2907 cm, so that the total effective length of the internal

cylinder was 61-2691 cm.

The distance between the inner and outer cylinders was determined

by fastening down the internal cylinder, and the outer cylinder of the

same length, in co-axial position on a glass plate with cement, and
fixing a glass cover on top ; then filling, by means of two openings left
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in the cover, the annular Kimce between the cylindera with water. The
water was taken from a flask containing? a known weight of water, and
80 by a second weighing of the fla«k the weight of water iwed was
obtained. The weighings were all corrected to vacuum, and for error

in weights, effect of teni|>erature, etc.

The volume was found to be 4412-08 cubic cm, so that the mean
distance d between the cylinders was, with the radii given above,

•94128 cm. The ratio of external and internal radii a/b used was thus

1 + •94128/11-76225 - 1^0800262. Thus

C.._L
f;-^«f'

=397-927
„, ol5397()(.3
21og^

in centimetroH.

The measurement of capacity in electromagnetic units was made
by the method already described, somewhat modified on account of

FIO. 211.

the existence of the guard-ring. The arrangement of apparatus is

shown in Fig. 211. The condenser plate is shown connected as before

to a contact-making piece w, which makes contact alternately with

p and q, while one guard-ring is connected with a second contact-piece

V, which makes contact alternately with r and s. The pieces p and q
represent the contact-plates of a commutator which alternately came
into contact with a spring or brush, u, connected with the inner coating

of the condenser ; r and s represent the contact-plates of another
commutator, v a brush which alternately connected them with the
guard-ring.

The two commutators were mounted on the same axis, so that they
were kept always in the same relative position. When the commu-
tators were worked the following contacts were made in the order
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indicated by the numbers. F^, Vj^, V(<, denote the potentials of the

points A, B, C, respectively.

ju on q : condenser discharged.

\v (

fu
on p : condenser begins to charge.

V on s.

(u on p : condenser charged to potential F^ - 7,^.

\v on r : guard-ring charged to potential V(j - Vb-

on s : guard-ring discharged.

2

(u on q\ condenser begins to discharge.

\v on r.

(u on q : condenser discharged.

(v on 5 : guard-ring discharged.

19. Theory of method. The theory of the method has been given in

14 above. We repeat it here, however, for clearness on account of

the guard-ring correction. According to the notation already adopted

we denote the currents in Cp, CD, BA, by x, &, u ; in addition, in the

present case we have, when v is in contact with r, a current in Ar. Let

this be denoted by iv. The circuits ACDA, ADBA, give the equations

~Q{ii - X - 1 - iv) + P{x -{- z) + Lz + Gz = 0,

Q{u - X - & - w) + S{u - X - w) + Bu - E = 0.

At the beginning and end of the charging the currents have their

steady values, and then ^

Q{u,-Q + {B + S)u,-E = 0.

These subtracted from the preceding pair of equations for the varying

state, give, if u^, t^ denote 'd-'dg, t-ig, respectively,

-Q(u^-i^-x- w) -\-P{x + ti) + Lz + Gil = 0,| .^^v

Q{Ui-ii-x-w)-\-S{Uj^-x-w) + Bu^ = 0. /

These integrated from the beginning of the charging to the end yield

{P + Q)x + {G + P + Q)zi+Qw-Qui = 0, \

-{Q + S)x-Qzi-{Q + S)w + {Q + S + B)ui = 0,f
where x, as before, denotes the whole charge of the inner coating of

the condenser, while w denotes that of the guard-ring.

Elimination of Wj from (34) gives

{P{Q + S-\-B) + BQ}x + BQw
= -{{G-hP + Q){Q + S+B)-Q^}z, (35)

This differs from the former equation (26) only in having the term
BQw on the left.
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When the coudenfler b fully charged we have as before

,_C..,(«..«-';-«), (36)

and further, if (/"^ be the capa< ity (it tlie guard-ring,

«.C'„(OH.P+S^t^> (37)

since the multiplier of C\n on the right is the final difference of potential

between A and B.

Again, if there be no galvanometer deflection ^* + W2j=0, or i„= -nz^.

x--„C„.(G.,s'''^P>.. (

SO that (36) and (37) become

(.38)

These substituted in (35) give

nC,„{P{Q + S+B) + BQ} {S{G + P+Q) + GQ}

+ nC\nBQ{{G + P)Q + S{G-P-Q)}
=Q{{G + P + Q){Q + S + B)-Q^} (39)

The second term on the left was negligible in the experiments made,
inasmuch as the resistance B of the battery was small in comparison

with the other resistances. Thus the value of C^ was given as before

by (29). It was necessary to apply a correction for the small difference

of potential (W between the guard-ring and the inner <jylinder after

charging, which prevented the distribution on the inner cylinder from

being so nearly uniform as it otherwise would have been. It is shown
in the paper that this correction could be made by adding to the internal

cylinder a strip of breadth

t 2 , 4c\ 6V
\c TT ^heJ V

where V is the difference of potential between the cylinders, t the

thickness of the guard-ring, c the half thickness of the pieces of ebonite

supporting the guard-ring, h the distance between the cylinders, and
e the base of the Naperian system of logarithms. The coefficient of

SV/V was approximately 7-5, and from the values given above

G + P+Q ^ ,, G + P+Q]sv^-{g^s^^^-g-p-s

so that ~iF~ roo nearlv.
V loo

Pi.
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Thus the correction was a strip of breadth 7-5/183 cm, or about
1 part in 1800 of the whole.

20. Description of commutators. Each commutator consisted of

two rings with projecting semi-cylindrical pieces overlapping, as shown
in Fig. 212, mounted on an ebonite casing round the common axis.

Two springs, shown in Fig. 212, made permanent contact with grooves
in the ring portions of the contact-pieces, and formed the connections

to the points CA and AB of the bridge [Fig. 211]. The charging
contacts on the commutator were made with a brush of fine brass wire.

On the axle are fixed the driving pulleys and a stroboscopic disk for the

POAI.E OF CENTIMETRES

Fig. 212.

observation of the speed, by means of a maintained fork in the manner
already sufficiently described in 15 above. A side view of the

stroboscopic disk is shown on the right in Fig. 212, and of the arrange-

ment of contact wires (with disk removed) in Fig. 213.

The worm-wheel and endless screw were used to make a contact

with a spring at every revolution of the wheel, that is every 30 turns

of the commutator, to excite one of the electromagnets of the recording

apparatus referred to below. The commutator was driven by a water-

motor and long cord made of fishing-line joined in a long splice to pre-

vent inequalities in speed. The speed was regulated by letting the cord

run through the fingers.

The stroboscopic disk, Fig. 212, had, as shown, five circles con-

taining 4, 5, 6, 7, 8 black spots at equal intervals ; the fork making
64 complete vibrations per second, and the commutator not running
much faster than 80 revolutions, the speeds of the disk from 16 revolu-

tions per second upwards when a stationary pattern was visible were
the fractions of 64 revolutions per second :

3' 5' 3» S 1 T» "JJ
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The electrically driven fork maintained another of about twice its

frequency, and the latter gave beats with Lord Rayleigh's standard

fork, so that the speed of the observing fork was obtained.

The frequency of the standard fork was redetermined by causing

t!»e worm-wheel driven by the conmmtator to make a mark on a

running tape every 30 revolutions of the commutator. This was

Fio. 2l:J.

effected by the completion of a circuit which excited an electromagnet,

and thereby caused an armature to descend slightly, and bring an
inked roller down on the paper. A mark was similarly made on the

tape every second by the completion of a circuit by the laboratory

clock. Fig. 214 shows the electromagnets, armature, and marking
roller, with an inking drum above, on which the roller made contact

when the armature was not pulled down.

FIO. 214.

21. Mode of experimenting. The method of experimenting was as

follows.

The beats between standard and auxiliary forks were counted. The
motor was then started and the commutator kept at a constant speed

by the disk, and after the apparatus was stopped the beats w^ere again

counted. Thus the speed of the observing fork was directly measured,

and that of the standard obtained from the beats. Three observations

gave a mean of 128-1045 for the frequency at 16° C, a slightly smaller
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frequency than that found by Lord Rayleigh. The difference was
attributed to secular softening of the steel in the intervening six or

seven years.

The resistances were taken from resistance boxes which were care-

fully compared with standard coils.

The galvanometer had a resistance of 17380 ohms, and had two
coils of about 16000 turns each. The coils were very carefully insu-

lated, and showed no leakage when tested by a gold-leaf electroscope.

The current was produced with 36 small storage cells, arranged in

two parallels of 18 cells each. It was also carefully insulated.

All the quantities observed were corrected with great care for

temperature variations, and the capacity of the connecting wires to

the condenser was taken into account.

Three sets of experiments 7, 10, and 6 in number were taken, and
gave as mean values of Cm,

443471 X 10-21, 443-417 x lO-^i, 443-569 x lO-^i c.g.s.
;

or as mean of all (7„, = 443-486 x 10~2i c.g.s. electromagnetic units. Thus

"i,
397-927

2-9955 xlOi«
443-486 X 10-21

in cm per second.

22. Methods IV. and V. Comparison of a capacity and an inductance.

Determination of the product of a capacity and an inductance. Methods

of comparing the capacity C^ of a condenser with the self-inductance

Z of a coil have been given above. Chapter XIV. 48 et seq. If then the

capacity of a condenser has been thus found, in terms of a self-inductance

L which can be exactly calculated, the value Cg in electrostatic units can

be found either directly by calculation for the condenser, or, if that is

not possible, by comparison with the accurately known capacity of a

standard condenser.

Thus if 0=^^,

we have v=j9± =J'M^ (40)

The next two methods are mainly of theoretical interest. According

to Method V., which was suggested by the author, but has never been

carried out, a magnet is rotated within a coil suspended with its plane

vertical by a bifilar. The current induced in the coil causes it to turn

round a vertical axis, and, if the period of rotation be constant and
small in comparison with the period of vibration, to take up a constant

deflection. The coil is in circuit with a fixed coil of considerable self-

inductance, so that the whole inductance of the circuit is L, and with

a condenser of capacity C. The value of CL can be found by observing

1
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the deflections D^, D^y 1)^, for three different angular velocities n,,

^2' ^3* ^^ ^^^ magnet. Then

C.jr.„. » ^. (41)
«.-«.•«,

^«.^(„,._„,.)

If the induction through the coil due to the magnet when its axis

is parallel to that of the coil be A/, then when the magnet has turned

through the angle from that position the induction is M cos 9^ or

M cos nty if n denote the angular velocity, and t be reckoned from the

instant at which 0^0.
23. Theory of Method V. If a; be the whole quantity of electricity

which has flowed tlirough the circuit from the era of reckoning, the

current is i, and the induction through the circuit due to the current

in it is Lx. Thus if E denote the difference of potential between the

plates of the condenser, the electromotive force producing the current

is ^ + d{Li +M cos nt) dt, and the equation of currents is

Rx+ tALx +M COS nt) + E = 0.

But CE = x, so that this equation becomes

Cl'^^f.+GR-^ + x =CMn sin nt (42)
cUr dt

From (42) it is clear that the values of CL and CR are the same
whether the electromagnetic or the electrostatic system of units is used.

This differential equation is one of forced oscillation, so that for

X we have the equation

x = —, cos Int-e), (43)

l-CLn^
where tane= ^=—

.

RCn

The couple on the suspended coil produced by electromagnetic action

is at time t

B =xnM sin nt,

and the mean value of this over one revolution is, since 2'7r/n is the

period,

2^ VR^CV + (1 - CLw2)2 Jo

2R^C^n^^-{\-CLn^f ^
'

If the coil have a sufficiently great moment of inertia the variations

of the couple acting on it will not cause it to oscillate sensibly, but it

9= -— /^^„
" ^" =

I sin {nt - e) sin nt . dtx«^o o ., ^T " "Jo
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will take up a position of equilibrium depending on the mean couple O.

The mean deflection D is proportional to G, and so

P^=^WG^ +S-H^' (45)

where P is a constant. By means of three different angular velocities

three equations of this form are obtained, which give (41) by elimina-

tion of P and R.

If the experiment were carried out it would be desirable to take

say Tig as that for which njD is a minimum, that is n^ = \ICL, and

«i, Wg, one greater, the other less than n^.

Since v^.= CglG.^n> we have, if Lg, L^ denote the electrostatic and
electromagnetic values of L,

v'-^'-r' mHence

The denominator of the expression on the right is determined experi-

mentally, as explained above, and the numerator is obtained by direct

calculation of C^. and X^, or by comparison of the condenser and circuit

with proper standards.

24. Method VI. Electrostatic measurement of a high resistance.

Method VI. involves the determination of the electrostatic value, jR^.,

of a high resistance, through which a condenser of capacity C.^. is dis-

charged. This can be done by measuring the rate of fall of' difference

of potential between the plates of the condenser by means of an electro-

meter connected with them. If V be the electrostatic value of the

difference of potential at any time t we have

dV F
R."^^^ 0,

and therefore logF +
g^
= ^,

where ^ is a constant. If F be the difference of potential t seconds

after it was F,,, we get from this equation

t , F.

a^.=^^^T

or
R.

t 1

log
Vo

If F = iFo, i?..=</C',log2.

If now R„i is known we have, since CsRs = GmRfn, Rml^s = Gsl^m = ^^

and therefore

^,^ Jg,Alog2 ^ (^7)
t
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26. Method of electrical oscillations. The method of electrical oscilla-

tions has bcon used by Lodge and CJlazebrook.* An air condenser was

made to discharge through a coil of measurable inductance across a

spark-gap between a pair of knobs about a millimetre apart. The
condenser consisted of 11 squares (each 2 feet in side) of plate glass

silvered on both sides, set up parallel to one another with a distance

of 5 mm between each pair of opposed silvered surfaces, and the silvered

surfaces of the alternate plates joined metallically to form the coatings

of the condenser. It had thus a capacity of about 600 metres in electro-

static measure. The coil was composed of about three miles of india-

rubber covered wire of No. 22 gauge, and had diameters 19 in and 11 in,

and thickness 4 in. Its inductance was about 4-5 x 10* cm in electro-

magnetic measure.

The condenser was charged by a Voss machine arranged to give a

brush discharge across half an inch of air to the inner coating, while

the other coating (that is, the two outer plates and the four alternate

interior plates) were connected to earth.

The sparks were photographed on a revolving sensitive plate on
which the knobs were focussed by a quartz lens. The plate was driven

by a water motor at a speed of about 64 turns per second, and its speed

measured as in Lord Rayleigh's determination of the ohm, by observa-

tion of a stroboscopic disk through a slit alternately opened and closed

by the vibration of an electrically maintained tuning-fork. The result

was that a pattern was produced on the plate consisting of a long

band, with a bead-like broadening for each half-oscillation. The period

of vibration was thus measured with great exactness.

The resistance and inductance of the circuit could also be obtained

with very considerable accuracy, as the resistance of the spark-gap

was inappreciable. The value of L for the coil could also be obtained

by direct calculation or by comparison with another coil.

The value of the period given above [VIIL 14 (53)] furnishes for

these data the electromagnetic value of the capacity of the condenser.

Also Gg can be found from an exact comparison with a standard con-

denser, and thus v can be obtained by (21) above. There is left,

however, the important question of the distributed capacity of the

coil, which involves certain points of theory which so far have not

yet been satisfactorily dealt with. The method certainly involves very
considerable difficulties.

The final results of the experiment do not seem to have been
published.

26. General table of results. The following table gives the values of

V obtained by different experimenters, and for comparing the velocity

of light as determined experimentally by the methods of Fizeau and
Foucault. It is in great part taken from Mr. E. B. Rosa's 1889 paper
already referred to. The various results given were corrected by Rosa

* D.A. Report, 1889, or Ele.ctriciau, vol, 23 (1889), p. 544.
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where necessary to the value -98664 ohm for the b.a. unit. Since 1889

much work has been done, and a table as given by Rosa is extended

so as to comprise the chief more recent results corrected to date.
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CIIAPTKR XVII.

KLKCTROSTATIC MKASUHEMKNTS.

1. Electrometers. The subject of electrostatic measurements ha«

become mucli more important since the discovery of radio-activity.

Before this discovery the manifold applications of electricity in the

industries, involving as they did for the most part the utilization of

electromagnetic and electrolytic action, had concentrated the atten-

tion of electricians on the phenomena of electric currents, and caused

the relegation of electrostatic phenomena to a comparatively sub-

ordinate place. At first the use of the gold-leaf electroscope as an

indicator of electrostatic potentials was made very general ; but,

later, various forms of sensitive electrometers were constructed for

more exact measurement of such potentials.

In the discussions of electrostatic measurements which follow, the

usual theorems of the action and of the energy of charged conductors

will in general be assumed. For proofs of the various theorems stated

and used, the reader may refer to Maxwell's Electricity and Mag^ietism,

Webster's Electricity and Magnetism, or Gray's Magnetism and Elec-

tricity.

2. Attracted disk electrometers. The first accurate electrometer

devised was Coulomb's torsion balance, which gave good results in

the hands of Coulomb himself and of Faraday, and its action is very

instructive. It has, however, been almost entirely superseded by much
more delicate and convenient electrometers, chiefly belonging to two

classes :

I. Attracted-disk electrometers.

II. Symmetrical electrometers.

We give here some account of these two classes of electrometers.

The first electrometer of the first class seems to have been made by
Sir William Snow Harris * about the year 1834. At the time of its

construction there was little general appreciation of the exact mode of

distribution of electricity on conductors in different circumstances. It

was observed that when disks were placed parallel and near to one

another the attraction between them was independent, or nearly

* "Oil the Elementary Laws of Electricity," Phil. Tram. 1834.

(J..A.M. ()S9 2x
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so, of the unopposed surfaces—the backs of the disks—but from

this, and other observations, no general law of electric action was
deduced. It is shown in Fig. 215. A disk d is suspended as one

scale of a balance above a similar disk a, connected with the

interior coating of a Leyden jar J, the potential of which is to

be tested. The other scale of the balance is weighted, so as to

equilibrate d when there is no electrification. When a is charged

d is attracted, and equilibrium is restored by placing weights in P.

1

Fig. 215.

The downward pull on (Z in a definite position of equilibrium is thus

obtained in absolute units of force from the known force of gravity

on the mass placed in P. The arrangement marked Z is a " unit-jar
"

which was used in the experiments of Snow Harris to give a rough

approximation in arbitrary units to the charge of the jar J. For

when a certain difference of potential, which can be regulated by the

length of the spark-gap shown between two small knobs in the figure,

was attained by the prime conductor of the machine, the unit-jar

discharged itself to the inner coating of the large jar J, the charge of

which was thus said to contain as many units as there had been dis-

charges of the small jar.

This form of electrometer is exceedingly defective in many respects,

but contains in a rudimentary form the principle of an attracted-disk

electrometer.
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One serious imperfection of the electrometer devised by Snow Harris

was that non-uniformity of the distribution on tlie oi>|>osed disks

prevented any accurate expression of the difTi^rence of jiotential between

them in terms of the force of attraction. This can be remedied to a high

degree of accuracy by surrounding tlie attracted disk C by what is

called a " guard-ring," us shown in Fig. 216. When the disk and ring

surfaces opposed to the attracting disk A are in [ilane, it may be assumed

that distribution of electricity on the disk i.s approximately uniform.

FlO. 216.

The disk acts as the inner part of a large disk, the outer edge of which

is that of the ring.

The disk G is hung by wires from one end of a metal beam pivoted

on a horizontal wire stretched between the pillars PP, and twisted

so that the torsion and the counterpoise Q tend to raise C. A downward
force is applied to C to bring it into the plane of the guard-ring against

this action, and this is obtained from weights placed on the upper

surface, so as to bring the lever, from which the disk is hung, into a

sighted position. The lever is forked at the outer end as shown, and
across the fork is stretched a horizontal black hair, which, when the

lever turns, moves in front of a white plate carried by the stand of the

lens I. When the lever is in the sighted position it lies between two black

dots on the white surface, which can be viewed through the lens.

The lens is placed at a distance from the hair slightly less than the

focal distance, and the eye is 20 cm. or more from the lens. Parallax

is avoided by placing the lens with its convex side towards the hair,

and moving the eye up or down until the hair seems straight in the

middle, and to widen out at the ends equally above and below. A
very slight deviation of the hair from the position of no parallax is

possible with this arrangement. Lord Kelvin and Dr. J. P. Joule cor-

rected in this way so small a deviation as 1/50,000 of an inch. The
disk and guard-ring are electrically connected by a wire which joins

the guard-ring with the metal pillars PP,
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The disk nearly fills the aperture in the guard-ring, and its effective

area, reckoned as uniformly charged on the side turned towards the

disk B, is approximately the mean of the areas of the aperture and
the plate A. (See Maxwell, Electricity and Magnetism, i. p. 308,

3rd ed,, where also a closer approximation will be found.)

The attracting plate is carried by an insulating pillar attached to a

micrometer screw, by which the plate can be mOved upward or down-
ward through measured distances.

3. Method of use and theory of an attracted disk electrometer. The
method of using the electrometer is as follows : A constant difference

of potentials is maintained between one of the plates, say the disk and
guard-ring, and the earth, and the other plate is connected to earth.

The latter is then raised or lowered until the attracted disk is brought

into the sighted position, and the micrometer screw is read. The plate

A is then connected to the body to be tested, and the attracted disk

brought once more to the sighted position, and the micrometer again

read. Then the value of F, the potential of the plate, can be found.

Let d be the distance between the plates and S the effective area of

the part of the attracted plate surrounded by the ring. Then the

field intensity between the plates is Vld = 4:7rQ/S. The whole force of

attraction on the charged area S is ^QV/d. Denote this by F, and

F =-^' or V =d.ri^t* (1)

In the mode of using the instrument just described, let V be the

difference of potentials between the plates when the movable plate is

connected to the body to be tested, V that between the earth and the

guard-ring when the other reading of position is taken, and d', d be the

two readings ; then we have by the result just obtained.

V = {d'-d)^^-^ (2)
S

This is the difference of potentials between the body tested and the

earth, and is obtained in absolute c.g.s. units of potential, if d'-d
be taken in cm, and F in dynes. The result thus depends only on a

determination of the difference of the distances of the plates apart

in the two positions, and not on the determination of the plates apart

in any positions, which it would be relatively difficult to carry out with

accuracy.

The electrification independent of that to be tested, which is main-

tained in the plate B, is in general produced by keeping B in contact

with the inner coating of a Leyden jar, the electrification of which can

* It will be remarked here that the force exerted on one plate by the other is

equal to the charge on the former multiplied by the field intensity due to the

latter. Thus we have in the present case the whole charge on the attracted disk

multiplied by the field intensity due to A, that is by ^V/d.
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be tested by a proper gauge in the manner dtjucribed below, and by

means of a proper electrifying device brought to the required value,

if it should vary from that value. Hence the n»ode of mting the electro-

meter in which this electrification is employed ha.s been rolled heterogtatic.

If the electrification to be tested is alone made u«e of, the instrument

is said to ho. used idiostatUallij.

4. Lord Kelvin's absolute electrometer. The Kelvin absolute electro-

meter acts according to the principles which have just been explainc»<l

(^"l

FIO^. 217.

It is shown in Fig. 217. The attracted disk and plates are contained

within a cylindrical case of white glass, carefully selected for insulation,

which is fixed by a brass mounting round its lower end to a horizontal

sole-plate of iron, supported on three feet with levelling screws, and is

closed above by a stout brass plate screwed to a brass ring cemented

round the upper end. . The height from sole-plate to cover is 50 centi-

metres, and the diameter is 30 centimetres. The sides of the case, with

the exception of apertures to permit observations of the interior points

to be made, are coated inside and outside with tin-foil nearly as high

as the plates, which are in the upper part of the jar.
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1

The case thus forms a Leyden jar, the coatings of which can be

brought to any necessary difference of potentials. The guard-ring B
is connected with the interior coating by its supports, which are metal

pieces cemented to the inner side of the jar and covered with tin-foil.

Within the jar, on the sole-plate, is placed a leaden tray containing

pumice moistened with sulphuric acid, which maintains a dry atmos-

phere within the jar.

The attracting plate A is of stout brass, with pieces cut out of it to

allow it to pass the supports of the guard-ring, and is supported by an
insulating stem of white glass cemented to a vertical brass pillar, which

is moved up and down in V guides by the micrometer screw C, working

in a fixed nut in the sole-plate. The amount of vertical motion is

observed by means of the scale m, and a circular plate graduated on
its edge, which projects from the screw and turns in front of a fine

vertical wire. The former shows the number of complete turns made
by the screw, the latter allows any fraction of a turn to be estimated

to a degree of accuracy depending on the fineness of the graduation,

and the precision with which the position of the wire on the circle

can be read. The actual distance traversed is got from this result

by multiplying by the step of the screw, which, in the first instrument

made, was ^\y of an inch.

The attracted disc is made for lightness of thin aluminium strength-

ened by a thick rim and radial ribs on its upper side ; and is made as

nearly as possible perfectly plane on its under side. Instead of being

hung from one arm of a balance like the disk shown in Fig. 216, it is

supported by three delicate springs, similar in shape to coach-springs,

of which one only is shown in Fig. 217, projecting from underneath the

cover D. These springs are placed symmetrically round the disk

and meet at their points of crossing above and below. The disk is

attached to the lower point of crossing, and the upper point of crossing

is attached to the lower end of an insulating stem carried at its upper

end by a brass tube which slides in V guides, and can be moved up and
down by the head (7 of a micrometer screw similar to that already

described as moving the attracting plate A. Underneath this screw-

head and fast to it is a micrometer circle, which serves to determine

fractions of a turn, while complete turns are shown by the divisions

on a vertical scale. The actual distance through which the disk is moved
in any given case need not be known ; all the upper micrometer screw

gives is merely a comparison of distances.

Two small uprights stand on the centre of the disk, and between these

is stretched a fine black hair, of which an image is formed in the con-

jugate focus by the achromatic lens I. The lens is so adjusted that this

focus is between two screw points V, which are so placed as to touch

the image above and below when the disk is in the sighted position.

The image is observed through an eye-lens V attached outside the jar

to the brass mounting, and then, since the points and the image of the
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hair arc in focuH in tlu' »am« position of this lena, there is no error due
to pjinillax.

Th<! attracted disk and Bprinj^H are inclosed within the metallic box D
(of vvhieji one-half is shown displaced) to prevent disturbance by ex-

ternal electrification. The hair is seen through a hole cut in the box
o|)posite the lens.

5. Gauge for testing the electrification of the jar. The difference of

potentials between tlie inner and outer coatinj^s of the jar is tested by

an auxiliary attracted disk electrometer used idiostatically. This electro-

meter, which is called the gatuje, is contained within the cylindrical box

J on the cover of the jar. The arranf^enient is shown in detail in

¥\g. 218. The disk is a square piece

of aluminium forminj^ a continuation

of a lever h of the same metal. This

lever is forked and the })rongs joined

by a black opaque hair which moves
in front of an enamelled plate on
which are two black dots as already

described. The |)osition of the hair

is seen through the })lano-convex
j.^^ 2i8

lens I, which is carried by a sliding

platform attached to the guard-ring G. Instead of the counterpoise

shown in Fig. 216, torsion given to the platinum yfire fy to "which the

lever is attached in the manner shown in Fig. 218, and round which the

lever turns as a fulcrum, forces the disk upwards. This upward force

is balanced when the hair is in the sighted position by electric attraction

between the disk and a parallel plate below it, which is in contact with

the interior coating of the jar while the guard-ring and disk are in

contact with the exterior coating. The attracting plate below is mounted
on a fine screw, by which its distance from the disk and therefore the

sensibility of the gauge can be varied at pleasure within certain limits.

The sensibility of the gauge varies with any alteration in the elasticity

of the torsional spring/. This however is of little consequence as the

variations are not sudden, and it is never necessary to know the actual

potential of the jar.

Between each end of the wire/ and the supporting block is interposed

a U shaped spring (not shown in Fig. 218) made of light brass. The
end of the wire is attached to the extremity of one limb of the U, a

j)in passing through the supporting block to the extremity of the other

limb. The two pins, the extremities of the springs, and the wire are

in line. The sj)rings can be turned round the pins as axes, so as to give

any initial torsional couple to the wire which may be required, and by
their spring cause the wire to be stretched with a nearly constant

force.

The mode of attachment of the wire to the lever h, deserves notice.

The wire is threaded through two holes in the broader part of the lever,
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near the square disk, so that the part between the holes is above the

lever. Halfway between the holes it passes over a small ridge piece of

aluminium, which prevents the lever from turning round without

twisting the wire.

The plate A when the instrument is used is connected with the body

to be tested by the electrode E, which passes through a plug of clean

paraffin fixed in an aperture in the sole-plate. The wire r completes

the connection between E and A.

6. The replenisher. The difference of potentials between the

coatings is kept nearly constant by means of a small induction machine

R, called by Sir William Thomson the Replenisher. The construction

and action of this part will be easily understood from Figs. 219 and 220.

Fig. 219.

Fig. 219 shows the mechanism full-size in perspective elevation ; Fig. 220

the same in plan.

Two similar metal carriers, C, D, each part of a cylindrical surface,

are fixed on a cross-bar of paraffined ebonite so as to be slightly non-

coaxial but inclined at the same angle to the cross-bar. Through the

cross-bar and rigidly fixed to it, passes a cylinder of ebonite having

at its ends metal pieces which form the extremities of an axle. The
carriers turn round this axle within the circular cylinder marked out by
the cylindrical metallic pieces A, B, which are insulated from one another

and act as inductors. A receiving spring s or s' proj.ects obliquely

inwards through a hole in each conductor, with which it is also con-
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necti'd at tl»e back, an(i is In'iit ko that the carriers touch the springs

on their convex sides, and pass on but little impeded by the friction.

Two contact spring's, S, <S", connected by a metallic arc project sliglitly

in^fards beyond the inductors so that the carriers, while op|)ositc the

inductors, come into contact with these two springs at the same time,

and are therefore put into conducting contact. One of the inductors,

Ay is connected to the inner coating of the jar, the other, B, is attached

by the 8up|K)rting plate of brass to the cover of the instrument and there-

fore to the outer coating. A milled head attached to E projects above

the cover and forms a liandle by which the carriers are twirled round.

The electrical action is on the whole that of an electric machine which

multiplies by induction small initial charges. It is easily made out

Via. 220.

and understood. An initial charge has been given to the jar, so that a
difference of potentials exists between the coatings, the interior for

example being positive. When the carriers come into contact with
the springs S, S', they are brought to the same potential, and, since

they are under the influence of the inductors, one carrier becomes
charged positively, the other negatively. Then, turning in the direction

of the arrow, they come into contact with the receiving spring.s, and
being each (electrically) well under cover of the corresponding inductor
they give up the greater part of their charges, thus increasing the
difference of potentials between the inductors. /

If the carriers are turned in the opposite direction the afction is of
course reversed, and the difference of potentials is dimini/hed. When
the replenisher is not in action the carriers are not in coiftact with any
of the springs.
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7. Method of using the absolute electrometer. The method of using

the absolute electrometer is practically the same as that described

for the more rudimentary instrument of Fig. 216. The force required

to depress the disk against the action of the springs without over-

straining is, however, not determined by torsion, but by weighing.

The top cover of the jar and the cover of the balance are removed
and the disk is loaded as symmetrically as possible with weights, while

all electrical force is avoided by putting the electrode of the plate A
in contact with the guard-plate B. The micrometer-screw C is then
t.urned until the disk comes again into the sighted position, and the

distance through which the plate was depressed is obtained from the

initial and final micrometer reading in terms of divisions of the scale.

(It was found in the original instrument made for Sir William Thomson
that j~ of a gramme depressed the disk through two divisions of the

vertical scale and a fraction of one division on the graduated head.)

Several determinations of this distance are made at different tempera-

tures to obtain data for the elimination of the effects of temperature

on the springs. The weights are now removed, the covers replaced,

and the instrument is ready for use in absloute measurements.

When the electrometer is to be thus used the guard-ring and attract-

ing plate are put into conducting contact by connecting the electrode

of the latter with the charging rod let down through the aperture

provided for it in the cover, and the disk is pub accurately into the

sighted position. It is then raised by the micrometer-screw through a

distance for which the force F has been determined. To bring it back
to the sighted position will require the application of that force. The
jar is next charged to the degree determined by the sensitiveness of the

gauge, and the potential kept constant by using the replenisher as

described. The attracting plate is now connected by means of its

electrode with the exterior coating of the jar, and the micrometer

moved up or down until the disk is brought into the sighted position,

when the micrometer reading is taken. This is called the earth-reading.

The electrode of the attracting plate is now brought into contact with

the conductor whose potential is to be tested, and the plate again

moved by the micrometer until the disk is once more in the sighted

position and the reading once more taken. The difference between
the two readings gives d' -d of (2), p. 692 above, which, since F has
^.v.ci determined, and S is supposed known, gives in absolute units
the iifference of potentials V'-V between the conductor tested and
the ouer coating of the electrometer jar.

Sir "V^illiam Thomson also constructed a small attracted disk electro-

meter capable of being easily carried about from place to place, and
therefore tdapted for observations of atmospheric electricity at different

places at rapid succession by the same observer, for use by explorers,

or for any purpose for which smallness of size and portability are

necessary. This was called the Portable Electrometer. A description

\



XVII ELECTROSTATIC MEASUREMENTS 699

cannot bo i^ivon lien*, l)ut the reader may refer to Lord Kelvin s Reprint

of Papers mi EleiirosUUics and Maytudism, or to the first edition of this

}>ook. An account of the Ix>ng Range Electrometer, for high i>otential8,

must also be omitte(L

8. Symmetrical electrometers : the quadrant electrometer. The care-

fully constructed form of symmetrical electrometer which we have in

Tliomson's (jUHdrant electrometer had its beginning in the divided-ring

instrument illustrated in Fig. 221. A vertical wire carrying on one side

a light horizontal needle is suspended from a

fixed point. The wire [)as.ses through the centre

of two flat semi-circular pieces of metal, which

lie in a horizontal plane so as to form a metallic

circle complete with the exception of a small

space at each extremity of a diameter. These

spaces insulate one semicircle from the other.

Su])posing the needle charged with positive elec-

tricity and made to rest in equilibrium above

one of the spaces when the two semicircles are

put in conducting contact, the arrangement is

symmetrical about the needle. If one semicircle

be then charged with positive, the other with

negative electricity, the needle will be repelled

from the positive and attracted toward the

negative semicircle. If then the wire be brought

back and maintained in the symmetrical position

by an applied couple, this couple gives a measure of that due to

electric forces tending to deflect the needle, and if the potential of

the needle remains constant, differences of potential established between
the semicircles can be compared.

It was an obvious but important step to convert the two semicircles

into four quadrants by a pair of openings along a diameter at right-

angles to the other pair, to put each pair of opposite quadrants into

Fio. 221.

Fig. 222.

conducting contact, and to make the needle symmetrical about the

suspension wire. Thus supposing one pair of quadrants to be charged

positively and the other pair negatively, one end of the needle is attracted



700 ABSOLUTE MEASUREMENTS I^ ELECTRICITY chap.

by one pair of quadrants, and repelled by the adjacent quadrant of

the other pair. The other end of the needle is attracted by the remaining

quadrant of the first pair, and repelled by the remaining quadrant of

the other pair, which is adjacent. These actions conspire to give a

couple turning the needle about the suspension wire.

In the final form of the quadrant electrometer, which is represented

in Fig. 223, the four quadrants of the flat-ring are replaced by four

quadrants of a flat cylindrical box made of brass. These are shown
separately in Fig. 222. Each quadrant is supported on a glass stem

C'5

Fig. 223.

projecting downwards from a brass plate which forms the cover of a

Leyden jar, within which the quadrants and needles are enclosed.

For three of the quadrants the stem passes through a slot in the cover

and is attached to a brass piece which closes the slot from above.

Thus each of the quadrants can be moved out or in through a small

space. The stem of the fourth quadrant is attached to a piece above

the cover which rests on three feet. Two of these feet are kept by a

spring in a V groove, parallel to which the piece carrying the quadrant

with it can be moved by a micrometer screw turning in a nut fixed to



ELECTROSTATK .Ui.A.SUKEMENTS 701

the movahh' piece. Tlie Kpriiig whicli keepH the feet of the movable

piece in their groove presHes outwards as well as downwards, and so

keeps the same sides of the imt and screw threads in contact, to the

prevention of " lost time." The details of the instrument will be

easily made out by means of Figs. 224 and 225. The former shows a

vertical section of the instrument, the latter the suspension-piece and

mirror.

Fig. 224.

A plate rather less in area than the upper surface of a quadrant,

but of nearly the same shape, is supported by a glass stem from the

cover above a quadrant adjacent to that attached to the micrometer,

and is furnished with an insulated electrode passing through the cover.

Sufficient length is given to the insulating stem by attaching it to the

roof of a cylinder, closed at the top, erected over an opening in the

cover. This i)late is called the induction plate of the instrument.

9. The needle and its suspension. Within the box formed by the

quadrants and about midway between the top and bottom, a needle

of sheet aluminium of the form shown by the line drawn, partly full,

partly dotted, across the plan of the quadrants on the left in Fig. 222
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is suspended horizontally from two pins, c, d (Fig. 225), carried by a

fixed vertical brass plate supported on a glass stem projecting above

the cover of the jar. The needle is attached rigidly at its centre to

the lower end of a stiflE vertical wire of aluminium, which passes down
through an opening in the middle of the cover.

To the extremities of a small cross-bar at the top of the aluminium

wire are attached the lower threads of a bifilar made of two single fibres,

generally of silk. The upper ends of these fibres are wound in opposite

directions round the pins c, d, each of which has, in its outer end, a

square hole to receive a small key, by which it can be turned round in

its socket so as to wind up or let down the

fibre. By this means the fibres can be

adjusted so as to be as nearly as may be

of the same length ; and as the whole sup-

ported mass of needle, ete., is then sym-

metrical about the line midway between the

fibres, each bears half the whole weight.

The pins c, rf, are carried by the upper

ends e, /, of two spring pieces which form

the continuations of a lower plate screwed

firmly to the supporting piece. Through e,

/, and working in them, pass two screws a

and 6, the points of which bear on the brass

supporting plate behind. By the screw a

the end e of the plate ef can be moved
for\N'ard or back through a certain range,

and thus the pin c carried forward or back

relatively to d ; similarly d can be moved by

the screw b. Thus the position of the needle

in azimuth can be adjusted. The distance

of the fibres apart can be changed by screw-

ing out, or in, a conical plug shown between

the springs c, /.

The aluminium wire carries between its upper end and the needle

a small concave mirror of silvered glass, to be used with a lamp and
scale to show the position of the needle. The mirror is guarded against

external electric influence by two projecting brass pieces, which form

nearly a complete cylinder round it. The part of the wire just above

the needle is protected by the tube shown at the bottom of Fig. 225.

This tube extends down below the needle a little distance, and is cut

away at each side to allow the needle free play to turn round.

The interior coating of the Leyden jar is formed by a quantity of

sulphuric acid which it contains, and which also serves to preserve a

dry atmosphere within the jar, the exterior coating by strips of tinfoil

pasted on its outer surface. The acid has been boiled with sulphate

of ammonia to free it from volatile impurities which might attack

^

FIO. 225.
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the metal parte of the instniment. The jar iteelf is endcMed within a

strong metal ca«e of octagonal form, sapported on three feet, with

levelling screws. The line joining two of these feet (which are in front)

is, when level, parallel to the axis of the needle if the latter is properly

adjusted.

The needle is connected with the inner coating of the jar bj a thin

platinum wire kept stretched by a platinum weight at ite lower end,

which hangs in the acid. The wire is protected from electrical inflneoee

by a guard-tube forming a continuation of the narrows gnard-tnbe,

partly shown in Fig. 225, and therefore extending from below the quad-

rante to a short distance above the acid, and connected also by a

platinum wire with the acid. [But see below for a modification of this

arrangement.]

10. The subsidiary gauge-electrometer. The supporting plate in

Fig. 224 carries the disk of an idioetatic gauge of the kind described

in 5 above. The height of the disk n adjustable by means of a

fine scTcw and jam-nut below it. The supporting plate, with the sua

pension and disk of the gauge, etc., is enclosed within an upper brass

case, called the lantern, which closes tightly the central opening of the

cover. The top of the lantern is the guard-plate of the gauge,

carries the aluminium trap-door and lever with sighting plate and
as already described.

A glass window in the lantern allows light to pass to the mirror,

and the suspension to be seen. A small opening in the ^ass, closed

when not in use by a screw-plug of vulcanite, enables the operator to

adjust the suspension without removing the lantern.

11. Electrodes, etc. The principal electrodes of the quadrants are

brass rods cased in vulcanite, and are arranged so as to be movable
vertically. Elach is terminated above in a small brass binding screw,

and is connected below by a light spiral spring of platinum with a

platinized contact piece, which reste by ite own weight on a part of the

upper surface of the quadrant, also platinized to ensure good contact.

They are placed one on each side and in front of the mirror. One is in

contact with the quadrant connected below to the micrometer quadrant,

the other to the quadrant connected to that below the induction plate.

An insulated charging-rod descends through the lantern, and carries

at ite lower end a projecting spring of brass. When the rod is not in

use the spring is not in contact with anything ; but when the jar is to

be charged the rod is turned round until the spring is brought into

contact with the supporting-plate, which, as stat^ above, is in contact

with the acid of the jar.

The potential of the jar is maintained constant by a replemsher in

the manner already described for the absolute electrometer. A spring

catch keeps the knob of the replenisher, which is on the upper side of

the cover, in such a position when not in use that the carriers are not

in contact with any of the springs.
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On the upper side of the cover are screws, three in number, by which
the cover is secured to a tightly fitting flat ring collar below it, to

which the jar is cemented, and to which the case is screwed, two
screws, one on each side, which fix the lantern in its place, a cap cover-

ing an orifice communicating with the interior of the jar, two binding

screws by which wires can be connected to the case, and a knob similar

to that of the replenisher, which, when turned against a stop marked
" contact," connects by an interior spring the quadrant below the

induction plate with the case, and when turned in the opposite direction

to an adjoining stop marked " no contact," insulates that quadrant

from the case. Two keys, for turning the pins, a, h, c, etc., are kept

let down outside the case through holes in the projecting edge of the

cover. The cover also carries a small circular level, set so as to have

its bubble at the centre when the cover is levelled by an ordinary level.

When this has been done the accuracy of construction of the quadrants

ensures that they are also level. The level has a slightly convex bottom,

and is screwed down with three screws, so that when the instrument

is set up for use, a final adjustment, to show horizontality of the quad-

rants, can easily be made by turning the screws.

12. Adjustments of the quadrant electrometer. Full instructions

for setting up and adjusting the quadrant electrometer are sent out

with each instrument by the maker, and are therefore available, if kept,

as they ought to be, beside it in the case. We shall suppose therefore

that the detached parts have been put into their places, the acid poured

into the jar, and the instrument set up and levelled ; but as a quadrant

electrometer is generally part of the equipment of a physical labora-

tory, and is used over a wide range of electrical work, we describe here

the principal adjustments.

The two front quadrants are pulled out as far as possible, to allow

the operator to observe the position of the needle, which should rest

with its plane horizontal and midway between the upper and under

surfaces of the quadrants. If it requires to be raised or lowered, the

operator winds or unwinds the fibres by turning the pins c, d, to which

they are attached. The suspension wire of the needle should pass

through the centre of the circular orifice formed in the upper surface

of the quadrants, when these are symmetrically arranged. If the wire

is not in this position the pins a, h, are turned so as to carry the

point of suspension forward or back until the wire is adjusted, and

then one pin is carried forward and the other back, without altering

the position of the wire, until the black line along the needle is

parallel to the transverse slit separating the quadrants.

The scale is placed at the proper distance to give a distinct image

of the wire across the line of divisions in front of the lamp flame,

then levelled and adjusted so that, when the image is at rest in the

centre, the extremities of the scale are at equal distances from the

needle.
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Whon tho host rolative positionH of the iiwtrumont and the stand

for the lamp and scale have been ascertained, these are fixed* by the
" hole, slot, and plane " arrangement, which enables any instrument

supported on three feet or levelling screws to be removed at pleasure,

and replaced without n^adjustment in its original position. A conical

hollow, or better, a hole shaped like an inverted triangular pyramid,

is cut in the table so as to receive the |K)int (which should be well

rounded) of one of the levelling screws, without allowing it to touch

the bottom. A V groove, with its a.xis in line with the hollow, is cut

for the rounded point of another levelling screw, and the third rests

on the plane surface of the table. If it is desired to insulate the electro-

meter case it is supported on three blocks of vulcanite cemented to the

table ; and in one of tlH's«' tin* hollow is cut, in another the V groove.

13. Method of charging the electrometer-jar. When the jar is being

charged, the main electrodes, the induction plate electrode, and one

of the binding screws on the cover, are kept connected by a piece of

fine brass or copper wire. The charging electrode is turned round
so as to bring the spring at its lower end into contact with the support-

ing brass piece, and a positive charge is given to the jar by means of the

small electrophorus which accomj)anies the instrument. The cover

of the jar is tapped during the process to release the balance lever from
the stop, to which it may be adhering. When the lever rises the charging

rod is turned so as to disconnect the spring, and the charge is then

adjusted to the normal amount (determined by the distance of the

attracting disk from the trap door) by the replenisher.

The spot of light may in the process of charging have moved from
its position for no electrification, and must be brought back by moving
out or in the quadrant carried by the micrometer-screw.

In ordinary circumstances the leakage of the jar will cause the hair

to fall down in twenty-four hours about half the breadth of the lower

black spot. This loss of charge from the jar is made good by the re-

plenisher ; but if the leakage is considerably greater, the main stem
should be washed by means of a piece of hard silk ribbon (to avoid

shreds) with soap and water, then with clean water, and finally care-

fully dried. Shreds and dust on the needle and quadrants may tend

to discharge the jar, and anything of this kind should be removed by
carefully and lightly dusting the needle and quadrants with a clean

camel's hair brush. The jar is selected for its high insulating power,

but if the acid has in careless handling of the instrument been splashed

over the interior surface there may be considerable leakage over the

surface of the jar to the case. This can be remedied by removing the

acid and carefully washing the jar. The replenisher may also cause

leakage of the jar through a deterioration of insulating power of the

vulcanite sole-plate which connects the inductors. Such a deterioration

with lapse of time is not uncommon in ebonite, and is a consequence

of slow chemical action at the surface. A nearly complete cure can be
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effected by removing the piece and washing it carefully by prolonged

immersio'n in boiling water, and then re-covering its surface with a film

of paraffin.

14. Method of testing insulation of quadrants. The insulation of

the quadrants is now tested. One pair of quadrants is connected

to the case and a charge producing a difference of potentials exceeding

the greatest to be used in the experiments is given to the insulated

pair by means of a battery, one electrode of which is connected to the

electrometer case, while the other is connected for an instant to the

electrode of the insulated quadrants ; and the deflection of the spot

of light is read off. The percentage fall of potentials produced in

thirty minutes or an hour is obtained merely by taking the ratio of the

diminution of deflection which has taken place in the interval to the

original deflection. If this is inappreciable the quadrants insulate

satisfactorily. In any case, for satisfactory working the rate of loss

of potential shown by the instrument should not be greater than

that of the body tested.

If the insulation is imperfect the glass stems supporting the quadrants

should be washed by passing a piece of hard silk ribbon well moistened

and soaped, then with clean water to remove the soap, and dried by
the same piece of ribbon well dried and warmed. If this does not

succeed, the fault probably lies in the vulcanite insulators of the

electrodes, which should be well steeped in boiling water, then re-

covered with clean paraffin and replaced. Care must be taken if this

is done not to bend the electrodes.

The final adjustment of the tension of the threads to equality is now
made. One pair of quadrants is connected to the case, and the other

pair insulated. The poles of a single Daniell's cell are then connected

to the electrodes, and the extreme range of deflection produced by
reversing the battery, either by hand or by a convenient reversing key,

is observed. One side of the instrument is then raised by screwing

up that side by one or two turns of one of the front pair of levelling

screws, and the range of deflection again noted. If the range is greater

the fibre on that side is too short, if the range is smaller the fibre

is too long ; and the length must be corrected by turning one or

other of the pins to which the fibres are suspended. The pins can

be reached by the aperture in the window of the lantern ordinarily

closed by the vulcanite plug ; and to prevent discharge of the jar

the key with vulcanite handle should be used to turn them. The black

line on the needle will require readjustment by the screws after each

alteration of the suspension.

15. Heterostatic use of the quadrant electrometer : theory. The
ordinary method of using the quadrant electrometer is heterostatic, since

the jar is kept at a potential different from and generally much higher

than any potential which the instrument is used to measure. . The shape

of the needle is such that for most practical purposes equation (3)



XVII ELECTROSTATIC MEASUREMENTS 707

which follows may be regarded as giving accurately the couple deflect-

ing the needle, when the quadrants are syniinetriciil about the needle

and close. For small deflections we have, for the deflection Z), in

terms of the potentials K, Kj, Kj of the needle and the two pairs of

quadrants respectively, the equation

i)=c(F.-Fj(F-^^» (3)

where c is a constant depending on the instrument and the mode of

reckoning of D. If V be, as it usually is, great in comparison with

Fj or Fg, then

F,-F,=C'D (4)

where C is the now practically constant value of c(V -{V^ + F2)/2}.

To prove this we observe that a symmetrical electrometer may be

regarded as consisting of three conductors maintained at different

potentials, and fulfilling the following conditions : One {A), the needle,

is symmetrically placed with reference to the other two (B and C,

Fig. 226), and so formed that one of its two ends, or bounding edges,

Fkj. 226.

is well under cover of B, and the other end or edge under cover of C,

so that the electric distribution near each end or edge is uninfluenced

by the nearer conductor. Let V, Fj, Fg be the potentials of ^, B, (7,

respectively, and let A be slightly disturbed from B toward C. This

displacement, B say, may be angular or linear, according to the arrange-

ment ; in the quadrant electrometer it is the angle through which

the needle is turned. Let k be the electrostatic capacity of A per unit

of at places not near the ends or edges of A, and well under cover

of B and C. The quantity of electricity lost by A, because of its dis-

placement relatively to B, is k%{V - Fj) and that lost by B is kd{ Fj - F).

Similarly, the quantities gained by A and C in consequence of the

motion of A towards C are A:9(F-F2) and k3{\\-V). Multiplying

the first and second of these by F and F^ respectively, and the third

and fourth similarly by F and Fg, subtracting the sum of the first

two products from the sum of the second two, and dividing by 2, we get

W= W(F,-F,)(v-^^li^*) (5)

the work W done by electrical forces in the displacement. This

must be equal to the average couple, or average force, multiplied into

the displacement, according as the latter is angular or linear. Denoting

the force or couple by F, we have

(6)F^k(V,-V^(v-^'\^').
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In an arrangement of this kind, when the displacement is small,

the couple or force on A is nearly the same over the whole displacement,

and is thus equal to the equilibrating force or couple due to the torsion

wire, or bifilar, or other arrangement finally producing equilibrium.

For small displacements, this force or couple will generally be pro-

portional to the displacement, and therefore also to the deflection D
on the scale of the instrument, and thus

Z) =m9 = c(r,-F,)(F-^i±^^), (7)

where m and c are constants.

When V is great in comparison with J(Fi-l- Fg) this equation reduces

to^ = c(Fi-F2).
If the angle of deflection of the ray of light is not a very small

angle, the couple given by the bifilar, it is to be remembered, is pro-

portional to sin ^d. Hence if D be the distance in divisions on the

scale (supposed straight and at right angles to the zero direction of the

ray) through which the spot of light is deflected, and R the horizontal

distance of the scale from the mirror in the same divisions, we have

tan 6 = D/R, from which can be found and hence 19. We have then

Ksmid = {V,-V,)(^V-^-^^, (8)

where i^ is a constant.

Equation (8) would be more nearly satisfied if the central portions

of the needle to well within the quadrants were as much as possible

cut away, leaving only a framework opposite the orifice at the centre

of the quadrants to support the needle.

16. Energetics of the action of a quadrant electrometer. It may be

noticed that we have here a system of conductors kept at constant

potentials during an alteration of configuration of the system. A
very general theorem of energy holds in such a case. In order that the

potentials may remain constant, the conductors must be connected

with sources of energy. The theorem is that the source or sources

of energy supply twice as much energy as is involved in the increase

of energy of the system.

To prove this, let Q^, F^, Q2, Fg, ... be the charges and potentials,

and E be the energy, before the change of configuration. Then we have

After the displacement the energy has become E + e, and the charges

^i + S'i' ^2 + 5'2' •••» while the potentials are unaltered. We have then

E + e^i^EliQ + qW},
that is, e = i2(^F).

But since the charges have been altered at unvarying potentials the

sources must have furnished energy

2e = l{qV).
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Wc see thuH that 2e is th»; inngy furnished by the sources of energy

which maintain tlie potentials. Half of this is stored in the displaced

system, the other half has done work, which, when the parts of the system

are left at rest, is represented by the potential energy of the twisted

suspension fibre, or oth«'r directive system controlling the needle.

Here we have an example of the very j/iiunil theorem already illus-

trated in VIII. 7 above.

As has been mentioned in X. 12 abovr, nu> cutting away of the

guard-tube for tlie needle leaves metal cheeks, which, when the needle

is deflected to an unsymmetrical position, renders the formula (8)

above, obtained on the assumption of the existence of symmetry
seriously inaccurate for the measurement of large differences of poten-

tials. In quadrant electrometers made during the last twenty-eight

years the guard-tube has been dispensed with.

17. Grades of sensitiveness. The quadrant electrometer described

above, when used heterostatically, admits of a number of different

grades of sensibility. These are shown in the two following tables,

where L denotes the electrode of the pair of quadrants, one of which is

below the induction plate, R the electrode of the other pair of quadrants,

/ the electrode of the induction-plate, an electrode of the case of the

instrument, and C the electrode of the conductor to be tested. LC
denotes that L is connected to C, RO that R is connected to 0, RLC
that RL and C are connected together, and so on, (L) that the quadrants

connected with L are insulated by raising L, {R) that the quadrants

connected with R are similarly insulated, {RL) that both L and R are

raised. The disinsulator mentioned (p. 704 above) is used to free the

quadrants connected with L from the induced charge which they generally

receive when L is raised.

GRADES OF SENSITIVENESS.
A. B.

Inductor connected with quadrant Inductor connected as indicated
beneath it.

FULL POWER.

[ro]
or [S]

DIMINISHED POWER.

(L) [^2] or (ft) [^g

below.

FULL POWER.
Inductor Insulated.

[LCI r ftc -|

[ro\ "' Iw]
GRADES OF DIMINISHED POWER.

(L)

|-7C-1

llROj

[fo]

["a

«««['»]
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Either of these grades of sensibility may of course also be varied

by increasing the distance of the fibres apart.

The quadrant electrometer can be made to give results in absolute

measure by determining the constant C of equation (4), by which

the deflection must be multiplied to give the difference 7i- Fg. This

can be done by observing the deflection produced by a battery of electro-

motive force of convenient amount, determined by direct measurement

with an absolute electrometer or otherwise. Different such electro-

motive forces may be employed to give deflections of different amounts

and thus give a kind of calibration of the scale to avoid error from

non-fulfilment of condition of proportionality of deflection to difference

of potentials.

18. Idiostatic use of quadrant electrometer. The quadrant electro-

meter may also be used idiostatically for the measurement of differences

of potential of not less than about 30 volts. The volt is the practical

unit of electromotive force, and is about 1*07 times the electromotive

force of a Daniell's cell. In this mode of using the instrument

the jar is left uncharged, the charging-rod is brought into contact

with the inner coating of the jar, and joined by a wire with one of the

main electrodes, so as to connect the needle to one pair of quadrants.

The other pair of quadrants is either insulated or connected to the case

of the instrument. The instrument thus becomes a condenser, one

plate of which is movable, and by its change of position alters the electro-

static capacity of the condenser. The two main electrodes are connected

with the conductors, the difference of potentials between which it is

desired to measure.

A lower grade of sensibility can be obtained by connecting the

needle through the charging-rod to the electrode R, and using the

induction-plate instead of the pair of quadrants connected with L,

which are insulated by raising their electrode.

When the instrument is thus used idiostatically V in equation (7)

above becomes equal to F^, and instead of (7) we have

D-^(V^-r,f (9)

that is, the deflection is proportional to the square of the difference

of potentials, and therefore independent of the sign of that difference.

It is to the left or right according to the electrode connected to the

needle. This independence of sign in the deflection renders the instru-

ment thus used applicable to the determination of mean squares of

differences of potentials in the circuits of alternating dynamo- or

magneto-electric generators.

The quadrant electrometer has been modified by different makers.

In the form made in Paris for M. Mascart, the needle is kept at a con-

stant potential by being connected to the positive pole of a dry pile,

the negative pole of which is connected to the case, and the replenisher

is dispensed with.



elfxtrostatk: mkasukements II

19. Dolezalek quadrant electrometer. For work on radio-activity

and kindred BubjectH the Kelvin quadrant electrometer in not sufficiently

sensitive, and instead of it a niodificution of the arrangement due to

Dolezalek (Zeilachr. f. Instrumrntenk. 17, 1897) i» now very generally

used. Smaller ({uadrants are employed, and have high insulation

ensured by being mounted on pillars of amber. The needle is made of

silvered or gilded paper, and is therefore extremely light. The suspension

is a siriL'ii' filne of (juurtz or a v«'ry fiiH* dnivvn rnetul wire. There is no

Fig. 227

Leyden jar, and the needle is kept electrified by a battery (as in the

arrangement referred to in 17), giving a moderate difference of potentials,

of the order of 100 volts. The indicator is a reflected beam of light

as in the older form of quadrant electrometer, and the instrument is

enormously more sensitive.

20. Electrostatic voltmeters. Electrometers are used idiostatically

in practical work, and are called electrostatic voltmeters. One made
by Lord Kelvin is represented in Fig. 227, and may be described as an

air condenser, one plate of which, corresponding to the needle of the
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quadrant electrometer, is pivoted on a horizontal knife-edge working

on rounded V-grooves cut in the supporting pieces. This plate by its

motion alters the electrostatic capacity of the condenser. The fixed

plate consists of two brass plates in metallic connection, each of which

is, except for the ring-formed middle part, a double sector of a circular

plate, and which are placed accurately parallel to one another, with the

movable plate between them as shown in the diagram. The upper

end of the movable plate is prolonged by a fine pointer which moves
along a circular scale, the centre of which is on the axis. The fixed

plates are insulated from the case of the instrument ; the needle is

uninsulated.

Contact is made with the plates by insulated terminals fixed outside

the case. The two shown on the left-hand side of the picture belong

to the fixed plate, and a similar pair on the right-hand side are in con-

nection with the movable plate through the supporting V-groove

and knife-edge. The terminals of each pair are connected by a " safety

valve " consistng of a length of fine copper wire contained within a

U-shaped glass tube suspended from the terminals, and the terminals

in front in the diagram which are separated from the plates by the arc

of wire are the working terminals, that is, they alone are used for con-

necting the instrument to the conductors, or to the two points of an elec-

tric circuit, the difference of potentials between which is to be measured.

When a difference of potentials is established between the fixed and
movable plates these plates move so as to increase the electrostatic

capacity of the condenser, and the couple acting on the movable plate

in any given position is, as in the quadrant electrometer when used

idiostatically, proportional to the square of the difference of potentials.

The couple is balanced by that due to a small weight hung on the knife-

edge at the lower end of the movable plate.

The scale is graduated from 0° to 60^, so that the successive division

spaces represent equal differences of potential. Three different weights,

32-5, 97 "5, 390 milligrammes respectively, are provided to give three

different grades of sensibility. Thus the sensibility with the smallest

weight on the knife-edge is one division for 50 volts, with the two
smaller weights together, that is, with 4 times the smallest weight,

one division per 100 volts, with all three weights, or 16 times the smallest

weight, one division per 200 volts.

21. Graduation of an electrostatic voltmeter. An electrostatic volt-

meter of large range may be graduated as follows. A known difference

of potentials is obtained by means of a battery of from 50 to 100 cells

with a high standard resistance in its circuit. An absolute galvanometer

or current balance measures the current in the circuit, and the product

of the numerics of the current and the resistance is the numeric of

the difference of potentials between the terminals of the latter. These

terminals are connected to the working terminals of the voltmeter,

and the deflections with the smaller weights on the knife-edge noted.



XVII ELFXTROftTATIC MEASUREMENTS 713

For the higher differenceH of iK)tentialH a number of condenuere

uf good insuhition are joined in Heries and charged by an application

of the wires from the terminals of the resistance coil to each condenser

in succession, and in the same direction, from one end of the series

to the other. This is done so as to charge each condenser in the

series in the same direction, and as the same difference of potential,

V say, is produced between the plates of each condenwr, the total differ-

ence between the extreme plates is nV, if there be n condensers. A
convenient large difference of potentials can thus be obtained with

sufficient accuracy, and being applied to the working terminals of the

voltmeter is made to give divisions for a series of different weights

hung on the knife-edge. These divisions correspond of course to

deflections for known differences of potentials with one of the weights

on the knife-edge.

The divisions thus obtained are then checked by using three instru-

ments which have been dealt with in this way. They are joined in

series and a difference of potentials is established between the extreme

terminals, which is observed also by the third joined across the other

two. Thus by a process of successive halving and doubling the scale

is filled up.

22. Standard condensers. Comparison of capacities. One of the chief

electrostatic measurements is that of specific inductive capacity. This

quantity has been defined in I. 24. In this book even the standard

medium is supposed to have an inductivity which may or may not be

taken as unity, and the specific inductive capacity of any medium
is the ratio of the inductivity of that medium to that of the standard

medium, and is therefore essentially numerical.

It is determined by a comparison of the capacity of a condenser

with the medium as dielectric with that of a geometrically identical

condenser, in which the standard medium, for example, air (see again

I. 24) is the dielectric. We shall discuss first methods of comparison
of capacities. The methods which depend more or less on electro-

magnetic principles have already been fully discussed.

The experimental determination of the electrostatic capacity of a

condenser is effected by a process in which its charge at a given potential

is compared with that required to charge a standard condenser to the

same potential. The standard condenser is generally one of which the

capacity can be found by calculation from the dimensions and arrange-

ment of the instrument, or which has been itself compared with such a

condenser.

There are three forms of standard condenser, the capacity of which
can be determined with accuracy by calculation from the geometrical

arrangement. These are

:

1. Spherical Condensers.

2. Guard-ring Condensers.

3. Cylindrical Condensers.
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The simplest form of spherical condenser consists of two spherical

conducting surfaces concentric with one another and separated by a

dielectric. Such a condenser was used by Faraday in his experiments

on Specific Inductive Capacity, and is shown in Fig. 228. An outer

brass shell B is supported on a base-piece as shown in the figure, and is

fitted above with a tubulure r, filled by a long

plug of shellac I. The internal brass ball A is

supported in a position concentric with the outer

shell by a thin stem passing up through the

shellac plug and terminating in a knob a. The
support below is perforated so as to form a tube

by which the space between the spheres can be

filled with dry air or any gas. A stopcock R
enables this passage to be closed.

This condenser was not used by Faraday for the

measurement of capacities in absolute measure,

but two of them were employed in the manner
described in 29 below for the determination of

specific inductive capacities. An absolute con-

denser on this principle was however constructed

by Sir William Thomson, and is shown in section

in Fig. 229. The radius of the internal sphere

was 4 '511 cm, of the inner surface of the ex-

ternal shell 5*857 cm. The inner shell was

supported in its place by three pieces of vul-

canite, of which one is shown in the figure,

and communication was made with the interior conductor by a wire

passing through the centre of a circular orifice cut in the outer shell.

Calculating the capacity of this condenser by the formula rr'/{r' - r)

above, we get 19 "628 cm. It was found however that "225 centimetre

had to be added to this number to correct for the effect of the support

and the conducting wire. It is difficult to make the surfaces of such a

condenser truly spherical, and to fix them so accurately in their places

as to enable the capacity to be calculated with sufficient exactness,

and comparisons of this condenser with others showed that this value

of the capacity was probably too low. This difficulty has however

been got over very completely in the spherical condenser used by
Mr. E. B. Posa at the Bureau of Standards, Washington, and described

above. [See XVI. 6, and Fig. 205.] When made and used with

extreme care this seems the most accurate form of standard condenser.

23. Guard-ring condenser. The guard-ring form of the parallel plate

condenser is more easily made and is capable of great accuracy in

ordinary use. This is shown diagrammatically in section in Fig. 230.

(An actual instrument constructed by Dr. J. Hopkinson is shown in

Figs. 248, 249 below in connection with an account of^his researches.)

The guard-ring R forms as it were part of a cylindrical metal box

FlO. 228.
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nearly closed by the disk D which the ring surrounds. This box and

disk are supported on a glass stem well covered with clean shellac,

and a separate glass stem within the box insulates the disk D from the

ring. A wire passing through a hole in the cylindrical wall of the box

makes contact with the electrode of the disk. The other plate of the

condenser is formed by the large disk P above. This plate is carried

by a glass stem mounted in a socrket at the extremity of a fine screw

working in a fixed nut above. By turning the micrometer head of this

screw, the distance of P from the opposite disk can be altered by any

required amount. The condenser and its supporting framework are

mounted on an iron sole-plate, round which is cut a circular groove

to receive a protecting glass cover ; and to enable a dry atmosphere

to be maintained about the insulating stems, fragments of pumice

moistened with strong sulphuric acid are contained in a lead tray

V7
Fig, 229. Fig. 230.

placed on the sole-plate. [Rosa and Dorsey's plate condenser is shown

in Fig. 209.]

The manner of using the condenser is as follows : The guard-ring

and disk are connected together and charged to the potential required,

while the opposite plate is kept at zero potential. The disk is next

disconnected from the guard-ring, which is then brought also to zero

potential. The charge which was formerly on the disk remains upon

it, and since the distribution was very nearly uniform the capacity

can be calculated, and therefore the charge on the disk, from the

previously existing potential. The effective area of the disk may
be taken as the arithmetic mean of the actual area of the disk and

that of the opening in the guard-ring. If S be this mean area we
have

0- ^
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and therefore for the charge Q upon the disk when the condenser is

charged to potential F,

VS
«=4ir.

(i°>

24. Cylindrical condenser. A cylindrical condenser of variable capacity

was invented by Sir William Thomson, and used by Messrs. Gibson and
Barclay in their determinations of the specific inductive capacity of

paraffin referred to below. The instrument is represented in longi-

tudinal section in Fig. 231, and in cross-section through C and A in Figs.

232 and 233. The essential parts are two circular cylinders of brass aa, hh

of the same diameter, supported, with their axes in line and a gap
between their adjacent ends, on vulcanite pieces, cc, dd, attached

to a sole-plate h. The lengths of these cylinders were 26*58 cm and
35*3 cm respectively, and their common diameter 4 "9674 cm. These

Fig. 232. Fig. 233.

dimensions were determined by a measurement of the volume of water

contained by the tubes and an accurate determination of their lengths.

A third brass cylinder e was supported coaxially within' the other two,

on four vulcanite feet, near one end, resting on the inner surface of the

outer cylinder. The length of this cylinder was 36*6 cm, and its

diameter (found by winding fine wire round the cylinder, measuring

the length of a certain number of turns, and allowing for the thickness

of wire and the spiral arrangement) was 2*303 cm. This last cylinder

is loaded so as to rest stably on its supports, and can be slided backwards

or forwards in the direction of its length so as to alter the relative

lengths of it enclosed within the two tubes aa, hh. A vertical arm
projects upwards through a slot cut in the tube hh, and carries an index

which moves- along a graduated scale kk. This scale was graduated

into 360 divisions, each 1/40 inch or -0635 cm nearly.

A cylinder of metal II fastened to the base of the instrument sur-

rounds the other tube aa, to protect it from external influence, and the

whole is enclosed within an outer case mm.
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In the use of the instrument the tube 66, the internal cylinder ee,

and the outer cylinders U, mm were connected to earth, while aa was

insulated and charged. The theory of the instrument is given in XI. 44

above. According as the capacity of the condenser was to be increased

or diniiniHhcd, ee was slided towards the left or right, and the amount
of change of capacity was given by using the displacement /, measured

on the scale kk, in the formula

^-L-. <">

log^

where r' = 2'4837, r=115l5. The capacity when i = one scale division

= 0635 cm, was therefore '0413 cm.

This instrument has been modified so as to give it greater range by

the adoption of the arrangement shown in Fig. 234. Here both ee and II

{b and c of the figure) are movable, so as to alter the capacity of aa.

^ ' ^ ^
[::::i

FlO. 234.

25. Electric absorption. Except when the dielectric is a gas, the

phenomena of cliarge and discharge are complicated, and the results

of experimental comparisons of the capacities of condensers more or

less affected, by what is generally called electric absorption and some-

times electrification. If a condenser having a solid or liquid dielectric

be charged by applying a battery for a time sufficient to give a uniform

potential V throughout the charged plate of the condenser and then

be left to itself, its potential will be found after the lapse of a short

time to have considerably diminished. This diminution of potential

is only partly due to conduction through the dielectric or to want of

proper insulation. Part of it is due to a change produced in the dielectric

medium when the condenser is charged, which requires time to bring

it about, and is called electric absorption from the original idea that

it was caused by the penetration of part of the electric charge into the

substance of the dielectric. A further charge is necessary to restore

the former potential, and if this be given by a second short application

of the original charging battery, a second fall of potential not so great

as the first will be produced from this cause, and so on for a third,

fourth, fifth, etc., short application. Thus, if the condenser be charged

by a long-continued application of the battery, it will take a considerably

greater charge than if the same potential had been produced by an

instantaneous or short-continued application. Similar results are

obtained when a condenser is discharged. If it has been charged by

a long contact with the charging battery, or has been left to itself

for some time after charge by a short contact, and is then discharged
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by a short contact, it will be found immediately after to be at zero

potential, but after some little time it will be found again to have
acquired a potential of the same sign as before, and can be again dis-

charged. In this way three or four or more discharges can be obtained

before its plates are permanently reduced to zero potential. These

discharges after the first constitute what is called the residual charge

of the condenser.

The phenomena of residual charge have been a good deal investi-

gated of late years. Kohlrausch first pointed out the close connection

between the phenomena of residual charge and the slow working out

of subpermanent strain shown by many elastic substances, and called

by German physicists Elastische Nachwirkung* He showed that the

instantaneous discharge is independent of the residual charge, and
that for a given jar left to itself for a given time after charging, the

residual charge is proportional to the initial potential. It was found

by Dr. Hopkinson that if a Leyden jar be charged positively by an

application of a battery continued for a long time, say a week, then

negatively for a shorter time, say a day, then positively for a very

much shorter time, say a few minutes, the residual discharge will be

alternately positive and negative. This behaviour is closely analogous

to that of a wire which has been held twisted for different intervals

in successively opposite directions. Dr. Hopkinson has also found

that mechanical agitation of the dielectric such as that produced by
tapping the jar has a marked effect in accelerating the residual discharge.

Attempts have been made with fair success, notably by Clerk

Maxwell, to account for electric absorption by imagining the dielectric

to be heterogeneous, in the sense of being made up of different imper-

fectly insulating substances, such that the ratio of the specific inductive

capacity to the specific conductivity is not the same for the different

media. It is explained in Maxwell's treatise how this supposition

accounts for absorption.

It might appear from what precedes that owing to the existence of

electric absorption the capacity of a condenser is an indefinite quantity,

depending on the time of charge or discharge. This is not the case,

however, as it has been found by several experimenters that for ordinary

condensers, provided the time of charge or discharge do not exceed

an interval of a quarter or half a second, the charge required to produce

a potential F, or which is withdrawn in annulling a potential 7, are

sensibly the same and independent of the duration of the contact.

This is called the instantaneous charge of the condenser, and the

capacity of a condenser is defined as the amount of the instantaneous

charge required to produce unit potential at its insulated coating,

while the other is at zero. The methods of comparing capacities described

below will not therefore (except in the case of cables which require

* Pogg. Ann. 91, 1854. See also on t-his subject Encyc. Brit, Art. " Electricity,"

by Prof. Chrystal: Ayrton and Perry, "Viscosity of Dielectrics," Proc. R.S. 1878.
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a seiiHible time to acquire throughout th<* Harrw* f>ot<'ntial) involve any
ambiguity.

26. The platymeter. In the inve8tigati(jn of the Mix-cific inductive

caj)a(ity of panifliii rrferred to above, the capacities of two condensers

were compared by an instrument invented by Sir William Thomson,
and called by him a platymeter. This instrument is represented in

Fig. 235. A brass cylinder cc, 2294 cm long, and 5-1 cm in diameter,

is supported by vulcanite pieces dd, and coaxial with it arc placed in

symmetrical positions, and insulated by the vulcanite supports cc,

two equal shorter cylinders of thin brass, each 768 cm in length and

86 cm in diameter, p, p' thus form corresponding plates of two nearly

equal cylindrical condensers, of which the opposite plates are furnished

by the cylinder cc. The whole is enclosed within a metal case mm.

B
FIQ. 235.

through which pass insulated by plugs of parafl&n the electrodes qq of

JO, p', and the electrode n of cc.

The platymeter was used with the sliding condenser in the following

manner for the determination of the capacities of other condensers. The
cylinder aa of the sliding condenser (Fig. 231) was connected to p\ the

insulated plate of the condenser to be measured to p, and the other

plate and cylinders 66, ee to the case of a quadrant electrometer arranged

for heterostatic use. The inner cylinder cc of the platymeter was con-

nected to the electrode of the insulated pair of quadrants. We shall

denote the condenser to be measured and the sliding condenser by
A and B, their respective capacities by C, C, and the nearly equal

capacities of p, p' respectively by c, c'. Now suppose a positive charge

given to A, and the electrodes of the electrometer connected for an
instant to reduce the potential of the cylinder cc to zero, and p and p'

then connected so as to share the charge on A and p with B and p .

Avssuming the action between p and cc to be equal to that between

p and cc^ that is, the two sides of the platymeter to be precisely equal,
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it is plain that the resulting potential of cc must be positive, zero,

or negative according as the capacity C + c is greater than, equal to,

or less than 0' + c'. It is plain also that, under the same conditions, the

potential of cc must be negative, zero, or positive when B is the

positively charged conductor, or positive, zero, or negative, if B be

negatively charged. In Gibson and Barclay's experiments one con-

ductor was positively, the other negatively charged, as this gave more
marked effects without increased risk of breaking down of insulation.

The capacity of the sliding condenser was adjusted so that when A
was connected to f no alteration in the potential of cc was produced

by putting jpj)' in contact after charging. On the assumption that c^c\
this gave C = C'.

It was found however that when A and B were interchanged without

alteration of their capacities the connection of p with p' disturbed

the potential of cc. The two sides of the platymeter were therefore

not exactly equal. But in order that the potential of cc should be

unaltered after the two condensers are put into contact, it is only

necessary that their capacities should be adjusted so as to be in the

ratio of the capacities of the sides of the platymeter with which they

are respectively in contact. The capacity of the sliding condenser in

the interchanged arrangement was therefore altered until the effect

of making contact was rendered zero. Calling the new capacity C\,

we have the two equations

c_C c_C\
~c'~a' c'~ G*

and therefore C = JC'C\ (12)

27. Measurement of the capacity of cylindrical condenser. As an

example we may take the measurement of the capacity of the sliding

condenser when the index was at a given position of the scale. This

was done by comparing it with the spherical condenser already described.

The sliding condenser was adjusted so that when connected to the side

p of the platymeter, and the spherical condenser to p', the potential

of cc remained unchanged when after the system was charged as de-

scribed, p and p' were put into contact. The reading on the scale of

the sliding condenser was then 211. The condensers were then inter-

changed and the same operations repeated, and the reading 183 was

obtained on the sliding condenser. A second pair of experiments gave

211 and 186 as the readings.

Now the capacity of the sliding condenser per scale division was

found to be 0413 cm. Hence taking the value 63'519cm. for the

capacity of the spherical condenser, its capacity in terms of that

corresponding to a scale division of the sliding condenser taken as

unit was 1538. Calling the capacity of the sliding condenser when the

slide was at zero. A, we have for the total capacities of the sliding

condenser in the first pair of experiments ^ + 211 and ^ + 183, and

I
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in the second pair /I + 211 and ^4 + 186. Hence taking the arithmetic

mean instead of the geometric, we have approximately

/I = 1538 -198 = 1340,

and for the capacity (' in c.g.s. units

r = 1340 X 0413 = 1404.

28. Comparison of two guard-ring condensers. The following method
given by Maxwell for the comparison of the capacities of two guard-

ring condensers, is a modification of a method used by Cavendish for

the approximate comparison of two parallel plate condensers of the

simpler form. The reader can easily make a diagram for himself by
drawinj^ (liagraminatically two guard-ring condensers side by side. Let

A, B, C denote respectively the small disk, guard-ring with metal

backing, and large disk of one condenser, A', B', C the corresponding

parts of the other condenser. The following operations are performed

while B is kept connected to C, and B' to C, all connections being

made with wires of negligible capacity.

1. ^ is connected to B and G\ and with the electrode J of a Leyden
jar or a large battery, and A' is connected to B' and C, and with the

earth.

2. Ay B, C are insulated from J

.

3. A is insulated from B and C, and A' from B' and C.

4. B and C are connected with B' and C and with the earth.

5. A is connected with A'

.

6. A and A' are connected with the electrode of the insulated quad-
rants of an electrometer or with a sensitive electroscope.

By this process A and A' are charged to equal and opposite potentials,

and if their capacities are equal the resulting potential after operation

5 is performed will be zero, and the electroscope will show no deflection.

By adjusting therefore one of the condensers until this result is obtained

the capacity of the other condenser can be found in terms of that of

the first. Thus the effect of putting a slab of some insulating sub-

stance between the plates of one of the condensers can be determined by
performing this process before and after the introduction of the slab.

All the operations here described can be performed in rapid succession

by a properly arranged and well insulated key.

If the condensers be not guard-ring condensers this method can yet

be applied with accuracy in any case in which A and A' may be regarded

as surrounded by the other plates C and C . For example A may be

the insulated cylinder a« of a sliding condenser, and A' the internal

surface of a spherical condenser, or with sufficient accuracy the interior

coating of a Leyden jar. It is only necessary in the above operations

to regard B as coincident with C, and B' with C.

29. Faraday's method of comparison of capacities. The following

method is practically that used by Faraday in his determination of

«}.A.M. 2z
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specific inductive capacity. Two condensers liave their plates, which

are usually uninsulated, connected to earth, and one of the other plates

is charged to a potential which is observed by means of an electro-

meter. The insulated plate of the other condenser is then brought

into contact with the charged plate by means of a fine wire, and the

diminished potential is observed by the electrometer. If one of the

condensers is an air condenser, that should be the condenser first

charged, and the contact with the insulated plate of the other should

be made only for an instant and then broken. This avoids the pheno-

menon referred to above as electric " absorption " which takes place

in solid dielectrics. Calling Cj, Og the capacities of the condensers,

c that of the part of the electrometer charged by being put in contact

with the condenser, V the potential before and V that after the sharing

of the charge, then since the charge remains constant we have

V{C, + c) = r{C, + C^ + c) (13)

If c is negligible, as it generally is, this gives

?2_Z_i (14)

Faraday compared the potentials V, V by bringing a carrier ball

into contact with the knob of the condenser before and after the dis-

charge, and comparing by the torsion balance the charges carried off

in the two cases.

If the capacity c of the electrometer is not negligible, then if it be

supposed independent of the deflection, another equation may be

found with which to eliminate it, by first charging the electrometer to

some potential V, and then sharing the charge with the condenser

of capacity Cj so as to give a potential V. This gives

Hence substituting in (13) above we get

^-'^^-^-, (15)

30. Cable testing : determination of capacity. We shall now describe

some methods of comparing capacities which are useful in cable testing,

and in the determination of the capacities of condensers in cable work
generally. The" first two methods were given by Sir William Thomson
in the early days- of cable laying and testing.

The first of these methods requires three condensers of known, one

of them of variable, capacity, besides the condenser the capacity of

which is to be measured. Let the four condensers be called A, B, C, D,

their capacities be denoted by (7^, C\, Cg, G'^^ and let C be the variable

condenser and D that of which the capacity C\ is to be found. (A
figure may be made by the reader.) The insulated plates of ^, are

first connected together and brought to some convenient potential
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by giving them a charge from a I^eyden jar, or by a{)i)i)'ing one terminal

of a battery the other terminal of which in connected to the earth.

They are then dificonnected, the charged plat^ of A put in contact

with the insulated plate of B, and that of C with the insulated plate

of D. An electrometer of which both pairs of (juadrant* are insulated,

has one electrode connected to A and B, and the other to C and />,

and C is varied in capacity, if need be, until both pairs of condenser*

are brought to the same potential, which will of course be the case

when the deflection of the electrometer has been n'duced to zero.

We have, if V be the potential of A and (^ befon* contact with B and Z>,

and V the common potential after the adjustment has been made,

"Cj+C, (7,+C',

or ^'» = §-'^» (""

A well insulated and sensitive galvanometer with insulated key may
be arranged instead of an electrometer between the pairs of charged

plates, and the criterion of equality of potentials will then be zero

deflection of the galvanometer needle when the key, previously kept

raised, is tapped down after the operation described above. The use

of a galvanometer has however the disadvantage that the whole series

of operations must be gone through at each discharge. This is not

necessary when an electrometer is used, as then only potentials are

compared without discharge.

If Z) be a condenser of great capacity, such as a long cable with the

further end insulated in air, time must be given for the condenser to

become charged throughout the same potential, and a corresponding

time for the equalization of the potential of D with that of C when
these condensers are put in contact. The time generally allowed for a

long cable is twenty to thirty seconds and about the same for equalization.

In order to ensure accuracy the condensers C^, Cg, C\, C'^ should be

all, if possible, nearly equal. In any case C^ should not be small in

comparison with C\, nor Cj in comparison with Cg.

31. Second method of finding the capacity of a cable. The next

method is much used in cable testing. The arrangement of apparatus

is shown in Fig. 236.

A battery of, say, twenty Daniell's cells, insulated by having for

the outer containing vessel dry vulcanite or earthenware pots supported

on a dry table or board, has its terminals connected through the revers-

ing key K, to the extremities of the series of resistances a, h. These

resistances are connected at equal intervals as shown diagrammatically

with pieces of metal, which form a set of contact pieces, along which a

slider carrying a binding-screw can be moved as in the resistance slide

described in XI. 7 above, and so the resistance between the slider

and the extremities of a, b, varied. A wire attached to the slider is
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connected to earth, to which are also connected the uninsulated coatings

of the condensers C and L to be compared. C is here supposed to be

the standard or known condenser, L a cable with its remote end free

in air. The terminal a of the resistance slide is connected with the

insulated coating of the condenser L, the terminal b with the insulated

coating of C through the insulated key K. This key besides being

capable of giving these connections, can also be made to disconnect

the Resistance slide from the condensers, and to put the insulated

coating of the condensers into contact. By being brought into contact

with a and h the respective condensers are charged to the potentials

\_
End free in air

mm

of those points. Now, since the slider is at zero potential, if F^ be the

potential of a, R^ the resistance between a and the slider, and R.^

the resistance between the slider and h, the potential at b will be - Fg,

where

.(17)
V, R,

Hence the potential of the condenser iy is - Fg and that of C is F^,

and these potentials are proportional to the respective resistances

R^, i?2- ^y means of the key K the condensers are brought to one

potential, and this is zero if V^C^= -VjJ2- To test whether the

potential is zero, the key K^ is depressed and connects the insulated coat-

ings of the condensers to earth through a sensitive galvanometer G.

Any difference of potentials between the coatings and the earth is thus

annulled and gives rise to a current through the galvanometer. The
slider is adjusted until no current is thus produced through the galvano-

meter. We have then
i?2 C^2

or

F
Fr^r^i

.(18)

For accuracy R^ and R^^ should be somewhat high resistances so as

to ensure an exact knowledge of their ratio, and Cj should be as nearly

as possible equal to Cg.



XVI. ELECTROSTATIC MEA»SUREBfENTS 725

When a cable jh teHted Kufficient time muKt be given in charging to

enable it to acquire tlie Hanie potential throughout, and for the dis-

charge of one condenser into the other ; and the tests are repeated

with the battery reversed on the slide to eliminate the cfTect of any
existing charge in the cable. It is usual also to make a number of tests

and take the mean result.

Instead of a more or less elaborate key K arranged to jMjrform all

the operations (juickly and conveniently, a system of two pairs of

cups 1, 2, 3, 4 arranged in the square order

1 2

may be cut in a slab of paraffin and filled with mercury. The terminals

of a, h are connected to 1,2, the insulated plate of the condenser to 4,

and that of C to 3. By a connecting bridge of wire held by an insulating

handle, 1 and 3 are connected, and in the sanie way 2 and 4, so as to

charge the condensers. These connections are then removed, and

3 and 4 connected so as to discharge one condenser into the other.

Then by means of the key K2, or by another mercury cup, connected

by a wire bridge with 3 or 4, the condenser coatings are connected

with earth through the galvanometer.

Plainly in this case also an electrometer may be used instead of the

galvanometer. One pair of quadrants is connected to earth, the other

pair through the key K2 to the condensers.

32. De Sauty's method of comparing capacities. The following method
of com})aring capacities is convenient for the comparison of the capa-

cities of condensers in which electric absorption does not come into

play. The arrangement of the apparatus is shown in the diagram.

Fig. 237. iJL is a key which when depressed puts into contact with the

point of junction of two variable resistances, R^, R^, one terminal

a of a battery, the other terminal b of which is connected to the earth.

The other extremities C, D, of these resistances are connected to the

insulated coatings of the condensers C^, C2, which are to be compared.

The other coatings of these condensers are connected to earth. C and D
are connected likewise through a sensitive galvanometer G. When
the key K is not depressed it joins A directly through a wire to the

earth. R^, R2 are adjusted so that neither in charging the condensers

by applying the battery to A, nor in discharging by allowing the key

to connect A directly to earth, does any current pass through the

galvanometer. (If any influence of electric absorption is sensible, the

ratio of resistances which gives zero galvanometer current when charging

will not generally be the same for charge as for discharge.) When no

deflection of the galvanometer needle takes place, the potential at C
and D must throughout the discharge have been the same at each
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instant, for the condensers could not discharge in such a way as to give

a current, first in one direction, then in the other, through the galvano-

meter, and so keep the needle at rest. But if y^ be the current through

C Ci

Fig. 237.

R^ and yg the current through R^^ V the common potential of C and
D, Cj, C2 the capacities of the condensers connected with R^, R^ re-

spectively, we have

yi
Ri

= ±
dt

72=^= ±

and therefore
r.d{YC,)

dt ''

d{VC^

dt

that is the products oi R^, R^ into the time rates of variation of the

charges of the corresponding condensers are equal at each instant.

This can only be the case if

R^l — ^2^2'

or .(19)

This result may be seen more easily as follows. Let n equal con-

densers have their insulated coatings joined to A by wires of equal

resistance in the manner shown for two condensers in Fig. 237. Then
plainly the charging or discharging current in each wire will be the

same at each instant, and the insulated plates will always be at one

potential. No change will be caused by joining the insulated coatings

in two groups by wires of zero capacity, so as to make the groups virtually

two condensers, of capacities equal in each case to the sum of the

capacities of the separate condensers of the group, and connected to A
by wires of resistances inversely as the capacities. By making n suffi-

ciently large, and the capacity of each condenser sufficiently small,

the capacities of the groups may be made of any required value and
nearly enough ii^ any ratio commensurable or incommensurable.
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33. Direct deflection method of measuring a capacity. Anotlier

nu^thod, whitli we shall aj^aiii refor to later as a method of obtaining

the capacity of a condeimer in abrtolut<.* unitH, is frequently employed
to obtain rapidly a compariHon of the capacitie8 of two condenaera.

It is called the direct deflection method. One of the condenners is

charged to a measured |>otential and then discharged by connecting

it to earth through a *' ballistic " galvanometer, that is a galvanometer

the needle system of which has a considerable moment of inertia.

Fig. 238 dhows the arrangement of apparatus with a form of charge and
discharge key, the contact pieces of which are mounted on ebonite

pillars to ensure high insulation. The spring lever L is provided with

two platinum contacts oppo.site to the platinum pieces /S\, S^. When
depressed it makes loiitact for cliarL'e, wli«*n r»'leaHe<l it connects the

(i/---

FlO. 2!8.

plate of the condenser through the galvanometer. If the duration of

discharge is, as it generally is, short, and means are taken, for example,

by depressing the key immediately after the discharge contact, to

disconnect the galvanometer immediately after the first discharge

so as to avoid any effect of residual discharge due to electric absorption,

the discharge may be regarded as having wholly taken place before

the galvanometer needle has moved from zero. Tae total deflection

of the needle from zero is observed. By placi.ig the galvanometer

between the battery and S^y the deflection produced by charging can

be observed. If there is leakage this latter deflection will obviously

be greater than the former ; and if the leakage be not too great the

mean of the two deflections with the same battery may be taken as

giving the capacity of the condenser. The other condenser is now
charged to a potential V and discharged in the same manner through

the galvanometer and the deflection again observed. V and V should

if possible be chosen so as to make the two deflections nearly equal,

in order to eliminate the damping effect which the needle experiences

to different degrees in deflections of different amounts. If an instru-
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ment for comparing the potentials V, V is not available, they may
be produced by applying to the condensers one terminal of a well-

insulated battery, the other terminal of which is connected to the

earth, and varying the number of cells until equality of deflections

is nearly obtained. If the battery be composed of similar cells in good

order, the potential may be taken as proportional to the number of

cells applied to produce them. For a rough determination it is con-

venient of course to charge both condensers by the same battery,

and thus to the same potential, and to take the capacities as propor-

tional to the galvanometer deflections produced.

34. Comparison of a large with a small capacity. The capacity of a

large condenser, such as a long submarine cable with its conductor

insulated, may be compared with that of a relatively small condenser

by the following method, which is due to the late Sir W. Siemens.

Let the large condenser be charged to any convenient potential F by
means of a battery. If the capacity be C the charge is VC. Now
let the large condenser be connected to the insulated coating of the

small condenser, the capacity of which we shall suppose to be c. The

common potential of the two condensers will now be VC/iC + c). Now
disconnect the small condenser and discharge it, and again connect

it to the large condenser, disconnect and discharge as before. The

potential will now be VC^/{C + c)^. Thus after n applications in this

manner of the small condenser to the large, the potential of the large

condenser will be 7C"/(C -I- c)**. The deflection on a ballistic galvano-

meter produced by the nth discharge of the small condenser is now
noted. The small condenser is then charged, by the same battery as

that used to charge the large condenser, and therefore to the same

potential V, discharged, and the deflection noted. If Z)„, D be these

deflections we have

D_{C + c)^

and therefore ^^wn'^^.^m ^^^^

The comparison by this method must be made as rapidly as possible

in Older that the effect of any leakage of the large condenser may be

made as small as possible. On the other hand the theory of the method
proceeds on the assumption that the potential of the condenser at

each discharge is brought throughout to the same value, and this

cannot be done in a long cable unless a sufficient time of contact is

given at each discharge. There is further the difficulty of correcting

the deflections for air damping, etc. The method therefore cannot be

regarded as an accurate one for the cable application.

It is easy, when the ratio Cjc is approximately known, to investigate

the best value of n to use to give results as little as possible affected

by errors in the observation of D, D„, but on account of the inaccuracies
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inherent in the method for nioHt practie^il puriioHcs, it i8 of little im-

portance to UHc that value.

35. Leakage method of comparing a capacity with a resistance. The
arnin^iMih'Ut descrihcd al>ov»' in XI. 44 for tlie determination of a high

resistance gives also a means of determining the capacity of a con-

denser. For let the coatings of the condenser be connected by a very

high known resistance R as described, and let a difference of potential

V between the coatings be produced by applying a battery. Let V be
observed by means of an electrometer, the insulated quadrants of which
are kept connected to the insulated coating of the condenser. As the

charge diminishes by conduction through the resistance, the electro-

meter shows a diminishing deflection which is observed at accurately

noted instants of time. If Fq, V be the potentials at the beginning

and end of an interval of t seconds, C the capacity of the condenser,

and R the resistance connecting the coatings, we have

^-i.V. '^"

logy

Values of Vq, V, for different values of t are given by the observations,

and enable a mean value of C to be obtained free to some extent from
errors of observation.

The resistance R must of course be very great in order that the

whole charge may not be so quickly lost as to prevent the potentials

from being observed before and after a sufficiently long interval of time.

If the condenser be not a perfectly insulated air condenser, the actual

resistance of the dielectric layer between its coatings may be taken

advantage of, and will in general be convenient for the purpose. To
determine it we use an auxiliary condenser of known capacity C, and
resistance R\ which has been determined by some method, for example,

the method of p. 370 above. The insulated coating of this condenser

is joined to that of the condenser to be measured, so that the capacity

of the joint condenser becomes the sum of their separate capacities,

and the resistance between their coatings RR'I{R + R'). The con-

denser thus formed is charged and the potential at different instants

of time observed as before. Thus if Vq, V be the potentials before

and after an interval of t' seconds, we have

'-''-"W^hr '^^'

This equation with (21) suffices to determine C and R.

36. Werner Siemens' method of determining capacities. We give

lastly here a method of measuring capacities, which is of import-

ance in the determination of Specific Inductive Capacities. Fig. 239
shows the arrangement of the apparatus. B is a battery of a number
of well insulated constant cells, of which one terminal is connected to
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earth, and the other terminal to the contact piece a. A sensitive

galvanometer G has one terminal connected to the contact piece 6,

and the other connected to earth. The pieces a and h are so arranged

that a commutator, represented diagrammatically by K, connected

permanently with the insulated coating of the condenser, makes
contact alternately with a and h. The condenser is charged when a

is in contact, discharged when h is in contact. This is easily managed
by means of a rotating cylinder carrying contact pieces which are

pressed on by springs represented by a, h, or by some other suitable

mechanical arrangement. The commutator is made to give a constant

and large number n of discharges, say from 40 or 50 per second upwards.

Thus if the battery remains constant, a constant mean current is pro-

duced through the galvanometer. Let E be the electromotive force

^^^"H
'

^^v- —C^

V
_JE

Fig. 239.

of the battery, and C the capacity of the condenser, then, on the sup-

position that we may suppose the condenser completely charged or

discharged at each contact, we have for the mean current nEC. If n
be sufficiently great this will give the same deflection as a continuous

current of the same amount. After this deflection has been observed,

the circuit of the battery is completed through the galvanometer,

and a resistance R, just of sufficient amount to give a second good

measurable deflection of the galvanometer needle. If a, /^ be these

deflections corrected so as to be proportional to the mean current

(generally the actually observed deflections may be taken if they are

small), we have nEC = ma.

mp,

where m is a constant.

Hence we have C = « i_ .(23)
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Tlif < (iiiiiiiutator may be easily arranged na as to cliarge the con-

denser alternately i>08itively and negatively. If C be the mean of the

two caj)acitieH which the condenser has, according as one or the other

coating is made the uninsulated coating, we have, putting n for the

number of reversals per second, 2nEC for the whole quantity of elec-

tricity which flows through the galvanometer in a »econd, that is, the

mean current. Hence if a and fi have the same meanings as before,

we have ,

^-ii <^^>

These values of the current, it is to be remarked, are obtained on
the assumption that the times of charge are sufficiently long to allow

the condenser to be fully charged to potential E, and the time of

discharge also long enough to allow the condenser to be completely

discharged. The results of experiments made with different time-

intervals have justified this assumption for small condensers even for

time-intervals so small as ^^i^i^ of a second.



CHAPTER XVIII.

I. EFFECT OF INDUCTIVITY OF THE MEDIUM ON
ELECTRIC PHENOMENA.

1. Stress in the dielectric medium. Before we proceed to discuss

determinations of specific inductive capacity and other properties

of dielectrics, it will be convenient to consider the dependence on in-

ductivity of various electric quantities characteristic of the dielectric

medium. For example, according to the theory given by Faraday

and Maxwell, there is at every point of the dielectric a tension along

the lines of force, and an equal pressure at right angles to that direction,

and that the amount of each of these stresses is kF^/Stt, where F is

the resultant field-intensity at the point considered, and k is the

inductivity of the medium.
It is a result of experiment that a soap-bubble is enlarged by electri-

fication, so that the external dielectric medium evidently pulls every

part of the bubble surface outward, though this outward action is some-

times attributed to repulsion due to the electric charges elsewhere.

There is, however, no doubt that this pull is exerted in liquid and

gaseous dielectrics, for there it can be and has been observed.

2. Energy per unit volume equal to pull on unit area of electrified

surface. Consider a tube of electric induction drawn in the dielectric

and starting from an area dS of an electrified surface which is at potential

V ; the electric charge on this area is a dS. Let the tube terminate

on an element dS' of a surface at potential V. The energy in the portion

of the tube between the two surfaces is l(rdS{V - V).

Let the first surface be one face of a plane plate and be opposed

at a short distance d hy a, second plane surface, parallel to the former,

and at one potential F'. Then for a tube between the surfaces, and

not near the edge of either plate, the energy is

i(TdS{V- V) = i(rdS. inad/K,

where k is the inductivity of the medium. Hence for this tube

2

Energy per unit volume=-27r — -(l)

K

732
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If the inductivity of the standard medium be taken a8 unity this

becomes 2Tr(j^/K, where K is the specific inductive capacity. For the

expression on the ri^ht can be written 27r<r*/«'o(/c/icQ), and kIkq=K by
definition.

This energy per unit volume, it is to be observed, is the pull per

unit area on the opposed surfaces. This may be expressed in terms of

the field-intensity close to the surface. If E be this intensity,* say near

the first surface, we have 4.^^^^^

or KE when the standard medium has ko=\. Thus

Energy per unit volume=» ~- E^, (!')

or KE^/Stt when ko=\. [In what follows we shall usually take kq^I.]

3. Analogy between electrostatic action and heat conduction. The
whole matter of the action of the medium may be shortly discussed by
means of the analogy of conduction of heat. The mathematical theories

are the same, when electric potential is taken as the analogue of tem-

perature, and, with a certain specification as to units, quantity of heat

transmitted from a source per unit time is taken as the analogue of

quantity of electricity. As an illustration consider a single point-

source of heat within a uniform medium infinitely extended in all direc-

tions (that is a point at which heat enters the medium from elsewhere,

no matter how, for example, it may be supposed generated at the point

;

and let the total heat generated at the source in unit of time be Q.

Now if, as we suppose, the distribution of temperature round the

source remain unaltered in time, it is clear that whatever heat crosses

any closed surface round the source in any time must also cross every

other such surface ; otherwise heat would be gained by part of the

medium and the temperature would be changed. Now if v denote

temperature at distance r from the source, symmetry shows that v is

constant over every spherical surface of which the source is the centre.

The gradient of temperature in any direction at any point is what
governs the flow of heat there, and so for the total rate of flow across

the spherical surface of radius r, we have

-i-TTf^k
dv

dr^
-Q,

jdv

-'dr-
Q 1

"47rr2
and therefore -^ — ='^ - (2)

dr 47r r^

The quantity on the left-hand side of the last equation is (when v

is replaced by electric potential, F, and k by electric inductivity, k)

called the " electric displacement " and may be taj^en to represent

the electric strain in the medium, produced by the point-charge ^=^/47r.

The last equation gives by integration

i-rrk r
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where C is a constant. To determine G we have the condition v =
when r = 00 , so that = 0. Thus

"=&? • <3)

that is the temperature (potential) is inversely as the distance from the

point-source (point-charge) and inversely as the conductivity (in-

ductivity) k of the medium (dielectric).

4. Field containing different media. The thermal analogy shows very

clearly how the results for a uniform medium (dielectric) of unit inducti-

vity are modified for any other medium. The total flow of heat across

a closed surface in a medium of conductivity k is

-^k^^dS,
dv

where dS is an element of surface, and dv a small step along the outward
drawn normal to dS, and the integral is taken over the surface. Thus
if K denote inductivity and V electric potential, the analogy gives

for the whole quantity Q of electricity within any closed surface in the

electric field the equation

dV
o-k\' 1,

"< «>

There - KdV/dv . dS is the integral of electric induction, - KdV/dv,

across the surface element dS, while - dVjdv is the component of electric

force or electric field-intensity outward at right angles to dS. When
the medium is isotropic electric induction and electric field-intensity

have the same direction.

The field-intensity at a point B at distance r from a point-charge

q situated at a point A is, as we have seen above, qlKr^. Hence if at

B another point-charge, of q' units, is situated, the force on this second

point-charge is qq'Jkt^, and acts outwards along AB, if the charges at

A and B have the same sign.

Just as in the thermal analogy, the direction of the flow of heat in

an seolotropic body is not in general at right angles to the isothermal

surfaces, so in an seolotropic medium the direction of the resultant

electric induction at any point is not in general the same as the direction

of the resultant electric field-intensity at the same point. Here also the

two theories are parallel, but we cannot enter further into the subject

here.

5. Conditions which hold at surfaces of separation between media.

We also get at once the modified characteristic differential equation

for a medium of inductivity k, varying from point to point, but the

same in all directions at any one point,

d f dV\ d f dV\ d ( dV\
, ^ ,^.

rx\'d,)^dy['dy)-'dA'-d^)-''^f' =
''' ^'^
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and at any elect rififd surface in the medium,

'^Ij *+ , *)4-47r(r = (6)
\avi avi/

If the c'h'ctrified surface he a surface of separation between two media

of specific inductive capacities /cp K2 the surface equation is, by (5)

above, modified for the special case of such a surface,

Ki ,
^ + K2

I
' + 47ror= (7

In the case of a field occupied in different regions by media of different

specific inductive capacities, the characteristic equation is to be applied

with the corres{)onciing value of *: for each region, and the surface

equation at each separating surface.

It is to be observed that the electric densities p and a are the true

electric densities which exist in the form of an electric charge conveyed

to the medium or placed on the surface, and do not include the electri-

fication of the medium in consequence of induction.

We may put the theorem into words as follows :

If iVj, iVg be the normal forces at infinitely near points on opposite

sides of the surface of separation between two isotropic media, each

force being reckoned in the direction from the surface, K^, K^, the

specific inductive capacities of the respective media, that is, kJkq, K21KQ,

and if there is no electric charge on the surface except that due to

induction, then

K^Ni + K2N2 = (8)

This equation may be written in the form

iVi + iV2-47ro-' = 0, (9)

-'4^'^-4^¥^^^ <'^'

6. Apparent electrification on the surface of a dielectric. This value

of a' is the electric surface density which would exist on the separating

surface of the media if each had unit specific inductive capacity and
iVj, N2 their actual values, and was called by Maxwell* the apparent

electric density on the surface. If a distribution of this density be made
over the surface of the space occupied by K2, and the specific inductive

capacities K^, K2 be made each unity, the same electric force will be
produced at all points internal or external. For the distribution if

made gives the actual values of N at 'the surface, and equation (5)

will plainly be satisfied ; and we have seen that under these conditions

there can be only one value of the potential at any point.

,
If this apparent electrification be removed during the action of the

inducing force by bringing every part of the surface to zero potential,

say, by passing a flame over it, and the inducing force be then removed,

* El and Mag. vol, i. 3rd ed. p. 100.
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there will appear a true electrification equal and opposite to cr' . This

fact was used by Sir William Thomson to explain the phenomena
of pyro-electricity shown by certain crystals.*

7. Refraction of lines of force at common boundary of dielectrics.

If the surface of separation is not at right angles to the lines of

force, then resolving the forces at two infinitely near points on opposite

sides of the surface along and at right angles to the normal, we have
by (7), if the surface is not electrified,

.(11)

and since F^ = F2, at every point of the surface,

d(i) dw

where dVjdw denotes rate of variation of potential in a direction parallel

to the surface of separation, and in the plane of the line of force and the

\ \ \ Ji—
>w / V /

1wp wi \
-

<mA A^JjJii

wi
"11

X /^^//~"~^-I

v\\y^ \/v/ /^"-yCxr

ynOt-F
> \ A-A AK\'Y

/ \^^
Fig. 240.

normal. Hence if ^1, Q^ be the angles which the line of force makes

with the normal in the first and in the second medium respectively,

we have

'"'''^^^ J.l\- dv} '"'''^-^dJ

dV^

dvc,

and therefore tan ^1 = -^^ tan 6^2-

* Jhid. p. 61.

.(13)

I
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The line of force thus undergoes a species of refraction in which the

tangents of the angles of incidence and refraction are related as are

the sines of the corresponding angles in the refraction of light. It is

to be observed that according to the law of refraction of lines of force

they can show nothing corresponding to the optical phenomenon of

total reflection. This refraction is illustrated in Fig. 240, which repre-

sents a section of the field due to a point-charge ^ at P in a medium
A of inductivity k, in contact over a plane surface with a medium B
of inductivity Kg. The change of direction (" refraction ") of the lines

of induction will he observed.

8. Spherical portion of a dielectric imbedded in another medium.—
Undisturbed external field uniform. The following case is of great

importance in the theory of magnetism and of practical interest

in the experimental determination of specific inductive capacities.

A spherical portion of an isotropic dielectric medium in which the electric

force has everywhere the same magnitude and direction, that is, in

which there is a uniform field of force, is replaced by an equal spherical

portion of another isotropic dielectric. It is required to find the apparent

electrification, and thence the force at any point without or within

the sphere.

Let Ki, K2 be the specific inductive capacities of the surrounding

medium and the sphere respectively, F the uniform electric force in

the first medium produced independently of the apparent electrifica-

tion, Ny, N2 the external and internal normal component forces at any
point due to the apparent electrification, a-' the surface density of the

apparent electrification at that point of the separating surface, and
the angle which a radius drawn to the point makes with the positive

direction of F. Taking iVj, iVg in the direction from the surface on both

sides we get by (8) and (9),

Fcose + Ni + ^^-Fcose + N^)^0]

by (10) ^'=-~ ^V^' {F cos + N,)
^TT A2

1 ^K^a-^i
47r K^

i-FcosO + N^ (14)

This is the surface characteristic equation.

9. Density of apparent electrification given by '' couches de glissement."

The distribution supposed formed in the following manner satisfies

this equation at the surface, and Laplace's equation at every internal

and external point, and gives therefore the apparent surface density

for the case. Two equal spherical volume distributions of electricity

of uniform density p, one positive, the other negative, and of the same
radius as the sphere, are placed in coincidence ; then, according as

G.A.M. 3a
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K2 is greater or less than K^, the positive or the negative distribution

is displaced (Fig. 241) in the direction of F through a finite distance

a less than the sum of the radii. A positive volume distribution of

meniscus shape is thus formed on one side, and a similar negative

distribution on the other, and in the space occupied by the coincident

parts of the distributions there is zero electric

density. Now let the distance a be diminished

indefinitely and the density p of the volume
distribution increased so that pa is not altered

in value. Drawing then any radius making an

angle with the direction of F, we have for the

thickness of the stratum in the direction of the

radius the value acos^. Hence if a-'^^ap, the

surface density at the extremity of the radius

is a' = (t'q cos 0. Its value is ct'q or - o-'q according as ^ = or = 180°.

10. Field within sphere. The force at any internal point P due to the

distribution is plainly the resultant of the two forces due to the two

spherical portions of the volume distributions which have G, C as centres

and P ^common point on their surfaces. These forces are in magnitude

Fig. 241,

A' —

respectively ^Trp . (7P/3, 47rp . G'P/S, and act in the directions shown in

Fig. 241, and therefore their resultant acts in the direction CC. Putting

R for this resultant, taken positive in the direction of F, we have

R= -i7rpCG'== -iTTo-'o (15)

It is therefore constant in magnitude. The total force, F + R, within

the sphere is therefore also constant in magnitude and direction.

By
*^;.

4 4
iVg= 3 TTO-'o COS ^ = - TTO-',

which gives by substitution in (14)

cos^.^ .(16)
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Therefore R
K^-K,

/ (17)

and F^R F. .(18)

2/^1 + i^.,

3iC,

Hence according as K^ is greater or less than Ki the force within

the sphere is less or greater than the force F without.

The directions of the lines of force outside and inside the sphere are

shown in Fig. 242 for the case of /Cj^^'S/Cj, and radius of sphere

= ria ; in Fig. 243 for K2 = 'i^K^ and radius of sphere = 1 '340.

.^^3
;?^ ' ^zrzzz:

—

-— >. "sT""

^—

—

"/T x^l—.

^ 7 \-
/ \
1

1 1

\^ /^^^ —J:^^^^^^^^
»»

*

^^
, .

^x'^13--

—

'—
Tunnel: :::ri^::^^^^^^^^^—

-

FIO. 243.

11. Case of conducting sphere situated in impressed unilorm field.

If the sphere is of conducting material, K^ = v^^ and ^ + /2 = 0, as it

ought to be. In this case also we have

o-' = ^i^cos^ (19)

The directions of the lines of force for the case of the conducting

sphere are shown in Fig. 244. The radius of the sphere is a/^ = '7940.

The equation of the curves external to the circle in Figs. 242... 244 is

The centre of the circle is the origin, and the curve XX, which in each

case is a straight line, is the axis of x. In Figs. 242 and 243, y^ is every-

where less than h^ ; in Fig. 244, ip' is everywhere greater than 6^. Each
set of curves is drawn for a constant value of a which is indicated

below the diagram, and values of h equal to 0, ;2a, '40, 'Ga, ... l*6a.

In Figs. 242 and 244, the curve for 6 = n/3/n/2 . a = l-375a is drawn.

This curve has -^ pair of double points through which the circle in
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Fig. 244 passes : in Fig. 242 these points fall within the circle and are

not shown. In Fig. 244 the circle has radius =a/iy2 = '794a and cuts

orthogonally all the curves except that on which are the double points :

in Figs. 242 and 243 the radii of the circles are I'la and l'34a respec-

tively. (See Sir W. Thomson's Reprint of Papers on Electrostatics

and Magnetism, p. 492, from which these figures are taken.)

¥10. 244.

12. Energy of a dielectric sphere in a uniform field. Force on imbedded

sphere. The potential energy of the dielectric sphere in the uniform

field is found simply by calculating the work done by electric forces in

the relative displacement of the imaginary volume distributions. If r

be the radius of the sphere, the total quantity of electricity in the

positive volume distribution is 4/3 . Trpt^. The work done by electric

forces in displacing this through a distance a is 4/3 . irpr^ . Fa. Hence,

if E be the energy of the sphere in the field,

E^l-Trr^F.pa^lTTT^Fo-'o

-^mfA,^ (20)

This expression has been obtained for a uniform field, but it will

also hold for a variable field if r be so small that the value of F is

sensibly constant in magnitude and direction at every point of the sphere.

On this supposition, the rate of diminution of E in any direction p

in a variable field is given by the equation

dE K,-K, d{F^)

dv IK^ + K^ dv ' ^ ^

and this must be the total electric force on the sphere.



xvm INDUCTIVITY OP THE MEDIUM 741

Writing x, y, z respectively for u in thia foruiula we get X, Y, Z the

component forces in the direction of these variables. The direction

of the resultant force on the sphere is that for which d{F*)jdv is a
maximum, and in which F^ increases. The direction therefore in which
the sphere tends to move is towards a place of maximum value of F*

;

that is, in which the value of F is numerically greatest without dis-

tinction of sign.

For a conducting sphere (21) becomes

-f=
;-''<f'.

(22)
dv dv

and the sphere tends to move in the same direction as the dielectric

sphere.

Since, as we have seen, there is no place of maximum or minimum
potential in space not occupied by any part of the electrification, a

point-charge, or small sphere supposed uniformly electrified, would
nowhere be in stable equilibrium except in contact with some part

of the electrification ; and the proposition may be extended to any
electrified body. Hence in the cases here considered the spheres move
along the line of greatest variation of force towards a place where the

force is numerically greatest. Generally, this is the direction in which

all bodies of small dimensions, placed in the electric field without charge,

tend to move.

By (21) and (22) (^2 - ^i)/(2^i + ^2) is the ratio of the force

on a dielectric sphere of specific inductive capacity K^ to the force on a

conducting sphere of the same radius placed at exactly the same place

in the field of specific inductive capacity K^

.

This relation has been used by Boltzmanu for the determination of

specific inductive capacities (see Id, et seq.).

13. Consideration of particular cases 0! different media in contact.

We shall now apply the results stated above to one or two important

cases

:

(1) An electric field consists of two regions, one bounded by equipo-

tential surfaces, and filled with a dielectric of specific inductive capacity

K the same in all directions, and the other, the remainder of the space

within the zero equipotential surface, occupied by a dielectric of unit

specific inductive capacity. It is instructive to refer this example

directly to the thermal analogy. The analogue of the electrified system

is a geometrically corresponding system of heat-sources and isothermal

surfaces in a medium of conductivity everywhere unity, except in a

region bounded by isothermal surfaces, where the conductivity is k.

Suppose the whole medium at first of unit conductivity, and that then

a medium of conductivity k is substituted for the former medium in

the space referred to, while everything else, remains unaltered. The
effect of introducing the medium of (say) higher conductivity is to

diminish the difference of temperature between the inner and outer
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surfaces of the new medium in the ratio of 1 to k, since everywhere

in that medium the flux along a line of flow becomes -kdv/dr, which

as the generation of heat is unchanged, must be equal to the former

value of -dv/dr. Hence also the flux at every point which is not in

the new medium is unchanged, and we have therefore at every such

point the same gradient of temperature as before, and therefore also

the same difference of temperature as before, between any point of

the system of sources and the inner surface of the new medium, and
between any point in the outer surface of the new medium and the

surface of zero temperature. If then the temperature of the inner

surface was formerly v, and that of the outer surface v', the temperature

of any point of the source has been lowered by the introduction of the

medium of conductivity k by an amount {v-v'){k-l)lk.

In precisely the same way in the electrical problem, if the electric

charges are kept the same, the electric force at every point inside or

outside the new medium is unaltered, and, at every point within the

substance of the medium itself is changed from its former value F to F/K,
and the potential of any part of the electrified system is lowered by
the amount {V -V'){K-1)IK, where F and V are the respective

potentials of the inner and outer separating surfaces of the media.

If the new medium fill the whole space between the electrified system
and the surface of zero potential F'=0, the potential V of any part

of the system has been diminished in the ratio of 1 to K, and the charge

of the whole system necessary to produce a given potential at any
part of it has therefore been increased in the ratio of A" to 1 ; that is,

the electrostatic capacity of the system has been increased in this ratio.

The same results would be obtained by imagining the medium of

inductive capacity K replaced by a medium of unit inductive capacity,

and the internal and external surfaces of the region electrified so that the

surface density at any point of the inner surface is {(K-l)dV/dp}/4:7r,

and at any point of the outer surface - {{K-l)dV/dv}/4:7r,

where dV/dv is the rate of variation outwards along a line of force

passing through the point taken in the first case just inside, in the

second case just outside, the region in question. These being equili-

brium distributions would not alter the actual distribution, and the

force inside and outside the region at any point would be the same
as before, while within the region it would be diminished at any point

in the ratio of 1 to K.
We see in the same way that if the specific inductive capacities,

instead of being 1 and K, were respectively K^ and iTg, the difference

of potential between the two sides of the layer K2 would be less than

its value for the same space occupied by the medium K^ in the ratio

of K^ to K2, and the density of the imaginary distribution described

in the last paragraph would be

K^-Kj, dV
4:7r dp
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for the inner surface, and for the outer surface

K^-KidV
iir dv

(2) The same method applies to the case of a field composed of

dielectrics of inductive capacities K^, K2, K^, etc., each bounded by
e(iuipotential surfaces and arranged in this order outwards from the

electrified system, which we suppose in the medium /ii,. Let V be

the potential of any part of the electrified system, Fj the potential of the

outer surface of Ki and the inner surface of K2, V^ the potential of the

outer surface of K2 and the inner surface of K^, and so on. Then if

Ki alone were replaced by vacuum, V -Vi would become Ki(V - F,),

the other differences of potential remaining the same as before ; if A'g

were then replaced by vacuum, Fj - Fj would become Kzi F, - Fj),

and so on. Hence, if all the media were replaced by vacuum, the poten-

tial of any part of the electrified system would be changed from V to

K,{V-V,) + K2{V,-V^ + etc.

Hence, if C be the new value of the elctrostatic capacity of the system

and C its former value, we have

C K,{V-V,) + K2{V,-V^) + etc. ^ ^

14. Maxwell's conception of the system of stress in a dielectric.

Electric displacement. Maxwell * has considered a dielectric medium
surrounding an electrified system as in a state of strain under stresses

consisting of a tension (as in a stretched wire or cord) acting at each

point along the direction of the electric force, and an equal pressure

at the same point in all directions at right angles to that of the electric

force. The amount of the tension and pressure (each taken in units

of force per unit of area) at any point at which the electric force is F
in a medium of specific inductive capacity K is KF^/Stt ; that is, equals

the electric energy of the medium per unit of volume at that point.

Further, he has regarded the electric charge of the system as the

surface manifestation of a change which took place in the medium when
the electrification was set up. This change he has called Electric

Displacement, and consists in a passage, across every surface drawn
in the medium so as to enclose the electrified system, of a quantity

of electricity equal to the charge on the system, so that the introduc-

tion of a charged system within a closed space does not produce

any change in the total quantity of electricity within the space. Thus

when one coating of a condenser is charged positively an equal quantity

of positive electricity passes towards the other coating across every

intermediate surface, and the charges on the coatings are to be regarded

as the charges of the surfaces of the separating dielectric. H any

* El. mid Mag. vol. i. 2nd. ed. pp. 59-67 and 163-156.
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change take place in the charge, a corresponding change takes place

in the displacement. Hence when a quantity of electricity is trans-

ferred from one coating, A, to the other, B, as when charge or discharge

takes place along a wire connecting them, an equal quantity of elec-

tricity crosses every section of the dielectric from B towards A. If

therefore we regard the process of displacement as an electric current,

the dielectric and the wire constitute a closed circuit round which a

current passes so long as any change in the electric state of the system

is taking place.

The magnitude of the electric displacement is KFj^ir, and the dis-

placement across any element Ss of a surface drawn everywhere at right

angles to the lines of induction is RFSsJ^^tt. The integral of this ex-

pression taken over the surface is the whole quantity of electricity in

the form of a charge within the surface.

The ratio 47r/iC of the electric force to the electric displacement

Maxwell has called by analogy the Co-efficient of Electric Elasticity

of the medium. In virtue of the electric elasticity a force opposing

the displacement is set up which restores the medium to its former

state when the electric force is removed. In a conducting wire this

elastic force is continually giving way, and being restored by the

displacement continually going on, which therefore constitutes an

electric current.

If K vary with the temperature heat must be supplied to prevent

the temperature of the dielectric from undergoing change. For if the

condenser, charged to surface density cr, have the distance of its plates

apart increased by dy^, at constant temperature 0, the work done on the

system will be -{27r(r^lK)d\lr. Let heat dH be absorbed, and let

another change be performed in the opposite direction, at temperature

- dO, with corresponding evolution of heat. The work done in the

double operation will be {27r(r^d\lr{dKldd)dO}IK^. With two opposite

adiabatic changes this gives a cycle of changes for which the work has

the value just written. But this has also the value dyfr dH dd/0. Thus

we obtain the result
27ra^ dK

^^^~K~Kde-

From experiments made by W. Cassie (J. J. Thomson's Applications

of Dynamics to Physics and Chemistry) it appears that the heat supplied

to keep the temperature constant, at about 30° C, was for glass 0*6, for

mica 0'12, and for ebonite 0*21, of the work done in the expansion.

11. MEASUREMENTS OF SPECIFIC INDUCTIVE CAPACITY.

15. Relation between specific inductive capacity and index of refraction.

All measurements of Specific Inductive Capacity involve in practice

a comparison of the capacity of a condenser with air as the dielectric
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with that of the same condensor with the whole or part of the space

between th(; plateH occupied by the substance of which the specific

inductive capacity is to be found. For practical purposes the specific

inductive capacity of air (which is nearly the same at all ordinarily

attainable temperatures and pressures) at 0° and under standard

atnios])heric pressure (760 mm. of mercury) is usually taken as unity,

and it will be convenient at present to follow this custom.

According to the electromagnetic theory of light, the specific inductive

capacity of a dielectric should be equal to the square of the index of

refraction /xoo of the medium for light waves of infinite length. Strictly,

/u^oo = /c X magnetic permeability, or magnetic inductive capacity, of

the medium. But there is no transparent dielectric for which the

magnetic permeability differs much from that for air, which is here

taken as unity. This index is usually calculated from the measured

values of the index for known wave lengths by the formula fx = A + B/X^,

where A is the wave length. It is however to be noted that this is a

formula of extrapolation, and that the value which it gives may very

frequently be seriously in error. The values of //« thus calculated are

given below in some cases for comparison ; in others the value of fx, for

the line D is given. [See for r(^sults 26, 27, 30, 31, 32 below.]

16. Determinations of specific inductive capacity. The first measure-

ments of this kind were made by Cavendish,* by a method the same in

principle as that described above, p. 722. He found for glass a mean
value of about 822, for shellac 4*47, and for wax 4'04. These values

later experiments have shown to be too great, no doubt in great measure

from the effects of electric absorption.

Faraday's experiments were made by the method and apparatus

sketched at pp. 714 and 715 above. Two condensers of the form

shown, and as nearly equal as possible, were constructed. The
inner surface of each had a diameter of 2 33 inches, and the outer

shell of each an internal diameter of 3"57 inches. To test the equality

of the condensers the following process was employed. The condensers

were set at some little distance apart, so that the inductive influence

of one on the other might be neglected, and in positions such that

they were as nearly as possible similarly placed with respect to all external

conductors, including the observer. The external coatings were then

connected once for all to the earth. The interior coating A of one

condenser was then charged, while that of the other, B, remained un-

charged. The potential of A was then tested by bringing a small

carrier ball into contact with the knob and observing the force produced

at a given distance on the suspended ball of a torsion balance. To
observe the rate of loss of charge the observations were repeated after

a short interval, and the result showed only a slight dissipation. The
charge of A was then shared with B by bringing A and B symmetrically

Elect. Res. p. 144, et seq.
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into contact by their knobs. The potentials of B and A thus produced

were then tested by the carrier ball as before, the charge from B being

taken by the ball at the instant of contact with A. The following

are two sets of results. The numbers are degrees of torsion of the

glass thread of the balance and may be taken as proportional to the

charges.

I. II.

Centres of Balls in Balance Centres of Balls in Balance
160° apart. 150° apart.

A B A B
152

254 148

250

Charge divided. Charge divided.

122 70
124 78

Both discharged. Both discharged

1 5

2

Thus, taking the experiment I., the charge divisible between A and B
may be taken as 249. As B was found immediately after discharge

with 122 it may be taken as having received that amount at least.

The other may be taken as having retained 124. These numbers do

not differ much from 124*5, the half of the disposable charge. Again,

taking experiment II., the disposable charge on B may be taken as

143, and the amount of this given to A is 70, and the amount retained

73. These numbers are again nearly equal to half the disposable

charge 71*5, and the discrepancy is in the opposite direction. Hence
the capacities of A and B may be regarded as very nearly equal.

To make sure that the instrument would plainly show changes of

capacity, Faraday put a metallic lining into the lower hemisphere of

one of the instruments so as to bring down the distance between the

internal ball and the outer coating to '435 inch. A comparison of the

capacities of the condensers made by the same process as before gave

1*08/1 as the ratio in which the capacity of the condenser had been

increased. The true ratio was more nearly 1*2/1. But the result showed

that a real alteration of capacity of the condenser could be unmis-

takably recognized in spite of the unavoidable errors of experiment.

Having thus satisfied himself of the sensibility of his apparatus,

Faraday introduced a thick hemispherical cup of shellac into the lower

hemisphere of one of the equal condensers, and compared the capacities

in the manner described above, by first charging one and then

sharing the charge with the other and observing the reduced potential

immediately after. Each of the apparatus was made in turn the con-
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denser to be first charged. The following are the results of such an
experiment

:

I. II.

A (Shellac). B (Air). A (Shellac). B (Air).

304 215

297 204

Charge divided. Charge divided.

113 118

121 118

Both discharged. Both discharged.

7

Calling C the capacity of the shellac condenser, C that of the air

condenser, V the potential before and V the potential after the sharing

of the charge, we have by (4) above

V-V

Hence from experiment I. we get

and from experiment II.

^, 290-113-5^
, _^^ ,= 1135 C? = l 550 nearly,

1 1A

The much smaller result in the second case is due to dissipation

and absorption in the shellac condensers between the instant at which

the reading 204 was obtained and that of the division of the charges.

Faraday estimated the corrected result as nearly 1"47C.

From four experiments made by this method Faraday obtained a

mean result of I'bC for the capacity of the shellac condenser. Now
plainly, if we regard the direction of the Hues of force in the space

between the coatings as everywhere radial, that is, neglect the curving

down towards the shellac of lines starting from the lower part of the

upper hemisphere of the inner ball, we have, denoting by K the specific

inductive capacity of shellac relatively to air,

1+^ C ,

.

or X = 2.

In the same way Faraday found for flint glass ^ = 1-76, for sulphur

X = 2"24, and for spermaceti that K was between 1*3 and 1*6. For
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oil of turpentine and naphtha he obtained results which indicated a

higher specific inductive capacity than that of air, though here the

results were rendered uncertain by the influence of conduction.

A long series of experiments was also made by Faraday on different

gases, and it was found that so far as the means of measurement went
all had the same specific inductive capacity, and that this was inde-

pendent of temperature and pressure.

For further information as to Faraday's experiments the reader is

referred to the original memoirs.*

17. Specific inductive capacity of paraffin wax. The specific inductive

capacity of paraffin was determined by Messrs. Gibson and Barclay! i^

1870, using the platymeter and sliding con-

denser described above. The paraffin con-

denser compared is shown in Fig. 245. aa is

a cylindrical brass vessel 15*5 centimetres

deep and 8*61 centimetres in diameter. At
the bottom of this cylinder is a layer of

paraffin 1 centimetre thick. On this layer

rests coaxial with the outer cylinder, ^ brass

tube hh, 4*3 centimetres long, 7 '2 centimetres

in internal diameter, and '115 centimetre

thick. Inside bb and coaxial with it is a

cylinder cc, 13" 1 centimetres long and 6'1

centimetres in external diameter. The space

between aa and cc was filled up with paraffin,

and from the imbedded tube bb an electrode

d of fine wire was led to the outside.

The condenser thus formed was placed in

an outer vessel containing water of which the

temperature was given by a thermometer. A
second thermometer fixed in a paraffin plug

jf/",

resting on cc, gave the temperature of the interior. The paraffin plug gg
inserted at the level of the top of bb, together with ff, prevented the

passage of heat between the interior of bb and the air above the

condenser.

The outer vessel aa, a»d the tube cc were connected with the earth,

and the inner tube bb to one side of the platymeter, and balance obtained

against the sliding condenser as described above, p. 719. Taking the

capacity of the sliding condenser as 1384 times that for each scale

division, which it now was in consequence of a small addition which

had been made to its value at zero, the mean of a large number of

experiments gave for the value of that of the paraffin condenser 1684

times the same unit, or an absolute capacity of 69*552 c.g.s. electro-

static units. These experiments, which were made at different tempera-

tures, showed no alteration of specific inductive capacity with change

* Exp. Res. Series XI. p. 371, et seq. f Phil. Trans. 1871, p. 673.

Fig. 245.
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of temperature. The capacity of the same condenHer with the paraffin

between the cylindrical plate« removed waa founti in the same way
to be 35"394 c.g.K. unitH, but this was subject to a correction for the

cake of paraffin which was left at the bottom '• ^^Mpiwrt 66 and cc.

The final result was that for paraffin /iC = 1*977

18. Boltzmann's determinations. Some very important determina-

tions of ap('citi(r inductive capacities have been made by Boltzmann.*

In his first series of exjieriments he determined the value of K for

ebonite, paraffin, sulphur, and rosin. The method was a modification

of that of Cavendish referred to above. A parallel-plate air condenser,

the plates of which were supported on insulated stems carried by sliding

pieces movable along a graduated horizontal bar, and so could be

placed at different measurable distances apart, had one plate connected

to earth while the other plate was charged by means of a battery.

Different battery-powers of from 6 to 18 Daniell's cells were used in the

experiments. After the condenser had been thus charged, the charge

was shared with the insulated quadrants (formerly at potential zero)

of a Thomson's electrometer, the capacity of which had been increased

by means of a small air condenser.

The potential after the charge was thus shared, and while the con-

denser was still connected, was observed. A direct application of the

battery to the electrometer gave in the same way the previous potential

of the condenser.

The addition of the small condenser to the electrometer rendered

the united capacities of the electrometer and small condenser nearly

the same for all deflections, leaving only an increase of capacity of about

1/5 per cent, for each 100 divisions of deflection from zero. This was
to some extent eliminated by a double set of observations, first as just

described, then by connecting the condenser for the sharing of the

charge, and the battery when applied direct, for so short a time that

the charging was over before the needle had appreciably moved. As
however the error from this source could hardly be greater than the

inevitable inaccuracies in a determination of this kind, we shall here

neglect it.

If c be the capacity, assumed constant, of the electrometer and
added condenser, C^ that of the sliding condenser, Fj the potential

before, and V\ the potential after the charge was shared, d^ the distance

between the plates, supposed so close that the effect of the edges may
be neglected, we have by (4) above

^'--^-i-
<^'''

where m is a constant.

In order to make the results depend not on the absolute distance

between the plates, but on the much more accurately measurable

difference of two distances, a similar set of observations was made,

* Wien. Ber. 66, 67 (1872, 3).
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still with air only between the coatings, but with another distance c^a-

Calling the capacity Og, the potentials Fg, F'g in this case, we have

C,=c ^^' =
f^

(25)

A disk of the substance, the value of K for which was to be found,

somewhat larger than the plates of the condenser, was placed in a

parallel position between them, so that the induction between the plates

took place everywhere across the disk. The same process was followed,

and gave potentials Fg, F'3 for a distance d^, and a thickness of disk e.

Hence if Cg be the capacity of the condenser,

G, = c
m

.(26)

do-e +

Putting Ci
and (25) m

K
1/A, C2 = l/X2> ^^3 = 1As* we get from equations (24)

[di - d^l(\^ - X2), and hence from (26)

A3 = (Xl-A2)(^3-e + e/-K)/(^l-^2).

Hence remembering that Xiid^ - d^l{\^ - Ag) = rn\^ = di, we have finally

[eK=
X3-X1

.(27)

(di-d2)-d2 + di + e
X1-X2

which involves besides e only differences of distances, and the ratio

(Xg - Xi)/(Xi - X2), which can be calculated without any knowledge of G
from the observation of potential, and for these of course the properly

corrected deflections may be taken.

Boltzmann found that no sensible difference in the values of K for

ebonite, paraffin, sulphur, and rosin, was produced in the values of K
by varying the time of charging or the amount of the charging battery.

He also in one set of experiments tried the effect of excluding air from
between the disks and the coatings of the condenser, by laying the disks

on a mercury surface, and pouring a thin coating of mercury on a portion

of the upper surface surrounded by an edging of paper.

The results are given in the following table, in which the main columns

I., II., III. give the results of experiments made with different distances

between the plates. The first of the two sub-columns in each case

gives the result for air between the disk and armatures, the second

the result fer mercury armatures.

Values of K.

Substance.

I II. III. Mean.

Ebonite 317 3-07 311 3-10 3-20 3-24 315
Paraffin 2-28 2-30 2-34 2-33 2-31 2-32

Sulphur 3-85 3-83 3-84

Rosin - 2-57 2-53 2-55
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19. Boltzmann's determinationfl by the force on a dielectric sphere

in a known field. Boltzmann alHO determined the specifie inductive

capacities of the same substances by coniijaring the force on a small

ball of the dielectric placed in a field of electric force of known intensity

with the force on a conducting ball of equal size placed in the same
field. This he did by hanging the ball as shown at a in Fig. 24G, by a

double thread from one end of a light rod, itself hung by a bifilar and
forming therefore an arrangement akin to a torsion balance. The
other end of the rod carried a mirror M by which the deflection of the

balance could be obtained by means of a telescope and scale. The
field was produced by a larger ball which was kept charged by means
of a Leyden jar connected to its supporting rod.

Experiments were made for electrifications of the

»arge ball of different durations,—(a) for a constant

electrification of considerable duration, (6) for a

comparatively short electrification, (c) for a rapidly

alternating positive and negative electrification.

The electrification (6) was obtained by making the

charging and discharging contacts by the pendulum
of a metronome, the electrification (c) by means of

a vibrating tuning fork, one prong of which con-

nected B alternately to each of two Leyden jars

oppositely charged. By the result of p. 739 above,

if we put Ki = l, and write K for K2, and r denote

the ratio of the force on the dielectric sphere to

that on the conducting sphere, we have

K-1
K + 2 ^' ^^^' -^^'

„ 2r+l

^=l-r
For a sulphur ball, as will be seen from the table below, the force

was practically the same for an alternating electrification of about
-^ sec. duration as for a long-continued electrification. Hence in this

short interval the polarization of the dielectric was fully set up.
The following are some of the results obtained, with the duration

of electrification noted. For reference the mean value obtained with
the condenser is added.

or .(28)

Substance.

K
Value of /ir

siir sec. to A sec. 45 sees. 90 sees.

by
Condenser.

Ebonite

Paraffin

Sulphur

Rosin - -

3-48

2-32

3-90

2-48

3-74

8-12

3-70

5-28 5-61

315
2-32

3-84

2-65
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The effect of increasing the duration of charge is therefore apparently

to increase the specific inductive capacity, but in the cases of sulphur

and ebonite to a much smaller extent than for the other two substances.

20. Inductivity in different directions in a crystal. Suspending a

ball of crystallized sulphur with different diameters successively in the

direction of the force of the field, Boltzmann found that the specific

inductive capacity had different values in different directions. For
the greatest mean and least axes he found the following values :

K
Greatest Axis.

4-773

Mean Axis.

3-970
Least Axis,

3-811

Experiments have been made by this method under Boltzmann's
direction by Messrs. Romich and Nowak.* Results were obtained for

(a) permanent electrification, and (^) for electrification reversed 64
times per minute. The values of ^ are given in the following table :

Glass - - - -

Fluorspar

Quartz - - -

Calc Spar, perp. to axis -

„ parallel to axis

Selenium, freshly melted

Sulphur, mixed with Graphite

/3 a

7-5 159
6-7 71
4-6 >1000
7-7 9-9

7-5 8-5

10-2 151

4 4-4

The difference between the results for permanent and for short

continued electrification seem surprisingly great in some cases.

21. Experiments on mica and on ice. Klemencic experimented on
the specific inductive capacity of mica, and found it independent of

the potential to which the condenser in which the substance formed
the dielectric, and practically independent of the duration of charge.

K for the specimens used was 6-64."|" So long as the condenser was kept

thoroughly dry, the mica was found to insulate well and give constant

results. J

By freezing distilled w^ater in a shallow copper vessel in which was
supported on three insulating feet a horizontal plate of copper in

contact with the water surface. Professors Ayrton and Perry § made
a condenser with ice as the dielectric. They then determined the

* Wien. Ber. 70 (1874). See also Wiedemann, Lehre von der Electricitdt, Bd.
ii. p. 34.

t The value of K for mica is given as 5 in Jenkin's Electricity and Magnetism,
but it is not stated on what authority.

X Beibldtter, vol. xii. No. 1. 1888. § Phil. Mag. 1878, p. 43.
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ficctrometer

capacity of this condenser and found from its dimensions the specific

inductive capacity of ice. At - 13-5° C. the value of K thus obtained

was 22* 168. It is of course to be rememliered that the insulating jK)wer

of ice is comparatively slight. Professors Ayrton and Perry found

2240 X 10« ohms for its sptrcific resistance at - 12-4° C.

22. Five plate balance method. An extended series of exi)enmentfl

on solids was mad** by Mr. J. E. H. Gordon,* using a form of induction

balance, the idea of which is due to Sir William Thomson and Prof.

Clerk Maxwell. It is represented diagrammatically in Fig. 247.

A, B, C, D, E are five parallel coaxial disks separated by intervals

about an inch wide, of which the three A, C, E
are six inches in diameter and the two B, D four

inches in diameter. A and E are connected by
a wire, the middle plate E is connected to the

needle of a quadrant electrometer, the plates

B, D to the electrodes of the pairs of quadrants.

It is evident that, if a difference of potentials

betTween C and ^, ^ be established, it is possible

so to place A, B that the needle will not be

affected, and it is also evident that when this

position has been attained, the equilibrium will

subsist whatever be the difference of potentials.

The position of the plate A was adjustable by a

micrometer screw, and equilibrium was attained

by this means. It is to be noted that the

effects of the edges of the plates are neglected.

The method of proceeding was therefore simply

as follows. Having obtained equilibrium with

air only between the plates, the experimenter

introduced a plate P of the dielectric to be ex-

perimented on, and measured by means of S the

distance through which A had to be displaced in

order to restore equilibrium. This distance gave

the thickness of a plate of air, equivalent to the

plate P of the dielectric. The ratio of this thickness to the thickness

of P is the specific inductive capacity of the material.

In the experiments the plates A, B, and C were connected to the

terminals of an induction coil, the primary circuit of which was broken

as many as 12,000 times a second by an interrupter arranged for the

purpose. Thus the potential was rendered alternately positive and

negative 12,000 times a second, and all effects of absorption were

obviated.

We do not give here the results obtained by Gordon, as it became

clear later that with the sizes of plates and distances apart used by him,

O.A..M.

* Phil Trans. 1879, p. 417.

3h
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the five-plate balance could not give accurate results. Under proper

conditions, however, the method may be useful.

23. Hopkinson's experiments on glass. The values of K for glass

obtained by Mr. Gordon were not in agreement with some previously

obtained by Dr. John Hopkinson,* who experimented according to

the method of comparison of capacities described above, p. 722. The
capacity of a guard-ring condenser was compared with that of a sliding

condenser (the identical instrument used in Gibson and Barclay's experi-

ments described above) (1) when air only was the dielectric, (2) when
a plate of glass was introduced between the plates. The guard-ring

condenser is shown in Fig. 248, half in section, half in elevation, k is

Fig. 248.

Note.—^The protecting cylindrical box on the guard-ring is here omitted.

the protected disk 15 centimetres in diameter with a gap 1 millimetre in

breadth between it and the guard-ring, ee the opposite plate, h the

guard-ring bearing a brass cylinder box (not shown in the drawing) which

forms a shield for the back of the protected disk. The guard-ring is

insulated on a stiff frame of iron formed by two triangular pieces of

iron ah, cd connected by three wrought-iron stays. The insulators are

three ebonite legs gg, which are screwed to the tops of the stays. The
attracting disk is carried on a screwed stem of 1/25 inch step, and can

be raised or lowered without rotation by a nut / divided as a micro-

meter. Fig. 249 is a plan of the instrument with the brass backing

removed. It shows the protected disk and its supports, which are two
bars II, II of vulcanite attached to the^back of the disk and resting

on the upper surface of the guard-ring.

This instrument served also to measure the thickness of the glass

plates used in the experiments. The screw/was turned until the brass

plates were in contact, and the micrometer reading taken ; then the

glass plate was placed above ee, which was screwed up until the plate

came into contact with h, k, h. Slips of tissue paper were interposed

between the ebonite legs gg and the plate hh, and the contact was

judged by these slips becoming loose. A reading of the screw micro-

meter was taken for each slip, and the mean of the three taken as the

* Trans. R.S. 1878, p. 17.
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reading of contac:t. A correction wan determined for the effect of

bending of tlie plateH and coinprcHMion of the 8li|>8 before tlieir release.

A special switch supported above the guard-ring condenser enabled

the connections to be made in the required order. A battery, in some
rases of 48, in others of 72 small Daniell's cells, had its middle {>oint

connected to earth, one of its i)ole8 to hkh^ and the other to the

inner coating of the sliding condenser, while the outer coating and
the plate ee were connected to the electrometer case. Thus the inner

plates of the two condensers were charged to equal and opposite poten-

tials. Then one pair of quadrants of a Thomson's electrometer, both

Fig. 249.

pairs of quadrants of which were connected to earth, were insulated,

the guard-ring was connected to earth, and the protected plate and the

insulated plate of the sliding condenser connected together and to

the insulated quadrants of the electrometer. The direction of the electro-

meter deflection, if any, at the instant of the combination of the charges,

was observed. If no deflection took place the guard-ring condenser

and the sliding condenser had equal capacities, and the latter was

adjusted until this was the case.

The following are mean results of two or more experiments for

each substance :

Density. K

Glass, Light Flint -

,, Double-extra Dense

„ Dense Flint -

„ Very Light Flint -

3-2

4-5

3-66

2-87

6-85

10-1

7-4

6-57

The plates of glass were in most cases in contact with both plates

of the condenser.
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24. Further results of Hopkinson. Hopkinson continued his investiga-

tions, and besides coming to the conclusion stated above as to the

five-plate balance, arrived at the important results :

1. That the specific inductive capacity of glass is the same for dis-

charges lasting yx/o 0" second, Tro-^tro second, or J second.

2. That it is independent of the potential to which the condenser

is charged.

At the same time he extended his former results, and applied his

method of experimenting to the investigation of the specific inductive

capacity of liquids. A flask of flint glass, with thin walls and a long

thick neck, was fllled up to the junction of the neck, with strong sul-

phuric acid. A wire passing down through the neck connected the acid

II

B

f \ir \

A C

Ebonite

Fig. 250.

with a metal piece A (Fig. 250), supported on an insulating stand of

ebonite. On this metal piece rested the horizontal arm of a kind of

bell-crank (or L-shaped piece of metal pivoted at the angle). The flask

was first charged by means of a battery and the potential measured

by a quadrant electrometer which was then detached and discharged.

Then a previously deflected metallic pendulum, D, connected to earth

through its supports, was released, and striking the vertical arm of the

lever, connected the flask for an instant to earth and discharged it.

The electrometer was then applied to detect any residual charge. The

leakage method described above [XI. 44] was used to measure the dura-

tion of discharge. A paraffin condenser of known capacity had its

plates connected for the time of discharge to be measured, first by

a resistance of 256 ohms, then by a resistance of 512 ohms, and the

remaining potential in each case was observed. These operations

obviously gave data for the calculation of the time interval t. With
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a duration of diHcharge of about n oVtr second, le«8 than 3 per cent, of the

original charge given by a battery of 20 elements remained. Longer
and shorter timcH of diwcharge gave Kimilar results. The practical result

of all the experiments was that determinations of specific inductive

capacity by observations of discharge may be taken as correct for

glass if the period of discharge be anything between ^xr^i^ sec. and

J see.

25. Hopkinson's experiments on glass plates. The method adopted

for det(!riiiining tlic .specilic iiuiuctive capacity of glass plates was
practically the same as that already described at p. 754. The guard-

ring and protected disk were first connected to one pole of a well insulated

battery of 1,000 chloride of silver cells, the other pole of which was
connected to the insulated plate of a cylindrical sliding condenser.

Thus the two condensers were charged to equal and op|)Osite j>otentials.

By means of a special commutator changes of connections similar to

those described above were made so as to combine the charges of the

condensers, with the addition that the electrometer quadrants con-

nected to the condensers after combination were immediately after

insulated to avoid effects of residual charge. The capacity of the

sliding condenser was adjusted till no electrometer deflection was
produced.

The glass plate was then placed between the plates of the guard-ring

condenser and the operations repeated until equilibrium was again

obtained. The two results gave the ratio of the capacities, and from

the distance between the plates of the condenser and the thickness of

the glass plate the value of K was found.

The capacity of the glass flask described above was determined in a

similar way by aid of the sliding condenser, with a charging battery

varying from 10 to 1,800 chloride of silver cells, with only a little over

J per cent, of alteration.

The values of K are given in the following table with the thicknesses

of the plates, and for comparison the earlier results obtained by the

same experimenter :

Thickness Value

Substance. Density. of Plate
in mms.

A'
formerly
obtained.

Glass, Double-extra Dense Flint 4-5 4-5 9-896 101
„ Dense Flint - 3-66 16-57 7-376 7-4

„ Light Flint - 3-2 15-04 6-72 6-83

j> >> >>
— 10-75 6-89 6-85

„ Very Light Flint - 2-87 12-70 6-61 6-57

„ Hard Crown - 2-485 14-62 6-96 —
„ Plate ... - — 6-52 8-45 —

Paraffin — 20-19 2-29 —
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26. Hopkinson's experiments on liquids. Hopkinson obtained results

also for liquids by the method just described.* The space between

two coaxial metal cylinders was filled with the liquid to be experi-

mented on. These two cylinders connected together formed one

coating of a condenser of which the liquid formed the dielectric, and the

other coating was given by a cylinder suspended from an ebonite plate

above, and immersed in the liquid. The latter plate was charged and

the other connected to earth, and the capacity compared with that of

the oppositely charged sliding condenser. The capacity of the same
apparatus with air as the dielectric had previously been obtained in

the same way, and the results gave at once the value of K for the

liquid. The following table gives some of the results. The column

headed /x^oo contains for the purpose of comparison the square of the

index of refraction of the liquid for light of infinite wave length. This

was calculated from the formula /Xgp =^ + BjX^ from observations of

the index of refraction which were made on each of the substances for

the Fraunhofer rays C, D, F, G, of the spectrum.

Name of Liquid. K M'^X

Petroleum Spirit 1-922 1-92

Petroleum Oil, Field's - - - - 2-07 2-075

„ „ Common - - - - 2-10 2-078-

Ozokerite - 2-13 2-086

Turpentine, Commercial - - - - 2-23 2-128

Castor Oil ----- - 4-78 2-153

Sperm Oil - - 3-02 2-135

Olive Oil 3-16 2-131

Neat's Foot Oil - - - - - 3-07 2-125

The closeness of the agreement between the numbers for K and for

ju^ao for the mineral oils and for turpentine is very remarkable. The
divergence in the other cases is to be expected, as from the composition

of the substances it is probable that the results included effects of

electrolytic action.

27. Experiments of Silow. Results with which Hopkinson's agree very

well had been previously obtained for turpentine, benzene, and petro-

leum by Silow.t Two series of experiments were made. In the first

a very ingenious and simple method was employed. A kind of quadrant

electrometer was constructed by pasting on the inside of a cylindrical

glass vessel, 10 centimetres deep and 15 centimetres in diameter, four

symmetrically, placed vertical strips of tinfoil each 10 centimetres

broad, and joining the opposite pieces together by strips across the

bottom. Within was hung a platinum needle of the shape of an inverted

* Phil. Trans, loc. cit.

t Pogg. Ann. 156 (1875), p. 389, and Wiedemann, Die Lehre von der Elektricitdt,

Bd. ii. p. 46.
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T, in which the vertical pieces at the ends of the horizontal cross- i»i<M:e

wore Hcini-cylinders of platinum. The needle was left uncharged,

and one of the pairs of strips was connected to earth and the other

charged to a convenient potential. The deflections of the needle for

the same diflference of potential (I) with the vessel filled with air, (2)

with the liquid under experiment, were observetl, and it was assumed
that the angles of deflection were proportional to the specific inductive

capacities in the two cases. This would have been strictly true of the

angles through which a torsion head at the top of the suspension thread

would have had to be turned if the needle had been brought back in

both cases to a position of equilibrium after deflection.

For two kinds of turpentine, I., II., and for petroleum he obtained :

Turpentine I., mean of three experiments

Turpentine II.

Petroleum -..--.
2173
2-221

2-037

>^«

2129

2-148

A second set of experiments was made by Silow by a method similar

to that described above, p. 730. A condenser formed of two gilded

circular plates kept 1 J mm apart by small pieces of ebonite, and enclosed

within a glass vessel covered on its interior surface with tinfoil, had one

of its plates alternately connected to earth and to one pole of a water

battery of 175 zinc-copper elements. The connections were made by
a rotating commutator kept running at a constant speed sufficiently

great to give a constant deflection of the needle of a galvanometer placed

in the charging or discharging circuit. Three deflections were taken

(1) with the vessel filled with air, (2) with the liquid under experiment

in the vessel and therefore between the plates, (3) with only the joining

wires attached. Denoting by a, ft, y, these deflections corrected so as

to be proportional to the currents, we have for the ratio of the capacity

of the apparatus with the liquid between the plates, to its capacity

with air between the plates {ft
- y)/(a - y), that is for the liquid,

K =
^~'^

(29)
a-y

Different battery powers applied gave the same values for K. The
following are the mean values of K for the substances mentioned,

with the values of yu^oo for comparison.

Substance. A' M^x

Turpentine

Benzene

Petroleum, first specimen

Petroleum, second specimen -

2153
2-198

2-071

2-037

2-134

2-196

2-048

2-048
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28. Experiments of Quincke. Some interesting experiments on the

specific inductive capacity of liquids have also been made by Quincke.*

According to the theory of Faraday and Maxwell, referred to at p. 743

above, there is, at every point of the electric medium, a tension along

the lines of force, and an equal pressure at right angles to that direction,

the amount of which reckoned in units of force per unit of area is

KF^/Stt, where F is the resultant electric force at the point. Quincke's

method amounted to measuring not only the tension, but the pressure

also, in different liquid dielectrics, and his results, besides giving (1) from

the observed tension, (2) from the pressure, values of K which he com-

pared with those obtained by the ordinary condenser method, are

interesting in their bearing on electrical theory.

His apparatus for the measurement of the tension consisted of two

horizontal circular plates placed a short distance apart in a glass vessel.

The upper plate was suspended from one end of the beam of a balance,

and was connected to earth. The lower plate was charged by means of

a battery of Leyden jars, the outer coatings of which were to earth.

The potential was observed in arbitrary units by means of a Thomson's

standard electrometer (see p. 693 above). The attraction of the upper

plate towards the lower was then measured by weights put on the other

scale of the balance. The mean pull per unit of area was therefore

obtained.

Now, from what has been proved above (p. 732) it follows that the

force /, per unit of area, on any part of the upper plate not near

the edge, is 27r(T^/K, and we have o-= -KFji-Tr^ -KV/4:7rd if V be

the difference of potentials, d the distance between the plates. Hence

f-S <^«)

The weighing therefore gave, taking the mean pull as nearly enough
equal to/, directly the tension.

By comparison of results for two different media using the same
value of V for both cases, the ratio of the values of K could be at once

obtained. Thus if /i,/2, be the tensions, and the corresponding specific

inductive capacities determined in this manner be denoted by Kf^ , Kf^ ,

we have j^ /•

|^=y (31)

The pressure at right angles to the lines of force was found in an
ingenious manner. The upper disk of the apparatus just described

was removed and replaced by a plate of the same diameter with a short

vertical tube at its centre, by means of which communication could

be obtained with the space between the plates. Attached to this

vertical tube was an india-rubber bag which could be cut off by means
of a stopcock. A branch tube communicated with an ordinary open U

Wied. Ann. 19 (1883).
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inanonictcr containing bisulphide of carbon. Enough of air wa« blown
by the rubber bag into the 8pacc between the plates to form a flat

bubble of from 2 to 5 centimetres in horizontal diameter, bounded by
the plates above and below. The stopcock was closed and the pressure

was read off on the manometer. The lower plate was now charged to

the same potential as before while the upper plate was connected to

earth. The increase of pressure was read of! from the manometer, and
gave the difference of pressures in the air and the liquid due to the

electrification.

If h be the difference of heights of the liquid produced by the electri-

fication, and p the density of the liquid, we have, denoting the value

of K determined in this way by ^,„ and the acceleration due to gravity

by g>

ghp
K.

87r

1 F-
(32)

if K be taken = 1 for air.

Using the value of/ given in (30) for the same medium, this gives

K J^P A/+1 (33)

The following are some of the results obtained

Substance.
Density at Temp,

stated.

Sulphuric Ether -

Bisulphide of Carbon I.

,. „ ,, II

Benzene (from Coal Tar)

„ (from Benzoic Acid)-

Light Benzene
Colza Oil . - . .

Turpentine . - - -

Petroleum - - - .

Ether 5 vols. -}- 1 vol.

Bisulph. of Carbon
Ether 1 vol. + 1 vol.

Bisulph, of Carbon -

Ether 1vol. + 3 vols.

Bisulph. of Carbon -

•7205

1-2760
1-2796
•8825
-8822

•7994

•9159
•8645
-8028

•8134

•9966

11360

°C.

149
12-20
10-20
15-91

17-64
17-20

16-40

1710
1700

16-40

16-60

17-40

Terap,
of Exp.

6-60
7-60
12-98
13-20
14-40
11-60

16-41

16-71

16-62

8-50

10-50

5-30

Value of K Sp. Ind. Cap.

By Con-
denser
K

3-364
2-217
1-970
1-928
2-050
1-775
2-443
1-940
1-705

2-871

2-458

2-396

By
Tension

4-851
2-669
2-692
2-389
2-325

2155
2-385
2-259
2-138

4136

3-539

3132

By
Pressure

A/.

4-672

2743
2-752
2-370
2-375

2172
3-296
2-356
2- 149

4-392

3-392

3061

The values of K obtained by tension and pressure here seem uniformly

greater than those obtained by the condenser method, which must
be regarded of course as the true values. But they agree very well

with one another, and go far to prove the equality of the pressure and
tension.
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29. Correction of Quincke's results for connections. Electric stress

and strain. It was pointed out by Hopkinson that* perhaps the

capacity of the key and connecting wires might be appreciable, and
that if so the values of K given for the condenser method in the

above table would be increased by the correction. This was found

by Professor Quincke to be the case, and the following corrected

results obtained by him are given by him in a note to Dr. Hopkinson's

paper

:

Values of Sp. Ind. Cap,

By Condenser
A..

By Tension
Kf.

Sulphuric Ether

Bisulphide of Carbon

Benzene
Petroleum - _ - .

4-211

2-508

2-640

2-359

2-025

4-394

2-623

2-541

2-360

2-073

This shows that for these substances K, Kj, Kj^ are sensibly equal.

Further the experiments seem to confirm fairly well the theoretical

values KF^/Stt for the pressure within the medium.
The question of stress and strain in the dielectric medium is yet

far from having been fully investigated. It is certain that opposite

charges of electricity, on the opposite plates of a condenser, for example,

are the surface aspects of a state of strain in the medium. But the

nature of this strain cannot be said to be yet known. Experiments

which have been made by Quincke and others show that in glass, and
in mosfc liquids, except certain oils, the electric strain results in a uniform

dilatation ; whereas in elastic strain, consisting of elongation in one

direction, and an equal shortening in every direction at right angles

to that, would result in a negative dilatation, which is contrary to the

observed facts. Liquids would not support the shear which in electric

strain seems to be operative. Hence the electric strain appears to be

distinct from elastic strain.

30. Hopkinson's experiments on liquids. Hopkinson, at a later date,t

made experiments on the specific inductive capacity of a number of

oils and other liquids. The method adopted was a modification of the

five-plate balance method described above. The arrangement of

apparatus is shown in Fig. 251. Two air condensers E, F, of deter-

minate and nearly equal capacity, and two adjustable sliding condensers

/, J, were joined as shown like the four branches of a Wheatstone
bridge. The inner coatings of E, I were joined to one pair of quadrants

of an electrometer, and those of F^ J to the other pair of quadrants.

* Proc. B.S. vol. xh. 1886. t Proc. R.S. Oct. 1887.
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To the inner coating of J could be attached the inner plate of a liquid

condenser containing the substance to be experimented on. The

outer coatings of E, F were connected to the case of the electrometer

and to one terminal of an induction coil ; the outer coatings of /, J

rui. 2.';!,

FIO. 252.

were connected to the needle of the electrometer and to the other

terminal of the induction coil.

In order that there might be no deflection of the electrometer needle

it was necessary that the capacities of E and / should be in the same
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ratio as those of F and J respectively. An adjustment of one or both

of the sliding condensers was made until this relation was fulfilled

in each of four cases, (1) when no fluid condenser was introduced,

(2) when the condenser without the interior plate, but fitted with a
" dummy " to represent the necessary supports or connections outside

the liquid, was connected to J, (3) when the complete condenser charged

with air was added to J, (4) when the complete condenser charged with

liquid was connected to J. Assuming for simplicity the sliding con-

denser / to remain unaltered and x, y, z, z-^ to be the respective

readings of J in the four cases, we must have

capacity of condenser with liquid

capacity of same condenser with air
K^ x-Zi-{x-y)

x-z-{x-y)

y-z
(34)

The following is an abstract of the results obtained

K. ju2jr, fur line D.

Colza Oil, six samples _ 3-07 to 3-14

„ „ another sample* - 3-23

Arachide - . . . - 3-17

Sesame ----- _ 3-17

Linseed Oil, raw - 3-37

Castor Oil - - - - - 4-82

„ „ another sample _ 4-84

Ether ----- - 4-75

Carbon Bisulphide - 2-67

Amylene - - - . -
.

- 2-05 1-9044

It is to be noted with respect to colza oil that, as given by Quincke

(p. 761 above), the value of Kj, is 3-296 and of TiT^. 2-385.

31. Hopkinson's experiments on the benzene series. Dr. Hopkinson
also experimented with the following liquids of the benzene series,

for which also he determined the index of refraction jjljj for the line D
of the spectrum.

Benzene

Toluene -

Xylene -

Cymene -

2-38 2-2614

2-42 2-2470

2-39 2-2238

2-25 2-2254

h^D-

* Doubtful as to purity.
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T\ni same method, but with a guard-ring condenser instead of the

Huid condenser as shown in Fig. 252, was a))|)li(Kl to the measurement
of tlie specific inductive capacity of solids. The connections shown in

Fig. 252 were first made, that is the guard-ring and protected disk

botli connected to the inner coating of J. The arrangement was then

adjusted to balance, then the guard-ring remaining connected to J,

the protected disk was transferred to / and balance again obtained.

The difference of the readings of the sliding condenser gave on an

arbitrary scale the capacity of the guard-ring condenser for the given

distance of the plates apart. These operations were then repeated with

a plate of the substance for which K was to be found placed between

the plates of the guard-ring condenser.

Only three substances were experimented on, with the following

results. The previously obtained values (p. 757 above) are given for

the first two for comparison.

A.
Previously found

value of K.

Flint Glass, double-extra dense

Paraffin Wax
9-5

2-31

9-896

2-29

Rock salt was the third substance with a result of 18 for Ky but the

sample was very rough and too small, and possibly conducted so greatly

as to affect the result. In these experiments the effect of the connecting

wire of the guard-ring condenser was not allowed for.

32. Experiments on hydrocarbon series. Negreano* has applied

the five-plate balance method to the determination of the specific

inductive capacity of a number of hydrocarbons of homologous chemical

composition. The balance was arranged with its plates horizontal

and well insulated on ebonite rods ; the diameter of the larger plates

was 16 centimetres, of the smaller 12 centimetres, and the distance of

adjacent plates apart 1 centimetre. The liquid experimented on was
placed on a flat shallow dish attached to the ebonite supports between

the uppermost plate and that next to it. Balance was obtained (1)

with the instrument used simply as an air condenser, (2) with the

empty dish in position, (3) with the liquid in the dish. The corre-

sponding positions of the movable plate were obtained by a micrometer.

Another micrometer measured the thickness of the stratum of liquid.

The index of refraction juj, was also determined for the D line in the

case of each liquid.

It was found that the value of K increases as the composition of the

substance becomes more complicated, and that the value of

{K-l)HK + 2)p.

Comptes rendus, tome civ. 1887.
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where p is the density, is approximately constant. The following is a

synopsis of the results :

Benzene, CgHg, with thiophene

Toluene, C^Hg

another specimen

pure

Xylene, CgHjo
Metaxylene, CgH^o
Pseudocumene, CgH^g

Cymene, C10H14 -

Terebenthene, CioHjg

Temp.

2°6

Density. K.

•8803 2-3206

25 •8756 2-2988

14 •8853 2^2921

27 •8608 2-242

14 •8711 2-3013

27 •8554 2-2679

12 •8072 2-3781

14 •857 2-4310

19 •851 2-4706

20 •875 2-2618

Md-

1-4974

1-4978

1-5062

1-4912

1-4984

1-4897

1-4977

1-4837

1-4837

1-4726

It will be noticed that the value of ^/K is only a little greater than

fjLD in each case, and that (K - 1)I{K + 2)p has the value ^34 approxi-

mately in the first six cases and the last, and is slightly greater in the

remaining three.

33. Experiments o£ Cohn and Arons. Discussion by Quincke of results

for liquids. Experiments on liquids have also been made by E. Cohn
and L. Arons. Two quadrant electrometers were employed, one with

air filling the quadrants, the other specially designed to contain the

liquid experimented on as in Silow's method described above, p. 758.

One pair of quadrants of each electrometer was connected to one ter-

minal of a Helmholtz induction coil, the other pair of quadrants, the

needle and the case were connected to earth and to the other terminal

of the coil. Denoting by Si, ^2 ^^® (corrected) deflections on the ordinary

and special electrometers respectively when both are filled with air,

S'l, S'2 the corresponding deflections when the special electrometer

contains the liquid, we get easily by (29) above

SzS'iK =

The following results were obtained :

.(34')

Distilled Water
Ethyl Alcohol

AmybAlcohol -

Petroleum

Xylene, two kinds

76

26^5

15

2^04

2^39

2^36
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The numbers here given it will be observed are high in the first three

cases. These substances have however considerable conductivity,

which would tend of course to give an apparently high specific inductive

capacity. The authors believe that the results are correct within 5 per

cent.

Prof. Quincke* re-examined the question of the values of K for

liquids obtained by the different methods, as described above. All

liquids experimented on except colza oil gave practically the same result

whatever the method employed. For that substance however the

result stated above held, that is the pressure method gave the highest

value, the electrical balance the lowest, and the condenser method a

mean value ; and this anomaly was found to hold good for different

kinds of colza. That it could not be due to electrolytic action was clear

from the fact that the products of decomposition at the condenser plates

could not alter the pressure at the surface of the bubble.

Prof. Quincke! also measured the index of refraction of pure ether

for ultra-red rays by passing them through the medium and receiving

them upon a thermopile. He found that for pure ether 7^ = 4*3, and

that for ultra-red rays its index of refraction is less than 2. The sub-

stance seems therefore not to conform to Maxwell's relation.

34. Experiments on gases. Determinations of the specific inductive

capacity of gases were made by BoltzmannJ and by Professors

Ayrton and Perry. § Boltzmann's method was as follows : A condenser

consisting of two horizontal circular plates was supported within a closed

metallic vessel, through the walls of which passed wires to make connec-

tion with the plates, and which could be connected with an air-pump

or a gas generating apparatus. Two metallic plates were placed above

and two below the condenser to preserve it at a uniform temperature.

The vessel was exhausted, then one plate A of the condenser was
charged by being connected to one terminal of a battery of 300 Daniell's

cells, while the other plate B and the other terminal of the battery

were connected to earth. B was then disconnected from earth and
connected to the insulated electrode of an electrometer which had been

previously brought to zero potential. The electrometer showed no

deflection, proving that there was no leakage. The charge on A there-

fore remaining constant, it was found in accordance with theory that

the admission of air altered only the specific inductive capacity between

the plates, and therefore the potential of A, but not the potential of B
which remained zero. After the admission of air the potential of A
was restored to its original value, and the change of potential of B read

off on the electrometer. The number of cells was then increased by
one, and the increased potential of B again read off. The ratio of the

specific inductive capacities could now be calculated.

Wied. Ann. 33, 1888. f Wied. Ann. 32. No. 12. 1887.

t Wien. Ber. C9 (1874) ; Pogg. A7in. 15 (1875).

§ Tran^, Asiatic Society of Japan (1877).
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If Fj, Fg be the potentials of A before and after the admission of

air, and K^, K2 the corresponding specific inductive capacities, we have

VJV-^ = KJK2- Hence by the restoration of the potential to F^ the

potential of B was increased by an amount proportional to V^-V2i
that is by an amount m{\ - KJK2), where m is a constant. By the

increase of the number of cells from nton + 1 the increase of the potential

of B was therefore mVi{n + l)/n. Hence calling these changes as

measured by the electrometer S, S', we have S/S' = n{l - KJK^{n + 1), or

^2=-.,-y^Vix^^i (35)

35. Effect of pressure on specific inductive capacity of gases. It was
found by Boltzmann that the alteration of capacity was very nearly

in simple proportion to the alteration of pressure of the air, and he

assumed that the effect of alteration of temperature was only that

corresponding to the consequent alteration of density. Hence if we
denote by K the specific inductive capacity of air under pressure equal to

that due to p millimetres of mercury under standard circumstances,

suppose that for absolute vacuum to be unity, and assume the pro-

portionality to hold for all pressures, we may write

K = \ +
760

(36)

where 1 + )t is the specific inductive capacity of air at standard atmos-

pheric pressure.

By (35) and (36), putting fi, p^ ^^^ *^^ pressures corresponding to

^" ^^' ^' ^"
. = 760 ^r^T<'\ <^^)

Boltzmann found similar results to hold for other gases than air,

and gave the following values for K at standard atmospheric pressure.

The value of JK is given also for comparison with the index of re-

fraction.

Gas. K. VK. M.

Air - - - - - 1-000590 1-000295 1-000294

Carbonic Acid - 1-000946 1-000473 1-000449

Hydrogen 1-000264 1-000132 1-000138

Carbonic Oxide 1-000690 1-000345 1-000340

Nitrous Oxide - 1-000994 1-000497 1-000503

defiant Gas - - - 1-001312 1-000656 1-000678

Marsh Gas 1-000944 1-000472 1-000443

36. Experiments of Ayrton and Perry. In Ayrton and Perry's

method the capacities of two condensers were compared with different
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j^aHes at different preBHures between the plates of one of them, while

the other had continually air at ordinary teni|>erature and pressure

for its dielectric. The latter con^lenser consisted of a square horizontal

uninsulated plate of tin-foil of 1815 square centimetres area, cemented
to the upper surface of a plate of hard wood which rested on the hori-

zontal top of a block of stone, and an insulated up|)er plate of the same
size 8Upj)orted on ebonite levelling screws, the lower ends of which

rested on the stone. The other condenser was contained within an air-

tight rectangular vessel of sheet brass, and consisted of eleven parallel

plane plates, each 324 square centimetres in area, kept at equal distances

of three millimetres apart in racks of ebonite. The first, third, etc.,

and last plates, reckoning from one side, were connected to the case,

the other plates were insulated and connected to a platinum wire passing

out through a glass tube 35J centimetres long to the outside of the case.

This glass tube, which had been chemically cleaned and covered with

paraffin, to prevent leakage over the surface, was very carefully cemented
into a brass socket attached to the metallic case, and was nowhere in

contact with the platinum wire except at the outer end, where it was
drawn to a point and hermetically sealed. Cement contained in a

metal cap surrounding the junction of the tube and socket prevented

leakage there, and a second cap filled with cement surrounded the

point of the tube, and guarded the point from being broken by
motion of the wire. By means of another tube the case could be

filled with the gas to be experimented on, or connected to a Sprengel

or other pump by which the required degree of exhaustion was pro-

duced. This tube was made of special form to prevent mercury from

the Sprengel pump from passing by any accident into the condenser

case.

The method of making a determination was as follows. The insulated

plates of the condenser were charged to equal and opposite potentials

in the following manner :—The battery of 87 Daniell's cells had its

poles joined by a resistance of 10,000 ohms, and by means of a reversing

key one terminal a of this coil was connected to the insulated plate of

one condenser, while the other terminal h was connected to earth
;

then h was connected by the reversing key to the insulated plate of the

other condenser and a to earth.

The battery was then removed and the charged plates connected

together, and with the insulated electrode of a quadrant electrometer

of which the other electrode and case were to earth, and the reading

taken.

If the potential of each condenser was numerically F, the capacity

of the constant air condenser Cj, and the capacity of the other Cj,

the charge left after the two condensers were connected was 7(Ci - Cj),

supposing the constant condenser to have been positively charged.

The corrected deflection a shown by the electrometer was therefore

mViCi-G^lUfl^ + C^ii where m. is a constant.

O.A.M. 8 c
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To eliminate m and F the terminals of the battery were kept joined

by the resistance of 10,000 ohms, and one terminal was connected to

earth, while a point on the resistance was connected to the insulated

quadrants of the electrometer now detached from the condensers.

The difference of potentials of the battery between the extremities

of the resistance was 2F, and if the resistance intercepted between the

terminals of the electrometer be denoted by R, the difference of

potentials shown by the corrected deflection /3 of the electrometer was

2Fi?/10000. We have therefore /3 = 2mFi2/10000. Hence

g _ 10000 Oi-Cg 10000 Ci (33^

j8~ R C1 + C2" R O2
'

C,

This enabled the ratio Og/Ci of the capacities to be calculated. An-
other experiment made with (7 2 changed by alteration of the medium,
gave at once the ratio of the two values of O2, that is of the specific

inductive capacities in the two cases.

The following table gives the mean results for many experiments

in different gases at standard pressure : taking the value of K for

air as unity.

Dielectric. K.

Vacuum . - - . •9985

Air 1-0000

Carbonic Acid 1-0008

Hydrogen - - - - -9998

Coal Gas . - - - 1-0004

Sulphurous Acid 1-0037

It was observed that when air was allowed to mix with the carbonic

acid the value of K more and more nearly approached unity.

Experiments on the specific inductive capacity of a high Sprengel

vacuum were undertaken by a Committee of the British Association

consisting of Professors Ayrton and Perry, Prof. 0. J. Lodge, and
Mr. J. E. H. Gordon. A preliminary report was presented * containing

a plan of experimenting and some results which seem to show that

at a pressure of about 1/10^ of an atmosphere the specific inductive

capacity is -6 or -8 per cent, less than that for ordinary air.

37. Experiments at low temperatures. The effect of very low tempera-

tures on the specific inductive capacity of various substances has been

investigated by Dewar and Fleming. The temperature varied from
- 200° C. upwards through a considerable range. The condenser used

consisted of two coaxial cones, with a space of 3 mm thickness between

* Brit. Assoc. Rep. 1880.
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them, which was filled with the dielectric to he exi>eriinent€d on, and
the cooling was produced with liquid air. The condenser thus formed

was charged to a convenient difference of potentials, and diflcharged.

The galvanometer deflection at charging or discharging was observed.

The dielectric was then melted out and the space filled with air (gaseous)

at the same temperature as before. The charging and discharging

were performed as before and the galvanometer deflections again

observed. A comparison of the results gave the specific inductive

capacity of the dielectric used.

An interesting result was that for pure ice, which rose from 2-43 at

-2(X)°C. to about 71 at -7°-5C. At the higher temperature the ice

had considerable conduction which made the specific inductive capacity

difficult to estimate exactly. For a good conductor this constant

should be practically infinite.

In the case of various other substances (solutions and compounds)
it was found that the specific inductive capacity at - 200° C. did not

greatly exceed fj^^. The agreement was nearly exact for carbon

disulphidc, olive oil, and castor oil.

38. Experiments with electric waves. A circular exciter of electric

waves was properly placed within a concentric circle of wire at one
end of a pair of parallel wires at a distance apart of 2 cm, and pro-

duced between two wire bridges across the wires, a system of stationary

waves which were propagated along the conductors, with successive

nodes half a wave length apart. A vacuum tube with such a length of

wire joining its terminals that its period coincided with that of the

exciter was lighted up when situated at a loop in the waves, and so the

distance between two nodes, and therefore the wave length, was deter-

mined. Observations were made with the wires prolonged into a

trough of liquid, and again with the trough removed and the wires

continued in air. The bridge next the exciter being kept fixed in

position, the farther bridge was moved out in the trough or in the air

until for different positions of this bridge the lamp lit up.

Thus the half lengths of the wave in air and liquid were found, and
so also their ratio XifX^- Thus K = jj.^ = {\i/X2)^ was obtained.

Two wave frequencies, 1 -5 x 10^ and 4 x 10®, were employed. For
water the change of frequency had little effect, but for glycerine the

change in /j.^ was considerable,—from yu^ = 39*l at the lower frequency

to 25-4 for the higher.

For water the formula

Ij,^
= 88-23 - O'iOUt + 0001035<2,

at temperature t° C, was obtained. In the case of solutions the refrac-

tive index found was nearly that for water. Increase of frequency gave

a decided diminution of refractive index with increase of conductivity.

In connection with the subject of electric stress and strain the results

of Kerr's investigations of double refraction in solids and liquids are
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of very great interest and importance. We give a very brief account

here of his experiments on liquids.

Let the reader imagine two horizontal cylinders of brass, placed with

their axes parallel and in a horizontal plane, at a distance of an inch

or so apart, in a trough containing the liquid to be experimented on.

The trough has glass ends, and a beam of light of definite wave-
length is passed along between the cylinders, but before entering the

liquid passes through a polarizer, so that the beam is polarized in a

plane inclined, let us say, at an angle of 45° to the vertical. After

passing between the cylinders the light is received by an analyzer

set at right angles to the polarizer. The beam is thus extinguished

by the analyzer.

The cylinders are now connected to the poles of an electric machine,

and it is then found that when the machine is worked the extinction

is no longer perfect, but that a ray passes on from the analyzer to the

eye of an observer. One component of the light passing through the

liquid is delayed relatively to the other component, and the two unite

in a plane polarized beam which is not extinguished by the analyzer.

An electrometer was used to measure the difference of potentials

between the cylinders, and therefore also the strength of the electric

field there existing. Itjwas found, by bringing the beam again

to extinction by a compensator, which measured the difference of phase
of the two components, that the effect produced was proportional to

the square of the field-intensity.*

Kerr found that some liquids acted on the light as would have done
a quarter-wave plate t with the crystal axis along the lines of force, while

others had the opposite effect, that of a crystal of Iceland spar, with

its axis similarly placed. The former he called positive liquids, the

latter negative.J Benzene, paraffin oil, and toluene are positive

;

various oils, such as colza and olive oil, are negative.

If the difference of paths traversed in the same time by the com-
ponents be S, \ the wave-length, I the length of path in the field and E
the field-intensity, the formula expressing the results was

~^ = BIE\

where B was a constant. This constant was determined by Quincke
for carbon disulphide to be approximately 3-1 xlO~^. The difference

of refractive indices for the two rays is of course BXIE^, where X is the

wave-length in air.

The value of B depends on the wave-length, and has been found to

be considerably increased by rise of temperature.

Phil Mag. Ser. 5, ix. (1880).

A plate which produc(
)ugh it.

%Phil. Mag. Ser, 5, xiii.

t A plate which produces a phase -difference of JX between the waves propagated
through it.
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When a conducting liquid is used in which a field cannot be main-

tained, it is observed that if a spark-gap exists in one of the wires

connecting to the electric machine the field is lighted up, when a spark

passes. This effect is no doubt due to rapid electric oscillations set up
by the spark.

Of the Kerr and Zeeman magneto-optic effects this is not the place

to treat, and unfortunately space is not available to discuss them in

the present book.



APPENDIX I.

THEORY OF THE INDUCTION COIL.

By Professor E. Taylor Jones, D.Sc.

An induction coil consists of two coupled circuits, each having in-

ductance, resistance, and capacity, the capacity of the secondary being,

in the ordinary use of the instrument, mainly distributed along the

coil, but including also the capacity of any bodies (e.g. the electrodes

of a spark-gap or of an exhausted tube) connected with its terminals.

The secondary capacity Gg may be defined as the charge on one half

of the secondary coil (and the bodies connected with its terminal)

divided by the difference of potential of the terminals.

When the secondary terminals are connected with bodies of very

small capacity between which no discharge is passing, the current

induced in the secondary coil when contact is broken at the interrupter

is not uniformly distributed along the wire, but is greatest at the central

winding and nearly zero at the terminals. In these circumstances

the secondary self-inductance Lg ^^7 b® defined as the magnetic

induction through the secondary coil, due to the current in this coil,

divided by the value of the current in the central winding. The value

of L 2 is of course smaller when the current is distributed in this way
than when it is distributed uniformly, as for instance when the

secondary coil is short-circuited, or when its terminals are connected

with a condenser of considerable capacity.

For similar reasons the coefficient of induction of the secondary

on the primary {i.e. the magnetic induction through the primary coil

due to the secondary current, divided by the value of the latter in the

central winding) is smaller than the coefficient of induction of the

primary on the secondary, which is the mutual inductance as usually

defined. Employing the notation used by Drude in his theory of the

Tesla coil, we shall denote these two coefficients by Z^g and Xgi' -^21

being the coefficient of induction of the primary on the secondary.

The coupling k^ of the primary and secondary circuits, i.e. the square

of the coefficient of coupling, is defined by

774
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In the following sketch of the theory of the secondary f>otential

at break we shall neglect the resistances of the coils and all other

causes of dissipation of energy, so that the oscillations are treated as

undamped. Denoting the potential difference of the plates of the

primary condenser by Vj, that of the secondary terminals by K,, and

the electromotive force of the battery by E, the equations for the

currents after contact is broken at the interrupter are

^.^'-^..t-'"^' <•'

^''l'-'^"t-''.-«
<^^

where y^ is the current in the central winding of the secondary coil.

Also

y.=c.^ (3)

y^'<; '*>

Substituting for yj, y^ from (3) and (4), and writing Fj for v^ - E,

equations (1) and (2) become

^'^' d<^'+'^"^^ A^'+^'="' ^^'

Lfi,^'^^ + L^C,'^'+V, = (6)

The assumed solutions Vi = Ae'''\ V^^Be^''^ lead, after elimination

of the ratio B/Aj to the equation for p ( = 27rw),

p*L,C^L^C^{l - F) -pHL.Ci + L^C^) + 1=0 (7)

Each circuit has therefore two frequencies of oscillation rij, nj (n2>ni)

given by the equation

The conditions at the moment of break (t = 0) are

Vi = 0, i.e. Vi=-E,

^2 = 0,

dV, yp
dt C/

where yo denotes the primary current just before break.
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It can be shown that the solution of (5) and (6) corresponding to these

initial conditions is

F2 = ^^"%^^^'K8in27rni<-nisin27rn20, (9)

^Sf^)^r'^^^'-''' ''''

The wave of potential in the secondary circuit after break therefore

consists of two oscillatory components of different frequencies, which

begin in opposite phase, and the amplitudes of which are inversely

proportional to their frequencies.

In the primary circuit the two components- begin in the same phase,

since the value of Lfi^ lies between those of lliir^n^ and Ij^-Tr'^n^.

For given values of L^x, yo, **i
and n^ the value of V^ is stationary

at times given by dV2ldt = 0, i.e.

cos 27rWi^-cos 27rW2< = 0, (11)

or sin TT {ui + 712)1 . sin 7r{n2-nj)t = 0.

The stationary values of Fg therefore occur at the times

^1 + ^2 nj + Wg W1 + W2
y ^2)

. 1 2 3
Iand > > , •••

.

Wg-Wj »*2"'^l *^2~'^l ^

At any stationary value we have, by (11),

sin27rn2<= rt:sin27r%f, (13)

the upper sign giving the numerical minima of Fg, the lower sign the

maxima.
Substituting in (9), we find that the numerical maxima lie on the

(«, y) curve ^ ^
?/ = 27rZ2iyo—^—^ sin 27rni^, (14)

^2 — fii

the minima on the curve

y= 2'7rL2iyo —^- sin 27rni< (15)

In dealing with the maximum secondary potential of an induction

coil we are only concerned with the greatest maximum of F2 in the

first half-period of the slower component. Even though there should

be a closer coincidence of maxima of the two components in some

subsequent half-period, the amplitudes are by this time so much
reduced by the damping that the potential seldom, if ever, reaches a

value equal to the greatest in the first half-period.
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We may distinguish as the principal maximum of V^ that which

occurs nearest to the first summit of the curve (14), i.e. at the time

nearest to <«l/4n,. The first maximum occurs at the time £= - ,

and this is the principal maximum if the frequency-ratio njn^ is between

1 and 5. If n^^bn^ the first maximum is equal to the second, and they

1 2
occur at times , . If nJn* is between 5 and 9 the second

Hi + n, n^-^n^
. .2

maximum is the principal maximum, occurring at the time

If n2 = 9wj the second and third maxima are equal, and if n2ln^ is between

9 and 13 the third maximum is the principal maximum, and it occurs

3
afj f

• and so on.
Hj + nj

Consequently the principal maximum secondary potential is given

by the equation « ^
V^ = 2irL2,y, '

I
sin0, (16)

where 0= if — is between 1 and 5,

,(17)

^=„l^. « " '''

If njn^ has one of the values 3, 7, 11, ... maxima of the two oscilla-

tions occur simultaneously, the principal maximum occurring at the

time l/4ni ( ^ = ^ j, and being equal to the sum of the amplitudes of

the components.

The expression 27rL2iyoWiW2/(^2~^i) represents the sum of the

amplitudes of the components of the potential wave in the secondary

circuit. It is convenient to express this quantity in terms of 1^ and

the ratio LfiJLjJ^- Calling the latter u we find from (8),

^1^2 _ 1 /
1

The sum of the amplitudes is therefore

h^Q^. \ _, (18)

or ^^' U,
s]L^2

where C/*= V (19)
l+tt-2>/tt(l-ifc*)
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The principal maximum secondary potential is therefore

' 9m —2TO

V-^2^2
U sin (p, .(20)

the angle ^ being found from (17) and the frequency-ratio Jij/n,, which
is given by ^

^

l+u + J{{l-u)^ + ik^u}

V l+u-J{{l-u)^ +Wu} ^ ^

One important problem connected with the induction coil is that of

determining the optimum primary capacity, i.e. the capacity of the

condenser connected across the break which gives the greatest potential

at the secondary terminals when the induction coefficients of the

circuits, the secondary capacity, and the primary current immediately

before the interruption are all given. In these circumstances the only

variable in the expression (18) for the sum of the amplitudes is u (which

is proportional to the primary capacity), and we find from (19) that

U has a maximum value of 1/k when u = l-k^. Also sin has its

maximum value unity when the frequency-ratio ng/n^ is one of the

numbers 3, 7, 11, 15, ... . Both of these conditions are satisfied if the

coupling P has one of a series of values which may be calculated from

(21) by putting in this equation u = l-k^j and Wg/w^ successively equal

to 3, 7, 11, ... . The first four of the series, with the corresponding values

of u (i.e. 1-k^), are given in Table I.

TABLE I.

nyni. k*. tt= !-*:».

3 0-571 0-429

7 0-835 0-165

11 0-902 0-098

15 0-931 0-069

If the coupling has one of the values given in the second column of

Table I., the optimum value of wis given by the corresponding number
in the third column, and the most effective value of the primary capacity

ia {I -k^)L^CJL^.
In any one of these adjustments of the system the principal maximum

secondary potential is, by (20),

^2170 1

k^^"^"v/lA

yo VfeV; .(22)

so that ]: r ., 2 _ £ /7 y2 r^ .(23)
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Turning now to the primary circuit equation (10) enables us to

calculate the potential difference in the primary condenser at the

moment when the secondary potential reaches its greatest value.

This occurs at the time t = l/in^ if nj/rij has one of the values 3, 7, 11, ...

,

so that sin27rnif = l and sin27rnji«-l. The value of Kj therefore

becomes at this instant

The condition u = l -k^ makes this expression vanish, since the

denominator cannot be zero in any actual case.

Consequently in any of the adjustments specified in Table I. the

primary condenser is uncharged at the moment when the secondary

potential reaches its greatest value ; the two potential waves in the

primary have in fact equal amplitudes, and at the instant in question

the potentials in the two components are at their maxima, but in

opposite phase. Further, since dVi/(U = and dV2/dt = 0, there is

no current in either circuit, and as we are neglecting all causes of

dissipation of energy, including hysteresis and eddy currents in the

core, it is clear that at the moment in question the whole of the energy

exists as electrostatic energy in the secondary circuit, the value of

which must be equal to the electrokinetic energy iL^y^^ initially supplied

to the primary circuit. The expression on the right-hand side of (23)

therefore represents the energy of the charge on the secondary circuit

when its terminals are at a potential difference Fg^-

What may be called the efficiency of conversion of electrokinetic

into electrostatic energy is unity in each of the adjustments specified

in Table I. if all damping losses are neglected.

If the coupling has not one of the above special values the maximum
value of U sin does not occur when = 7r/2. In such cases one must
resort to numerical calculation and find by trial the value of u which

gives the greatest value of f/ sin ^. The value of U sin </> for any given

values of w and k^ can be calculated from (21) (which gives the frequency-

ratio), (17), and (19). For any given value of J^ the frequency-ratio

ng/^i is smallest when Lfi^^LjJ^^ i^^ value then being equal to

J{\-\-k)l{\-k). Thus if the coupling is 0*64 the smallest ratio is 3,

if it is 0-779 the smallest ratio is 4, and the frequency-ratio 5 is the

smallest for the coupling 0-852. The ratio 2 does not occur if the

coupling is greater than 0-36, a value much lower than those usually

found in induction coils.

When the primary capacity is reduced from the value given by the
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equation Lfi^ —L^^ the frequency-ratio steadily increases. We
shall confine our attention to this range, because we find therein the

highest values of the secondary potential and the optimum value of

the capacity. The diagram in Fig. 253 shows the manner in which,

according to the theory with damping neglected, the maximum secondary

potential varies with the capacity of the primary condenser. The
coupling in this case is 0-571, the first of the values given in Table I.

The abscissa u represents the ratio LfiJLjJ^, which is proportional to

Cj, the other factors being constant. The ordinate of the full-line

curve represents U sin 0, which is proportional to the maximum
secondary potential produced at the interruption of a given primary
current. This curve consists of a series of arches of which the first

—counting from the right—is the largest and highest, and the second,

third, etc., form a diminishing series. The abscissa of the summit
of the highest arch determines the optimum value of the primary

capacity.

1-3 ^—^^,

/
12

'

1

1 ^S >

A

\

M A \V 1
k^= )-571

10
0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 10

U.
Fig. 253.

The ordinate of the broken-line curve in Fig. 253 represents the

function IJ ^ which is proportional to the sum of the amplitudes of the

components. It therefore represents what the maximum potential

would be if the two components in the secondary were always in

the same phase at the moment of maximum potential.

The difference of the ordinates of the two curves represents the

deficiency in the maximum potential arising from the fact that the two

component oscillations are not generally in phase with each other at

the instant when the maximum occurs. This deficiency is greatest

at the points of intersection of the arches, which must therefore repre-

sent those adjustments in which the phase-difference of the com-

ponents (at the peak of the potential wave) is greatest, i.e. in which the

frequency-ratio has one of the values 5, 9, 13, ... . The broken-line curve

touches each of the arches of the maximum potential curve. In the

adjustments corresponding to these points of contact the maximum
potential is therefore equal to the sum of the amplitudes of the com-

ponents, so that the frequency-ratios are 3, 7, 11, ...

.
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It will 1)1' ohsorvwl that one of the jMintA of contact in Fig. 253, viz.

that at which njni = '6 occurs at the summit of the brokcn-line curve.

Ill thi.s adjustment, therefore, not only is the maximum i>otential equal

to the Bum of the amplitudes, but the sum of the amplitudes has also

its maximum value. The conditions are therefore, as already explained,

the most favourable possible for the production of high secondary

])otential and 8|)ark-length.

Turning now to the experimental side of the question, one way of

changing the coupling of an induction coil is to draw out the primary

and core to various distances along the axis of the secondary. In

order to determine the effect of varying the coupling it is desirable

to connect a condenser to the secondary terminals in parallel with the

spark-gap, so as to minimize any effects arising from the variation of

the capacity of the secondary coil due to the displacement of the

primary. When this experiment was tried with a certain 18-in. coil,

the primary capacity being adjusted to the optimum value for each

i—*.8166 I
o

1 ,^ .^
•;

/
^

-A^/
'^

0*Q I\
1

'^\
k'^ )-5a(

0-8

FIO. 254.

K) 11 mfd.

position of the primary, it was found that the length of spark pro-

duced at the interruption of a given primary current fell to a minimum
in a certain position of the primary, and increased to a maximum
when the primary was drawn out beyond this position. In the position

of maximum spark-length the primary was about one foot from the

central position, i.e. from the position of maximum nmtual inductance.

With the primary in the position of greatest spark-length the coupling

was found to be 0-58, which agrees fairly closely with the first of the

values indicated by the theory as the most effective when the oscilla-

tions are undamped.
The manner in which the maximum secondary potential varies with

the primary capacity, for this position of the primary coil, is shown
in Fig. 254. In this diagram the abscissa is the primary capacity in

microfarads, the ordinate the reciprocal of the smallest primary current

required to cause a spark to appear at a constant gap, which is pro-

portional to the maximum secondary potential due to a given primary
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current. It will be seen that this curve also consists of a scries of

arches, which have much the same relative proportions as those of

Fig. 253. The values of u at the chief maxima and minima of the

curve (shown above the diagram), determined from measurements of

the inductances and capacities, also show fairly good agreement with

the corresponding abscissae of Fig. 253. It is clear that in this case the

damping of the oscillations is not sufficient to cause any great difference

in the optimum capacity or in the relative proportions of the arches of

the " capacity-potential " curve, though the value of the potential is,

of course, considerably reduced by the damping.

1-2

10

,--
— /= 0-71

,f\ /
^ :<; ^

1 \ /
^<-

V ^
0-1 0-2 0-3 0-4 0-5 06 07 08 0-9 10

Fia. 255.

When the coupling is increased the first arch of the capacity-potential

curve diminishes relatively to the others, becoming equal in height

to the second arch at the coupling 0-71. Fig. 255 shows the calculated

curves for this coupling. In this case the first arch does not come into

M 9 P

.10

0-9

^

—

1

1

k"^ 0-69 ,

/\
unn- •o^-^

y \/ ^
5 6

Fia. 256.

9 10 11 mfd.

contact with the broken curve, since the coupling is greater than 0*64,

the limiting value for the frequency-ratio 3. There are two optimum
capacities, given by w = 044 and 0-09, the abscissae of the summits

of the first two arches. These summits are well below the highest

point of the broken curve, so that at the coupling 0-71 it is impossible

to obtain the highest efficiency of conversion of electrodynamic into

electro&tatic energy. This coupling represents, in fact, the least efficient

value likely to be met with in induction coils.

In actual coils the least efficient coupling appears to be rather smaller

than the corresponding value for a coil devoid of damping. When the
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primary of the 18-inch coil was placfd in the {)08ition of niininmni

spark-len^h the couplin}^ was found to be 0-699. The experimental

curve for this jmHition is shown in Fig. 256. This curve showB the same
general characteriHtics as the theoretical curve of Fig. 265. In par-

ticular it shows two optimum capacities having nearly the same ratio

as those of the theoretical curve.

If the coupling is further increased the first arch continues to decline,

and it finally disappears at the value 0-862. At the coupling 0-87 the

second and third arches are equal in height, and there are again two
optimum capacities. At 0-9 the third arch touches the broken curve

at its summit, this being one of the values which give maximum efficiency

of conversion.

When the coupling is varied by drawing out the primary coil the

two values 0-571 and 0-835 would, in the absence of damping, be

equally effective from the point of view of spark-length for a given

primary current, but on the experiment being tried with the 18-inch

coil the spark-length was found to be decidedly greater with the smaller

of these two couplings than with the other. It is clear therefore, both

on theoretical and on experimental grounds, that the spark-length of

an induction coil does not necessarily increase with the mutual induct-

ance* nor with the coupling, and it appears that the effect of the

damping (chiefly due to core losses) in reducing the secondary potential

increases with the coupling.

The form of the capacity-potential curve is characteristic of the

coupling and may be used for approximately determining the coupling,

since the relative proportions of the principal arches, in a well-

constructed coil, are not greatly modified by the damping.
The wave-form of the secondary potential of an induction coil may

be observed by means of the electrostatic oscillograph, an instrument

which can be connected directly to the secondary terminals of the coil

and can be used for potentials up to about 200,000 volts. The essential

parts of the instrument include a metallic strip under tension, which
carries a small mirror at its middle point and is placed between two
metallic plates, to one of which it is connected. The other plate may
be enclosed in an ebonite sheath. The lower edge of the mirror can be

held fixed by an adjustable insulated platform brought into contact

with it. The instrument is placed in an ebonite vessel containing a

damping oil and provided with a window. The angular deflection of

the mirror is proportional to the square of the difference of potential

of the plates.

A narrow pencil of light proceeding from a pinhole falls upon the

mirror, a part of the pencil striking another small mirror attached to a

tuning-fork mounted in front of the instrument. The two reflected

rays fall upon a rotating mirror by which they are focussed upon

*In the position of greatest spark -length the mutual inductance was 61 per
cent., in that of least spark-length 81 per cent., of the maximum.
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a photographic plate where two small images of the pinhole are

formed.

Some examples of the photographs obtained when the instrument

was connected with the 18-inch coil (no discharge passing between the

terminals) are shown in Fig. 257. The lowest curve was obtained when
the coupling and the capacity were those corresponding to the summit
of the first arch in Fig. 254, i.e. the primary coil was drawn out to the

position of maximum spark-length and the primary capacity adjusted

to its optimum value. The curve shows the peaked summits and
flattened zeroes characteristic of the frequency-ratio 3, which we find,

on referring to Fig. 253, should be the ratio for this adjustment.*

FlQ. 257.

The second curve was obtained when the primary was placed in the

position of minimum spark-length and the primary capacity adjusted

to the value corresponding to the summit of the first arch in Fig. 256.

The frequency-ratio in this case is about 3*8.

The uppermost curve of Fig. 257 was obtained when the coil was

approximately in the adjustment corresponding to the point of inter-

section of the first and second arches of Fig. 256. The frequency-ratio

is clearly about 5, as it should be according to the theory.

With the primary capacity adjusted to give the summit of the

second arch of Fig. 256, the curve was that shown in Fig. 258, the

frequency-ratio being about 6-6.

Fig. 259 was obtained when the capacity was that corresponding to

the second minimum of Fig. 256, the frequency-ratio here being 9.

The period of the time curve in each photograph is 1/768 sec.
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The curves of Figs. 257...269 represent cases in which the secondary

terminals of the coil arc connected with a condenser, but similar curves

are found without the condenst^r. These curves preserve their form,

the anii)litude only changing, when the primary current is varied over

wide limits. The greatest ordinate of the curve in any case is approxi-

mately proportional to the square of the primary current at break.

It may be noticed that the theoretical and experimental results

here described are not in agreement with those of Ix)rd Rayleigh,*

according to which the longest secondary spark should be obtained

without any primary condenser, provided the interruption of the

primary current takes place with sufficient rapidity, the only use of

the condenser with ordinary interrupters being to quicken the break

FlO. 2r>8.

Fio. 250.

by preventing the formation of an arc between the contact surfaces.

Rayleigh obtained experimental evidence on this point by interrupting

the current by firing at the primary wire with a rifle, and found that

in these circumstances the secondary spark for a given primary current

was longer without any condenser than with the condenser attached

to the coil. A repetition of the rifle-bullet experiment.f however,

has shown that even with this rapid interruption a longer spark is

obtained with than without a condenser, provided the capacity of the

condenser is the optinuini indicated by the theory described above.

*Phil Mag. ii. p. 593 (1901). t Phil. Mag. April, 1914, p. 583.

3u



APPENDIX II.

ZONAL SPHERICAL HARMONICS.

A SPHERICAL harmonic may be defined as a homogeneous function of

X, y, z which satisfies Laplace's equation,

dW d^V dW ^

w^W^^^"" ^'^

Since it is homogeneous it satisfies also the relation

dY dV dv „
''d^-'yw^'d—''^

(')

if n be the degree of the function.

The fundamental equation may be transformed by the substitution

of the variables, r, 6, cp, connected with x, y, z by the equations

a; = rsin^cos^, ^

y = rsmd sin^, ^ (^)

2 = rcos^. J

Of these may be regarded as the co-latitude and (p the longitude,

or and may be taken as respectively the polar distance and right

ascension of the point x, y, z, of which r is in both cases the radius

vector from the origin.

When these substitutions are made Laplace's equation becomes

if yu denote cos 0.

Equation (2) becomes plainly

^ f="7
(5)

Or r

The last result gives

786
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Hence (4) takes the form

If F denote a spherical harmonic of degree n, we may write it in

the form r'^S„. Sf^ is a function of 6^,^, but not of r, and is called a

spherical surface harmonic of degree n. It satisfies by (6) the equation

i~.^i?-i{('-o-(-^)^=^ <^)

If r^Sn denote a spherical harmonic of degree n, f^^+'^/S^ denotes

a spherical harmonic of degree -(n + 1). To prove this we have only

to notice that it clearly satisfies (6), since <S>„ satisfies (7). Again if we
denote it by F, we have

|7 = -(n + l)r-'"+«S„=-*^iF,

which is what (5) becomes when n is changed to - (n + 1).

If Sf^ is symmetrical about an axis it is called a zonal surface har-

monic (or simply a zonal harmonic) of order w. We may take the axis

of symmetry as axis of z, so that the symmetry is expressed by making

Sn independent of </>. We shall denote a zonal harmonic of order n by Z„.

The differential equation satisfied by Z„ is, by (7),

|^{(l-M')^||^j+n(n + l)i/ = (8)

The discovery of zonal harmonics resolves itself then into finding

particular solutions of this equation. The most important case, and
the only one which we here consider, is that in which w is a positive

integer.

We assume first that u may be expanded in a series of powers of /x-

Thus writing

w = ^i;u'»i + ^2M'"* + ---
' .-(9)

substituting in the differential equation (8), and equating coefficients

of like powers of /x, we get first from those of /x"'S

{nil- n){mi + n + 1) Ai = 0.

Since ^^ is not zero this gives Wi = w, or mi= -(n + 1). Thus there

are two solutions according as ?% is taken =n, or = -(n + 1). Wg is

then found to be m^ - 2, m^ = m^ - 4, etc.

Again the successive coefficients in (9) are found to be connected

by the relation

2(r-l)(2mi-2r + 3)
'^''

whichever value is given to m^.
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Hence if we take mi = n, (9) becomes

The series within brackets in (10) is finite and has for last term

{-lY-^n\n\n\/{^n\^n\2n\) if n be even, and

(
_ l)h(n-^)^n\n\{n - l)!/{i(n - l)!i(w - l)\{2n - 1)!}

if n be odd. The numbers of terms in the two cases are J(n + 2)

and ^{n + 1).

Another series is obtainable by putting mi= -{n + 1). This and the

former multiplied each by an arbitrary constant and added together

give the complete solution of (8).*

The series in (10) with 2n\/2^{n\)^ substituted for Aj^ is what is called

the zonal surface harmonic of order n. Thus

" 2^n\n\V 2{2n-l)^ 2 . 4 . (2n- l)(2n-3)^ / ^ '

It may be verified by differentiation that

^••= 2i|^«''^-l)">' <1^)

and by expansion of (1 - 2yu^ \-h^)~^ in ascending powers of h that Z„ is

the coefficient of ^" in the resulting series. It is this latter fact that

renders the choice of the value above assigned to A^ convenient.

By means of (11) we can at once write down the zonal surface harmonic

for any assigned value of n. Thus, for values of n from to 7,

5 3 3.1 7.5 , .5.3 3.1
^3 = 2^ --^^' '^*^2:4^ "272^ "^274'

„ 9.7 , 7.5 3 5.3
^5 = 271'' 2:^^ +2T4'''

^11.9.7 e
9-7.5 7.5.3 , 5.3.1

« 2.4.6 ^ 2.4.2^ 2.4.2^ 2.4.6

13.11.9 ^ 11.9.7 5 9.7.5 ^ 7.5.3
^~ 2.4.6 ^ 2.4.2 ^ "^2.4.2^ 2.4.6^*

A numerical table of the first seven zonal surface harmonics calcu-

lated by Professor Perry for values of /u for every degree from to 90°

is given at the close of this note.

The following method of defining a solid spherical harmonic is due

to Clerk Maxwell {El- and Mag. vol. i. chap. ix.). Let ^n electric

* For a full discussion of the solutions of (8), see Forsyth's Differential Equa-
tions, §§ 89-99.
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doublet of moment ^j be placed at the origin with its axis in any direc-

tion the cosines of which are /, m, n, then, by (8), p. 787 above, it* poten-

tial at the point (x, y^ z) at distance r from the origin is

''>=-*>('a^+'»ay+''a.)r*'(''+'»f+%)i-

If then the operation Id/dx + md/dy + tid/dz be denoted by d/dhi, where
A, in a distance along the axis, we may call the operation differentiation

with respect to the axis A,, and we have

''--^'iO-^'^HT'' <»«)

where /xj is the angle between the direction of h^ and of the line drawn
from the origin to {x, y, z).

With respect to this kind of differentiation we may notice that if

the suffix j indicate any axis whatever with direction cosines l^, nij, tij,

and /jij denote the cosine of the angle between the axis referred to and
the line from the origin to (x, y, 2), and X the cosine of the angle

between the axes, we have 1

cfr"'
^''^

Again, if the suffix A; indicate another axis,

=^{(y*+»»,»»t+»,«»)-(f,^+'»>)f+«,p^J

= J(\»-<».M*) (15)

Now let two doublets of moments -$i, +^1, with axes parallel to

Aj, be placed with their centres on another axis Ag ^^ distances -
J5/*2,

+ ^5^2 i^om the origin, the potential at {x, y, z) due to the pair of

doublets is

If we diminish ^dh^ indefinitely and increase 4>i so that ^^dh^ remains

a finite quantity ^2/2, we have

17 ^ 1 ^
---2dir,(") <*«>

Hence performing the differentiation we get
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This is the potential due to what may be called a doublet of the

second order placed at the origin. It may be written

^^=(-i)^44iC>- (^«)

Let now the doublet of the second order we have just supposed
built up, be imagined placed with change of direction with its centre

on a third axis h^ at a distance \d}i^ from the origin, and an equal

doublet of the second order but of opposite sign placed with its centre

on the same axis at the same distance from the origin on the opposite

side. Then the potential of this arrangement at (x, y, z) is

If we diminish dh^ and increase $2 ^^ "^^^^ ^2 ^^3 remains finite and
equal to ^3/8, we get a doublet of the third order at the origin with

axes Aj, h^, h^, which produces a potential at {x, y, z) of amount

F3=(-i)»#3ri3ii4© <^^)

Proceeding in this way we can build up a doublet of any order n with

axes hi, h2, '.. h„. The potential produced at {x, y, z) by this doublet is

'^-^-'^"<^.kk-k^^
<''^

if#„=i. yr.<-^)"^,kk-kO
'''''

and is a solid harmonic of degrees -(w + 1). For, performing the

differentiations transforms the equation into

7„ = r-<"+'«„, (21)

where S,^ is a function of the n cosines of the angles between the axes,

and the line from the origin to {x, y, z) and of the 7i{n-l)/2 cosines

between the different pairs of the axes. Also F„ obviously satisfies

the definition of a spherical harmonic given above.

The value of /S„ can be found by successive applications of (14).

Thus

'S'a = IMiM2/W3 - i(AllA23 + M2^31 + Al3^12).

7.5 5
^^^4= 274 MlM 2^3/^4 - 2~4(MiM2^34 + /^2/^3^41 + ^3^4^12

+ ^4AtiX23 + /^lA'3^24 + M2M4^13) + 2~^ (^12^34 + ^23^14 + \l^ 2^'

..(22)
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The general surface harmonic has the expression (Maxwell, EL and
Mag. vol. i. p. 188, 2nd ed.)

^»=s[(-^)'2^l^i)TS(M-^v) (23)2—n!(n-«)!

in which 2(/x" "'''X'') denotes the sum of all products of terms of which

s of the factors are different cosines X with double suffixes and n - 2«

factors are different cosines fn with single suffixes, and the extern^tl 2
denotes summation for all values of 8 from to Jn. It is clear, since

the suffix of each axis appears once and once only in each term, being

brought in by the differentiation with respect to that axis, that if

there be s factors with double suffixes in any term there must be n - 2«

factors in the same term with single suffixes.

If all the axes coincide, say with the axis of z, the harmonic becomes

a zonal solid harmonic; and S„ degenerates into a surface harmonic

of order n. Thus the solid harmonic is

r—.2,=(-l)"lgQ (24)

yti+l An /1\
--^ ^••=<-i)"irl.-C) <^^>

It may be verified by expansion that this agrees with (11) and (12).

Useful fundamental relations of zonal harmonics can be deduced

from equations (8) and (12). They may be used for example in

establishing the zonal harmonic formulae of VI. and VII. above.

d/ji'

d»

But if u denote any function of jul we have by successive differentiation

d** , , d»~% d^u

Putting M= (,u*-1)""^, and using this result in (26) multiplied by

ju^-l, we get

2"-Hn - l)!(;o.'' - 1)Z'„= n^^ j'^-_\ {(m" - D""'^

+ m(m'-1) j^"„ {(-"'-l)"''} -»/^"^-i {(A-"-!)"-'} (28)

But by (8),
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since the integral vanishes at the superior hmit. Hence, taking the

two first terms on the right of (28), we get

v/^{(m'-1)"-'}+m(/u'-i)/"„{(m^-1)"-H

n/uL [n - 1)^, {(m^ - !)»-'} + M S^', {(/'^ - 1)"-'}]"
-/i'

= »/»^i{m(m'-1)"-'} [by (27)]

=
2;^^V^^(^^-1)">

==2«-Mn-l)!n^Z„.

Substituting in (28) and dividing by 2"~i(n - 1)! we find

(M2_i)Z'„ = n^Z„-nZ„_i, (29)

which is the first of the two relations used at p. 205 to obtain (73).

We can still more easily prove the second of VI. 23 (73) directly
;

we have

[by (2T)1

= «Z„_i + mZ'„-i (30)

Hence Z„_^ = \(Z'n- ,xZ,\_,),

which is the second of VI. (73) above.

The other relations may be established by similar processes.

The following theorem is of great importance : If Z^, Z„, be two
zonal surface harmonics of orders, m, n,

r Z^.ZJ^Jl^^'^^^f^^zM^) (31)
J^

'^
[n - m){m + n + 1)

To prove it we have by (8)

~{{l-/^')Z'^} +m{m + l)Z„ = 0,
dfA

|;{(l-M')Z'„}H-n(«+l)Z„=0.
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Multiplying the first of these by Z„, the second by Z^ and subtracting,

observing that w(w + 1) - m(w + 1) = (n - m)(m + n + I), we find

in-m){m + n+l)Z„Z„=Z„~{{l-f,^)Z'^}-Z„f~^^^

».-{(l-M*)(^n^'m-^m^'„)},

which gives (31) at once by integration.

If the integral in (31) be taken from -1 to +1, then l-/x' = 0,

at both limits, and the expression on the right vanishes unless either

n = tn or n = - (m + 1). Hence, if neither of these conditions is fulfilled,

C'Z^ZJ^^O (32)

We shall now j^ivo some examples of the use of spherical harmonics

in expansions. First we shall take the expansion of l/PP', where PP'
is the distance of a point P from another point P'. Let r, r', be the

distances of the points from the origin, fx the cosine of the angle

POP' ; then we have

^-, = (r2-2Mf/ + 0-*.

If we write h for r' /r, and if A<^1, we can expand this in a convergent

series of ascending powers of h. But we have seen that Z„ is the co-

efficient of A" in the expansion of (1 -2/jLh + h^)~^. Hence

~ =
\ {Z„+Z,h+ZJi^ + ...} (33)

If r'/r^l we have only to put h = r/r', and we get

1 1

PP'
-,^-j{Z^+Z,h+ZJi^ + ...} (33')

r

By means of this result the potential of any distribution, whether
of attracting matter, or of electricity or magnetism, can be expressed

in a series of zonal harmonics.

Fig. 260.

For let A be the distribution, P' the position of an element, P the

point at which the potential is to be found. Then taking coordinates

from an origin 0, r, r', are the distances OP, OP'y and /jl the cosine of
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the angle POP'. Hence, if dv5 is an element of the distribution, its

potential is j_ j_
^J^(Z,+ZMZJfi + -) (34)

if r^/, and

g, =^(Zo +V + Z2^2^...) (34')

if />r.
The total potential is thus

or

(35)

the integral being taken throughout the distribution.

'

If for one part of the distribution r^r', and for another part r<^r',

the integration must be divided into two corresponding parts, one for

which h = r/r', and the other for which h = r'/r.

If ZOP' be denoted by 0', ZOP by 6, and the angle which the plane

of P' and the axis OZ makes with a fixed plane through the axis by 0',

then if p be the density of the distribution at P',

dz^ = pr^ sin e'de'd(l>'dr\

and the integral must be taken between limits and tt for 0', and 27r

for (p', and and r\ for r', where r\ is the superior limit of r for given

values of 6 and 0'.

An important theorem due to Legendre greatly facilitates calcula-

tions of potentials, forces, etc., for the case of symmetry round an

axis. Let it be possible to express the quantity (supposed to satisfy

Laplace's equation), which it is desired to calculate, for points along the

axis in a series of ascending or descending powers of z, according as

may be necessary for convergence. Thus for points on the axis let the

quantity sought be v^ ; then by hypothesis

''•• = « +7+^ + 73 +
-

I
(36)

or v^^ = a'Q + a\z + a'2Z^-{^a'QZ^ + ... .)

We can from these expressions find the value of v for any point

not on the axis, say at a distance f from it. If r^ = Jz^ + ^ we have

^0 -?! +
»•'

!- (37)

or v = a'QZQ + a\Zj^r + a'2Z2r^ + ...

that is we have only to substitute r for z, and multiply the terms of

coefficients CTq, a^, etc., by the zonal surface harmonics of orders indi-
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cated by the suffixes. It is to be observed that the zonal surface har-

monics are chosen for the terms in the two series, so that in each case

the terms are the successive zonal solid harmonics, in the first series

of degrees -1, -2, -3, etc., in the second of degrees 0, 1, 2, 3, etc.

These involve in both cases the same successive harmonics of orders

0, 1, 2, 3, etc., according to the theorem proved above that to every

solid harmonic r"/S„, of degree n, there corresponds another r'^'^^^S^

of degree -(n + 1).

As an example take the case of a wire bent into a circle of radius a,

and carrying a current y. The magnetic potential at a point on the

axis of the circle at distance z from the centre is

We may write l-z/Jz^ + d^ in the form 1 - ( 1 + a*/2*)~% and if o<[2
expand in descending powers of z. Thus we find

,, „ /I a* 3 a* 5 a« 35 a8 \ ,„,

In like manner if a)>2, we obtain

Thus for points taken anywhere we get from (38) and (39)

F=2xy(l-^Z.4L>3-|„^:Z» + ...)J

according as a<[ or ]>r.

An exanij)le is the problem treated at VI. 23 above. Another

example is given by the problem of two shells discussed in VI. 21 above.

The theorem used in equations (37) and (40) may be regarded as a

limiting case of Green's theorem, that if a function of x, y, z is found

to satisfy Laplace's equation throughout space external to a closed

surface, and to give specified values for points on the surface, that

function is the only one fulfilling these conditions. In the present

case the closed surface is shrunk into a line, and in strictness the theorem

requires special demonstration. Legendre's own proof will be found

in Minchin's Statics, vol. ii. p. 341 (2nd ed.). The following proof

given by Minchin, p. 324, loc. cit., is simpler.

For the case of symmetry round an axis, if f be the distance of the

point considered from the axis Laplace's equation takes the form

.fdW dW\ dV ^ ,,,,

(40)
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which it is to be noted gives

dV d^V

af
=^' af^=^

(^2)

at all points on the axis in the space throughout which it is supposed
that the equation holds.

If then we know a function U which satisfies (41), and gives the
specified values at points on the axis, let if possible V be another function

which does the same thing. Then V-U (=# say) must fulfil (41),

and be zero at points on the axis. Hence at all such points

dz ^' dz^
^' - •

We can now show that for any point on the axis

For at any point on the axis we have seen [(42)] that d^/d^= 0,

a24»/af2_0, and by (27) above

af"iH8z2 +afv +
^f/

Hence, for points on the axis,

a^ /a'*-^$\ a"+^$
a^Aa^j+(^+i)a^=o.

If therefore d^-'^/d^^-^^O for points on the axis, a'*+^c^/af"+*=0.

But a*/af= and d^^ld^^ = 0, and therefore d^^13^^ = 0, and so on.

Hence it follows, since the differentiations are commutative, that

a'»+"^/az'"af"=o.

Expressing then $ as f{z, f) and expanding by Maclaurin's theorem,

denoting values of <l>, d^/dz, etc., for points at the origin by the suffix

0, we get

since all the differential coefficients vanish.

Hence $ = 0, everywhere, which proves that U cannot differ from V.

It is shown above, p. 212, that for any integral value of i

n

where Z^ is a zonal harmonic of order i, x^fxr, and ^ = Va^ + a;^ - a;.

The evaluation of these integrals is of great importance for the calcula-

tion of the inductances of coils, and by this theorem they can be
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obtained at once by Bimply finding the successive differential coeffi-

cients oi A. As proniiKed we give here the first eleven differential

coefficientH. It may be noted that they can be written down with

great facility from the known expressions for the succeasive zonal

harmonics by the equation

dz'^'

dA ^x d^Aa^
dx r ' dx^ T^

ao J 1

^JT = 32.5a2(21x4-Ua:V + r*) ...

ffA 1

Y^
= - 32 . 5a*x(231x* - 210a;V« + 35r*) -^3.

^^^ = 32 . 5a2(3003x« - 3465x*r2 + 945rV* - ^!^)~y

1^ = - 32 . 5 . 7a2a:(6435x« - 9009x*r2 - 3465xV - 315r«) 4^-
ox^ f

"^ ^= 33.52.7a2(7293x8-12012x«f* + 6006a:*r4
a^io

924xV + 21r8)J^jg.
r

l^ = - 32 . 52 . 7 . 9a2a;(46189x8 - 87516x«r2 + 54054x<r«
ox^^

-12012xV5 + 693r«)^j.

* It is to be remembered that in the table here given d*An]d>x' has the meaning

of -d'-^AJdx'-^ in VI. 24, but aijrees with c'AJd^ in VII. (See the note on

p. 209.1
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TABLE OF ZONAL SPHERICAL HARMONICS
(Prof. Perry, Phil. Mag. Dec. 1891. See also p. 824 above.)

e Zi z. ^3 z. z. z. ^7

I-0000 I-0000 I-OOOO I-OOOO I 0000 I-OOOO I -oooo
I .9998 •9995 •9991 •9985 •9977 •9967 •9955
2 •9994 .9982 •9963 •9939 .9909 •9872 •9829

3 .9986 •9959 •9918 •9863 •9795 •9713 •9617

4 .9976 .9927 •9854 •9758 •9638 •9495 •9329

5 •9962 •9886 •9773 .9623 •9437 •9216 •8961

6 •9945 •9836 •9674 •9459 •9194 •8881 •8522

7 •9925 •9777 •9557 •9267 •891

1

-8476 •7986
8 .9903 .9709 •9423 •9048 •8589 •8053 -7448

9 •9877 •9633 •9273 •8803 •8232 •7571 •6831
10 •9848 •9548 •9106 •8532 •7840 •7045 •6164

II •9816 •9454 •8923 •8238 •7417 -6843 •5461
12 •9781 •9352 •8724 •7920 •6966 •5892 •4732
13 •9744 •9241 •85 1

1

•7582 •6489 •5273 •3940
14 •9703 •9122 •8283 •7224 •5990 •4635 •3219
15 •9659 •8995 •8042 •6847 •5471 •3982 •2454

16 •9613 •8860 •7787 •6454 •4937 •3322 -1699

17 •9563 •8718 •7519 •6046 •4391 •2660 •0961

18 •951

1

•8568 •7240 .5624 .3836 •2002 •0289

19 •9455 •8410 •6950 •5192 •3276 •1347 - ^0443
20 •9397 •8245 •6649 •4750 •2715 •0719 -•1072

21 •9336 •8074 •6338 •4300 •2156 •0107 -•1662
22 .9272 •7895 •6019 •3845 •1602 - -0481 -•2201

23 •9205 •7710 •5692 •3386 •1057 -•1038 -•2681

24 •9135 •7518 •5357 •2926 •0525 -•1559 - -3095
25 .9063 •7321 •5016 •2465 •0009 -•2053 - -3463

26 •8988 •7117 •4670 •2007 - -0489 -•2478 -•3717
27 •8910 •6908 •4319 •1553 - -0964 --2869 --392I
28 •8829 •6694 •3964 •1105 -•1415 -•3211 - -4052

29 •8746 •6474 •3607 •0665 -•1839 - -3503 -•4II4
30 •8660 •6250 •3248 •0234 -•2233 - -3740 -•4IOI

31 •8572 •6021 •2887 -•0185 - ^2595 -•3924 - -4022

32 •8480 •5788 •2527 - •0591 - ^2923 - -4052 -.3876

33 •8387 •5551 •2167 - -0982 -•3216 -•4126 - •3670

34 •8290 •5310 •1809 -•1357 -•3473 -•4148 -•3409

35 •8192 •5065 •1454 -•1714 -•3691 -•4115 - ^3096

36 •8090 •4818 •1102 - -2052 -.3871 -•4031 -•2738

37 .7986 •4567 •0755 - ^2370 -•401

1

-•3898 -•2343
38 •7880 •4314 •0413 - -2666 -•4112 -•3719 -•I9I8

39 •7771 •4059 •0077 - -2940 -•4174 -•3497 -•1469
40 •7660 •3802 - -0252 -•3190 -•4197 -•3234 - -1003

41 •7547 •3544 - ^0574 -•3416 -•4181 -•2938 - ^0534

42 •7431 •3284 -•0887 -•3616 -•4128 - -2611 - -0065

43 •7314 .3023 -•1191 -•3791 -•4038 -•2255 •0398

44 •7193 •2762 -•1485 - -3940 -•3914 -•1878 •0846

45 •7071 •2500 -•1768 - -4062 -•3757 -1485 •1270



ZONAL SPHERICAL HARMONICS 799

Table of Zonal Spherical Harmonics (continued^

e Zi Zt z. z* z. z. Zj

46 •6947 •2238 -•2040 -•4158 -.3568 -•X079 •1666

47 •6820 •1977 -•2300 -•4^52 -•3350 -0645 •2054

48 •6691 •I7I6 -•2547 -•4270 -•3105 -0251 •2349

49 •6561 •1456 -•2781 - 4286 - 2836 + •0161 •2627

50 •6428 •II98 -•3002 -•4275 -•2545 + 0563 •2854

51 •6293 •0941 -.3209 - 4239 -•2235 + •0954 •3031

52 •6157 •0686 -•3401 -•4178 -•1910 + 1326 •3153

53 •6018 •0433 -•3578 -•4093 -1571 + •1677 •3221

54 •5878 •0182 -•3740 -•3984
-0868

+ •2002 •3234

55 •5736 - -0065 - 3886 -•3852 4- 2297 •3191

56 •5592 -0310 -•4016 -•3698 -•0510 + •2559 •3095

^l
•5446 "°55J

-•4131 -•3524 -•0150 + •2787 •2949
58 •5299 - -0788 -•4229 -•3331 •0206 + •2976 •2752

P •5150 -•1021 -•4310 -•3119 •0557 + •3125 •251

1

60 •5000 -1250 -•4375 -•2891 •0898 + •3232 •2231

61 •4848 -•1474 -•4423 -•2647 •1229 + •3298 •1916
62 •4695 -1694 -•4455 - -2390 •1545 + •3321 •1571

63 •4540 -•1908 -•4471 -•2121 •1844 + •3302 •1203

64 •4384 -•2117 - ^4470 -1841 •2123 + •3240 •0818

65 •4226 -•2321 -•4452 -•1552 •2381 + •3138 0422

66 •4067 -•2518 -•4419 -•1256 •2615 + •2996 •0021

67 •3907 -•2710 - 4370 -•0955 •2824 + •2819 - -0375
68 •3746 - -2896 - 4305 - 0650 •3005 + -2605 - 0763
69 •3584 - 3074 -•4225 - •0344 •3158 + •2361 -•"35
70 •3420 -•3245 -•4130 •0038 •3281 + 2089 -1485

71 •3256 -•3410 -•4021 •0267 •3373 + •1786 -•1811

72 .3090 -•3568 -.3898 •0568 •3434 + •1472 -•2099

73 •2924
- -3860

-•3761 •0864 •3463 + II44 -•2347
74 •2756 -•361

1

•1153 •3461 + 0795 -•2559

75 •2588 - -3995 -•3449 •1434 •3427 + 0431 -•2730

76 •2419 -•4112 -•3275 •1705 •3362 + •0076 - -2848

77 •2250 -•4241 - 3090 •1964 •3267 - 0284 -•2919
78 •2079 -•4352 - 2894 •2211 •3143 -0644 - 2943
79 •1908 -•4454 -•2688 •2443 •2990 -•0989 -•2913
80 .1736 -•4548 -•2474 •2659 •2810 -1321 -•2835

81 •1564 -•4633 -•2251 •2859 •2606 -1635 -•2709
82 •1392 - -4709 - 2020 •3040 •2378 -1926 -•2536
83 •1219 -•4777 -•1783 •3203 •2129 -•2193 -•2321
84 •1045 -•4836 -•1539 •3345 •1861 -•2431 -•2067
85 •0872 - -4886 -1291 •3468 •1577 - 2638 -1779

86 •0698 -•4927 -1038 •3569 •1278 -•2811 -1460
!7 •0523 - -4959 -•0781 •3648 •0969 -•2947 -1117
88 •0349 -•4982 - -0522 •3704 •0651 - 3045 - -0735
89 •0175 - -4995 - 0262 •3739 •0327 -•3105 -0381
90 •0000 -•5000 -•0000 •3750 •0000 -•3125 •0000



APPENDIX III.

Table for the Calculation of the Mutual Inductance M of Two
Coaxial Circles of Radii a, a', and Distance apart h.

Calculated for intervals of 6' in the value of

cos-i{\/(a - a'Y ^h'^lsj {a + a'Y + 1^} from 60° to 90".

[This tahle is taken from Maxwell's Elech-icity and Magnetism. It was lately

recalculated by the Bureau of Standards at Washington, and had been set up before
this was noticed. Some of'the terminating figures of the logarithms were found to be
in error, and some corrections have been made so as to render the largest discrepance
in the last figures not greater than 3 or 4.]

M M M
'^^Vv>^' '•''"'^Vai' '''^^,^/^'

60° 0' 1-4994783 64° 0' 1-6101472 68° 0' 1-7203000
6' 1-5022651 6' I -6128998 6' 1-7230635

12' 1-5050505 12' T-6156522 12' 1-7258281
18' 1-5078345 18' T-6184042 18' 1-7285940
24' 1-5106173 24' 1-6211560 24' 1-7313604
30' i'-5i33989 30' T-6239076 30' I-7341283
36' 1-5x61791 36' 1-6266589 36' 1-7368975
42' 1-5189582 42' 1-6294101 42' 1-7396675
48' 1-5217361 48' T-6321612 48' 1-7424387
54' 1-5245124 54' 1-6349121 54 I-7452III

61° 0' 1-5272880 65° 0' 1-6376629 69° 0' 1-7479848
6' 1-5300620 6' 1-6404137 6' 1-7507597

12' 1-5328351 12' 1-6431645 12' 1-7535361
18' 1-5356080 18' T-6459153 18' T-7563138
24' 1-5383796 24' 1-6486660 24' 1-7590929
30' 1-5411498 30' T-6514169 30' 1-7618735
36' 1-5439190 36' I -6541678 36' 1-7646556
42' 1-5466872 42' I -6569189 42' 1-7674392
48' 1-5494545 48' T-6596701 48' 1-7702245
54' 1-5522209 54' 1-6624215 54' 1-7730114

62° 0' 1-5549864 66° 0' I -6651 732 70° 0' 1-7758000
6' I-55775IO 6' T-6679250 6' T-7785903

12' 1-5605147 12' 1-6706772 12' 1-78x3823
18' 1-5632776 18' 1-6734296 x8' 1-7841762
24' 1-5660398 24' 1-6761824 24' 1-7869720
30' I -568801

1

30' 1-6789356 30' T-7897696
36' 1-5715618 36' 1-6816891 36' 1-7925692
42' 1-5743217 42' 1-6844431 42' 1-7953709
48' 1-5770809 48' T-6871976 48' 1-7981745
54' 1-5798390 54' 1-6899526 54' 1-8009803

63° 0' T-5825963 67° 0' 1-6927074 7X° 0' 1-8037882
6' 1-5853536 6' T-6954635 6' 1-8065983

12' 1-5881103 12' 1-6982202 X2' T-8094107
18' 1-5908665 18' 1-7009775 18' 1-8x22253
24' I -5936221 24' 1-7037355 24' 1-8x50423
30' T-5963780 30' 1-7064942 30' 1-8x786x7
36' 1-5991322 36' 1-7092540 36' 1-8206836
42' 1-6018871 42' 1-7120140 42' T-8235080
48' T-6046408 48' T-7147750 48' 1-8263349
54' 1-6073942 54' 1-7175370 54' 1-8291645

800
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log«
M

l-lfu,

M
loffy

M

72*» o' 1-8319974 78* 0' •0094959 84* 0' •2217823
6' 1-8348323 6' •0126385 6' •2259728

12' 1-8376700 12' •0157896 12' •2301983
i8'

24'
7-8405106

1-8433541

18'

24'
•0189494
•022II8I

18'

24'
•23^4600
•2387591

30; 1-8462005 30' -0252959 30' •2430970
36' 1-8490499 36' 0284830 36' •2474748
42' T-85I9024 42' •0316794 42' •2518940
48' T-8547580 48' •0348855 48' •2563561

„
54' T-8576I64 54' •038IOI4 54' •2608626

73° 0' 7-8604785 79** 0' •0413273 850 0' •2654152
6' 7-8633440 6' -0445633 6' •2700156

12' 7-8662129 12' •0478098 12' •2746655
18' 7-8690852 18' -0510668 18' -2793670
24' 1-8719611 24' -0543347 24' -284I22I

^t 7-8748406 30' -0576136 30' •2889329
3^ 7-8777237 36' -0609037 36' •2938018

^S
7-8806106 42' -0642054 42' •2987312

48' I-88350I3 48' •0675187 48' -3037238

54; 7-8863958 54' -0708441 .
54' •3087823

74" 0' 7-8892943 80° 0' -0741816 86° 0' •3139097
6' 1-8921969 6' -0775316 6' •319IO92

12' 7-8951036 12' -0808944 12' •3243843
18' I -8980144 18' •0842702 18' •3297387
24' 1-9009295 24' •0876592 24' •3351762

^?; 1-9038489 30' •09I06I9 30' •3407012
36' 1-9067728 36' -0944784 36' •3463184
42' 1-9097012 42' •0979091 4^; •3520327
48' 7-9I2634I 48' •IOI3542 48' •3578495

54; 1-9155717 54' •I048I42
« «

54' •3637749
75° 0' 1-9185141 81° 0' •1082893 87'' 0' •3698153

6' I-92I46I3 6' •III7799 6' •3759777
12' 1-9244135 12' •I 152863 12' •3822700
18' 1-9273707 18' •I 188089 18' •3887006
24' 1-9303330 24' •I22348I ^4; -3952792

3°; 1-9333005 30' •1259043 30' •4020162
3^ T-9362733 36' •1294778 3^' -4089234

^^ I-93925I5 42' •I 33069

1

42' •4160138
48' 1-9422352 48' •1366786 48' •4233022

.„
54' 1-9452246 54' •1403067 „„„

54' -4308053
76° 0' 7-9482196 82° 0' -1439539 88° 0' -4385420

6' 1-9512205 6' •1476207 6' -4465341
12' 1-9542272 12' •I5I3075 12' •4548064
18' 7-9372400 18' •I550I49 18' •4633880
24' 7-9602590 24' •1587434 24' •4723127
30' 7-9632841 30' •1624935 30' •4816206
36' 1-9663157 36' •1662658 36' •4913595
42' 1-9693537 42' •1700609

^l.
•5015870

48' 1-9723983 48' •1738794 48' -5123738
54' 1-9754497 54' •I7772I9 54' •5238079

It 0' 1-9785079 83'' 0' •I8I5890 89° 0' •5360007
6' 1-9815731 6' •I8548I5 6' •5490969

12' 7-9846454 12' •I 89400

I

12' •5632886
18' 1-9877249 18' •1933455 18' •5788406
24' 7-99081 18 24' •I973I84 24' •5961320
30' 7-9939062 30' •20I3I97 30' -6157370
36' 7-9970082 36' -2053502 36' •6385907
42' •0001181 42' •2094108 42' •6663883
48' -0032359 48' •2135026 48; •7027765
54' •0063618 54' •2176259 54' •7586941

3k



APPENDIX IV,

Table of Elliptic Integrals of the First and Second Kind (G and H
IN the Notation of this Book, F and E in the usual Notation),
FROM Legendre, TtaiU des FoncHons Elliptiques, Tome II.

OotF. Ai Hoi E. '^i

o
O 1-570 796 120 1.570 796 - 120

I 1-570916 359 1-570 677 - .359
2 I-57I 275 599 1-570 318 - 598

3 1-571 874 839 1-569 720 - 836

4 1-572 712 I 080 1-568 884 -I 075

5 1-573 792 I 321 1-567 809 - 1 312

6 1-575 114 I 564 1-566 497 -I 549
7 1-576 678 I 808 1-564 948 -I 785
8 1.578 486 2 054 1-563 162 -2 020

9 1-580 541 2 302 1-561 142 -2255
ID 1-582 843 2 551 1-558 887 -2487
II 1-585 394 2 803 1-556 400 -2719
12 1-588 197 3057 1-553 681 -2949
13 1-591 254 3 314 1-550 732 -3 177
14 1-594 568 3 574 1-547 554 -3404
15 1-598 142 3836 1-544 150 -3 629

i6 i-6oi 978 4 103 1-540 521 -3852
17 I -606 081 4 373 1-536 670 -4073
18 1-610 454 4647 1-532 597 -4291
19 1-615 lOI 4925 1-528 306 -4507
20 1-620 026 5 208 1-523 799 -4 721

21 1-625 234 5 495 1-519 079 -4932
22 1-630 729 5788 1-514 147 -5 140
23 1-636 517 6087 1-509 007 -5 345
24 1-642 604 6391 1-503 662 -5 547
25 1-648 995 6 702 1-498 115 -5 746

26 1-655 697 7019 I 492 368 -5942
27 1-662 716 7 343 1486 427 -6 134
28 1-670 059 7675 I 480 293 -6323
29 1-677 735 8015 1-473 970 -6508
30 1-685 750 8364 I 467462 -6689

31 1-694 114 8 722 1-460 774 -6 866
32 1-702 836 9 089 1-453 908 -7039
33 1-711 925 9466 1-446 869 -7 207

34 1-721 391 9 854 1-439 662 -7371
35 I-73I 245 10254 1-432 291 -7531
36 1-741 499 10 666 1-424 760 -7685
37 1-752 165 II 091 1-417 075 -7835
38 1-763 256 II 530 1-409 240 -7980
39 1-774 786 II 982 1-401 260 -8 120
40 1-786 770 12452 1-393 140 -8254
41 1-799 222 12938 I 384 886 -8382
42 i-8i2 160 13 442 1-376504 -8305
43 1-825 602 13965 1-367999 -8622
44 1-839 567 14508 1-359 377 -8733
45 1-854 075 15073 1350644 -8838

802
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Table op Elliptic Integrals {continued)

OoiF. A| BmB. A|

e

45 1-854 075 15073 I -350 644 -8838
46 I 869 148 15 661 1-341 806 -8936
^l

I 884 809 16274 1-332 870 -9028
48 1-901 083 16 914 1-323 842 -9 "3
4a I 91 7 997 'Z524

18 284
1-3x4 729 -9 190

50 1-935581 I 305 539 -9 261

51 1-953 865 19 017 1-296 278 -9324
52 I 972 882 19787 1-286 954 -9380
53 I 992 670 20597 1-277 574 -9427
54 2013 266 21 449 1-268 147 -9467
55 2-034 715 22 347 1-258 680 -9498

56 2057 °^2 23 296 1-249 182 -9520
57 2080 358 24300 1-239 661 -9 534
58 2104 658 25 364 1-230 127 -9538
59 2130 021 26 494 1-220 589 -9 533
60 2156 516 27698 1-211 056 -9518

61 2184 213 28982 I-20I 538 -9492
62 2213 195 30355 I -192 046 -9 457
63 2243 549 31 827 1-182 589 -9410
64 - 2-275 376 33410 1-173 180 -9351
65 2-308 787 35 "8 1-163 828 -9 281

66 2-343 905 36965 1-154547 -9 199
67 2-380 870 38971 1-145 348 -9 104
68 2-419 842 41 158 1-136 244 -8995
69 2-460 999 43551 1-127 250 -8872
70 2-504 550 46 181 1-118378 -8734

71 2-550 731 49 088 1-109 643 -8581
72 2-599 820 52318 i-ioi 062 -8 412

73 2-652 138 55930 1-092 650 -8 225

74 2-708 068 59996 1-084 425 -8 020

75 2-768 063 64609 1-076 415 -7796

76 2-832 673 69 892 I 068 610 -7550
77 2-902 565 76004 I -061 059 -7 282

78 2-978 569 83 160 1053 777 -6990
79 3-061 729 91657 1-046 786 -6672
80 3-153 385 loi 918 I 040 114 -6325

81 3255 303 114 565 1-033 789 -5946
82 3-369 868 130 554 1-027 844 -5431
83 3-500 422 151 433 1-022 313 -5076
84 3651 856 179 886 1-017 237 -4 573
85 3-831 742 221 016 I -01 2 664 -4 016

86 4-052 758 285 896 1-008 648 -3389
87 4-338 654 404 063 I -005 259 -2675
88 4-742 717 692 193 I-002 584 -1 832
89 5-434 910 i-ooo 752 - 752
90 i-ooo 000



APPENDIX V.

MUTUAL INDUCTANCE OF NON-COAXIAL CIRCLES.

[From a paper by S. Butterworth, Phil. Mag. xxxi. May, 1916.]

The formulae for inductances given above are for the most part confined

to the cases of coaxial coils. But by placing the coils so that the axes

are at different distances r apart, while the condition of parallelism

is still fulfilled, the mutual inductance of two coils can be varied through

a wide range of values. We give here formulae for two current carrying

circles which are useful in themselves, and from which results for other

and more complex cases can be deduced.

I. Equal Circles.

We take x as the distance of the planes of the circles apart, and 6 as

the angle cos-^{xls/r^ + x^}.

When X is large and the circles are coaxial, the mutual inductance is

,^ 27rVi 3 25 245 \ ,,,

The w^** term is here obtained from the {n - If^ by multiplying by

_ I /2n - 1Y n -l
x^\ n J n+\'

If P be the zonal harmonic of order n, we have

"'^i'.-i^^^^-m*') «
For coplanar circles this becomes (since = Jtt)

ttV, 9 125 8575 \ ,^,
^^i=-^(l + 1672 + l92^ + 8T927«-^-; (^)

In this last formula the multiplying factor for successive terms is

-02n-Wn-l
n J n+\
804



App.v MUTUAL INDUCTANCE OF NON-COAXUL CIRCLES 805

For convergence of the preceding series it is necessary that r > 2.

For small values of x and coaxial circles the mutual inductance is

(see p. 199 above) for radius A unity,

J/,- 4t {x, - 2 + ^x»(x, -
J)

-i^ (X, - ij)

^(iS).4-i;5)-}- <^^

where \q i^ written for log(8/x). For circles which are not coaxial

this formula gives the value of the mutual inductance if x** is replaced

by r"P„ and x^ log x by

|(r»P,) = r"(pjogr^g);

since these satisfy Laplace's equation, and since they reduce to a:" and

x'^Xogx respectively, when 6^=0, that is, when the circles are coaxial.

In applying this transformation we write

'dP^^"
P„log{i(l+M)} + x/.„ [m = cos0], (5)

on

where V^n = 2 fi^(P„-P„..)-^^(P„-P„_,) . ...

+(-i)"^\-(iT)(^"-M <">

In particular,

x/.2=-i(l-/x)(l + 7/.),

^4= (.V(l -m)(21 + 241/X- 113/x2 _533/x3),

^^6= -,.VTr(l-M)(185-2957yu + 3728yu2 I

+ 18008yu3 - 3247^* - 18107yu5).

)

This gives

(6a)

35

-^^^{<^-S)-^«}--' ^'^
(128)

in which X = log, -^j-^^.

It is convenient to write

^ = ao + air24-aoJ^ + a3r6+...-log,r(l+^i7-2 + ^2^^ + ^3r«+...), ...(8)
ITT

and to tabulate Qq, a^, ...
, /^^ ... as functions of /z. This is done in

Table I.
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When /x = the circles are coplanar and (7) reduces to

45

16
f"^ V^ 140/

,..(9)

in which Xi = loge —

Formulae (4), (7) and (9) converge fairly rapidly so long as r is less

than unity. They will give a rough approximation up to r = I-6, but

fail for larger values.

TABLE I.

Values of Coefficients in Formula (8).

M o-o *1 «2 as /3l ^2 /33

o-o 07726 — 0-I8I7 -0-00487 — 0-00066 — 0-0938 - 0-00549 - 0-00067
O-I 0-6773 -0-1414 — 0-00217 — 000009 - 00909 -0-00495 -000053
0-2 0-5903 — 0-0962 + 0-00208 + 0-00071 -0-0825 - 0-00340 -0-00017
0-3 0-5102 -0-0473 + 0-00577 + 0-00x07 -0-0684 -0-00107 + 0-00028
0-4 0-4361 + 0-0044 + 0-00829 + 0-00098 -0-0488 + 0-00166 + 000063
05 0-3671 +0-0578 + 00092 I + 0-00045 -0-0234 + 0-00424 + 0-00069
0-6 0-3026 + 0-1x23 + o-oo8i8 -0-0002X + 0-0075 + 0-00597 + 0-00037
07 0-2420 + 0-1671 + 0-00507 — 0-00090 + 0-0441 + 0-00604 — 0-00027
0-8 0-1848 + 0-2216 — 0-00006 — 0-00098 + 0-0862 + 0-0034 X - 0-00084
09 0-1308 +0-2752 -0-00701 -0000 19 + 0-1341 -0-00305 — 0-00052
10 00795 +0-3274 — 0-01531 + 0-0017 + 0-1875 -00x462 + 0-00214

Table II. gives values of M from the coaxial position to the position

where M is zero.

TABLE II.

Mutual Induction between Equal Parallel Circles.

Radii of circles = unit of length.

AT= distance of planes
; p = distance of axes.

x=o x== o*i x= 0-25 X-=0-5

p MUn A* P MUn P MUn P MUn

infinity i-o 2-39 1.50 0-88
0-2 2-37 0-9 0-05 2-34 0-I2X 1-45 0-24 0-83
0-4 1-65 0-8 0-075 2-27 0-188 138 0-37 0-76
0-6 X-20 0-7 0-I02 2-X9 0-256 1-30 0-5I 0-67
0-8 0-86 0-6 0-133 2-10 0-334 X-20 0-67 0-57
i-o 0-58 0-5 0-173 1-98 0-433 1-07 0-87 0-43
1-2 0-33 0-4 0-229 1-82 0-573 0-90 1-15 0-26

1-4 0-X2 0-3 0-318 1-60 0-796 0-65 1-59 003
1-6 -0-17 0-25 ... 1-94 — o-xo
1-8 ... 0-2 0-49 1-24 1-225 0-26 ... ...

2-0 -0-43 0-125
O-I

0-05
I -00
2-00

053
— 0-36

1-98 -0-24

...

...
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IL Unequal Circles.

Let the radii of the circles be a and A, and let x be the distance of

their planes. Then if x is large and the circles are coaxial, the mutual

induction is

^ 2Tr^^A^l\ 3^» 3.5^/« 3.5.7^/V . \ /inx

a*
in which K^=^\ { .^,

where F(a, ^, y, z) denotes the hypergeometric series

a/3 a(a + l)/3(;8+ l).

""1.7'+ 1.2y(y+f) -
""•••

Hence for non-coaxial circles the mutual induction is

2xW2/ 3^2 3.5^4
^^ ^:3

—

y^~2 72 ^^"^ 274 74^2^«

"27rr6 7«"^3^«'^

For coplanar circles this reduces to

) (11)

:ja. 5a. 72 ^» \

+ 2.42.6278 7«"^3"^*--
'

^^^^

Formulae (10), (11), and (12) converge if r>A-\-a, i.e. in formula (12)

if one circle is entirely outside the other.

When X is small it is convenient to choose the difference in radii

of the two circles as the unit of length. Then, when the circles are

coaxial,

f 3 (l+:c2)/. 1\

15 (l+^^/\ 31\
\

in which X = loe^ .
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The transformation of (13) to the formula for the non-coaxial case

requires the determination of a solution of Laplace's equation, which

will reduce to ., „,^, n ,

at all points on the axis of x. This solution will now be found.

In cylindrical coordinates {x, p, ^), and with ^2^^' Laplace's

equation is r

9^-^V'"p¥ = ' ^''^

Transforming to spheroidal coordinates by putting

x= /i»/, p = {l-ju^r{l+v^)\ (14a)

(14)becomes |{(1 -^2)|Z} hh|-{(1 -^.2)|^}=0, (15)

a possible solution of which is

V = ^{PnWPn{ip)}-PnMQn{i^)-^A,P,{fJi)P,{ip), (16)

in which *= v/-l.

When /uL = l, that is, when p = 0, v = x, (16) reduces to

F=5^-e,.(«V)-2^«P,W (17)

Since

^ , \ 1 7j 1 1+2; 2?i - 1 „ 271 - 5 „ 2n - 9 ,,

ft.(.) = iPJogj-^-^-^;Vi + 3(;^,)i'n-3-5(^^ZT)^"-«+-

and

the logarithmic term in (17) is

Pn(^^')log4^/T+72.

Also, if s takes the values n, n - 2, w - 4, ... and

^'^=^"^i-^nr:i^-2(2^^^)-^3(2^^
[

271-3 _ 271 - 7
I

^ ^

"-2~ 271-1' "-*"2n-3'
•••'

J

the value of V along the axis of symmetry becomes
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Therefore to obtain the solution sought it only remains to expand

(1 -f-x^)" in a series involving P„ {ix) and to apply the results (16) and (18)

to each term of this series.

The series in question is

( 1 + x^y- = ( - )'"2-
1

m j-^lt^^ 1
{(^"' + A

) ^'2.. (''•)

(im 1)"^^'''-^) (4m-H)(4m-l) „ ]

1+^:2= - 5/^2 (ix) + J /',(i:r),

I ^^(^^

(1 \-x^)^ = ^%P,(ix) - .VJ/^(u) + A/'o(»>)- J

On applying these results to (13) and inserting the values of PuM*
Pn {iv), the mutual induction between non-coaxial circles is found to be

. iV/=W:?-a[x-24-J^,{(X-l)^,-x4

in which

X = log,

+

from which

= H(1+m^)-»''(1-3m*)}.

h = ^\ - J?i'2(M)i^2W + A^4(M)/^,(tV)

= J((3 + 2^2 + 3yu4) - 2^2(1 + 6yu2 - 15/x*) + 1^4(3 - 30/u24- 35m*)},

X2 = l(l-M){(l-At)-i'2(l4-7Ac)},

X4 = A(1-m){3(1-/x)(7 + 2m + 7m2)" 6.2(5 -M-/x» + 59/x»)

. +v*(21+24lM-113Ac2-533yu«)};

and from (14«), /u^, - 1-2 are the roots of

i2^t{\ -p^-z^)-x^ = (22)

In (21) the difference of the radii of the two circles is unity. If

^ ~a = c, then replace in (21) 1/Aa by c^/Aat multiply by c, and make
^2, -»/2 the roots of

rH^-t{c^-p^-x^)-x^ = (23)

To test the formula, let c approach zero. The limiting value of ^
is xlJx^-\- p^^-xJTy and that of cv is r. Using these in (21), we obtain

formula (6a).

When a; = the circles are coplanar.
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If r>c, /x=0, v^ = ^-l, and the mutual induction is
c

[•
3 ?-2 / 5\ / ^c^\ 45 j-4

in which Aj = loge —

.

This formula holds good when the two circles intersect.

If r<ic, v=0, //2 = l--2, and the mutual induction is

lA = 47rv/2^[x'i-2 + ^2^{(x\-i)(l+/x2)-J(l-^)2|

-i(l-M)2(7 + 2/>t + 7M2)} + ...], (25)

l6jAa
in which X\ = log

c(H-m)

This formula holds when one circle is entirely inside the other.

If r = c, the two circles touch internally and the mutual induction is

45 (^ A„ 97'

8192^2^

which \'\ = log

It is interesting to notice the similarity between formulae (25) and (9).
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TABLE in.

Mutual Induction between Unequal Circles.

jr/aso jr/«»o-«

P ISt and ^ 3rd "
P_ tst and

i?i
M

a Term Term Term ^it^JAa a Term Term 4W^A^

ooo 0426 0196 - 0-005 0-617 0-00 0406 0-202 -0-005 0'6o3
o-6o 0-521 0-167 — 0-003 0-685 0-45 0-453 0-187 -0-005 0-635
o-8o 0-649 0-I44 -0-003 0-790 0-62 0-501 0-174 -0-004 0-671
0-92 0-783 0-125 — 0002 0-906 0-74 0-548 0-160 -0-003 0-705
098 0-937 OII2 -0-002 1047 0-84 0-597 0-147 -0003 0-741
I-OO 1-119 0107 — 0002 1-224 0-93 0-640 0-133 — 0-002 0-771
1-41 0773 0000 - 0003 0770 102 0-671 OI18 -0002 0-787
1-73 0-570 -0-085 - 0006 0-479 1-15 0-673 0-074 -o-ooi 0746
2 00 0-426 -0-149 -OOII 0266 1-39 0-591 0047 -0-000 0-638
2-24 0314 — 0-208 -0016 0090 2-22 220 — 0-129 + 0-000 0091
2-45 0-223 — 0-260 -0022 -0-059 2*69 0-052 -0-225 +0-001 -0-172

1

jr/a=i-o

000 0314 0-232 -0-007 0-539 0-00 0-089 0-330 -0-015 0-404
0-50 0342 0-216 — 0007 055 1 0-65 0-075 0-313 - o-oo8 0380
071 0366 0-202 -0-005 0-563 096 0061 0-297 -0-003 0-355
o^SS 0-382 0-185 — 0003 0-564 1-24 0-032 0-280 -0001 0-3II

104 0-385 0-165 -o-ooi 0-549 1-53 -0-002 0-250 + 0010 0-258
1-22 0-367 0-142 + 0001 0-510 1-94 — 009

1

0-213 + 0028 0-150

^'il
0-313 0-107 +0004 0-424 2-47 -0-207 0184 + 0-068 0-045

1-86 0-192 0-045 + 0-012 0249 332 -0-392 0-I33 +0-200 - 0059
2-64 -0053 -0-070 + 0042 -0081



APPENDIX VI.

RECOMMENDATIONS OF INTERNATIONAL CONFERENCE ON
ELECTRICAL UNITS HELD IN LONDON IN OCTOBER,

1908, AND ORDER IN COUNCIL OF DATE JANUARY, 1910,

RELATIVE THERETO.

In the First Edition of this book there was given a report of the Board

of Trade Committee on Electrical Standards, containing certain resolu-

tions which it was proposed should be adopted by the Board of Trade

with the view of obtaining international agreement as to such standards.

An International Conference was held in London in October, 1908, when
Delegates were present from twenty-two countries and from the prin-

cipal British Dependencies. The Conference, as a result of its delibera-

tions, adopted the following resolutions and specifications, to be laid

by the Delegates before their respective Governments with the view to

obtaining uniformity in legislation with regard to Electrical Units and

Standards.

SCHEDULE B.

Resolutions.

I. The Conference agrees that, as heretofore, the magnitudes of the

fundamental electric units shall be determined on the electro-magnetic

system of measurement with reference to the centimetre as the unit of

length, the gramme as the unit of mass, and the second as the unit of

time.

These fundamental units are (1) the ohm, the unit of electrical resist-

ance which has the value of 1,000,000,000 in terms of the centimetre

and second
; (2) the ampere, the unit of electric current which has the

value of one-tenth (0-1) in terms of the centimetre, gramme, and
the second

; (3) the volt, the unit of electromotive force, which has the

value 100,000,000 in terms of the centimetre, the gramme, and the

second
; (4) the watt, the unit of power which has the value 10,000,000

in terms of the centimetre, the gramme, and the second.

II. As a system of units representing the above, and sufficiently near

to them to be adopted for the purpose of electrical measurements and

812
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as a basis for legislation, the Conference recommends the adoption of

the international ohm, the international ampere, and iho intprniifjfinal

volt defined according to the following definitions :

III. The ohm is the first primary unit.

IV. The international ohm is defined as the resistance of a sjKfcified

column of mercury.

V. The international ohm is the resistance offered to an unvarying
electric current by a colunm of mercury at the temperature of melting

ice, 144521 grammes in mass, of a constant cross-sectionnl aroa and
of a length of 106-300 centimetres.

To determine the resistance of a column of mercury in terms of the

international ohm, the procedure to be followed shall be that set out

in Specification I. attached to these Resolutions.

VI. The ampere is the second primary unit.

VII. The international ampere is the unvarying electric current

which, when passed through a solution of nitrate of silver in water, in

accordance with Specification II. attached to these Resolutions, deposits

silver at the rate of 00011 1800 of a gramme per second.

VIII. The international volt is the electrical pressure [difference of

potential], which, when steadily applied to a conductor whose resist-

ance is one international ohm, will produce a current of one inter-

national ampere.

IX. The international watt is the energy expended per second by an
unvarying electric current of one international ampere under an electric

pressure of one international volt.

Specification I.

Specification relating to Mercury Standards of Resistance.

The glass tubes used for mercury standards of resistance must be
made of glass such that the dimensions may remain as constant as

possible. The tubes must be well annealed and straight. The bore

must be as nearly as possible uniform and circular, and the area of

cross-section of the bore must be approximately one square millimetre.

The mercury must have a resistance of approximately one ohm.
Each of the tubes must be accurately calibrated. The correction to

be applied to allow for the area of the cross-section of the bore not

being exactly the same at all parts of the tube must not exceed 5 parts

in 10,000.

The mercury filling the tube must be considered as bounded by plane

surfaces placed in contact with the ends of the tube.

The length of the axis of the tube, the mass of mercury the tube
contains, and the electrical resistance of the mercury are to be deter-

mined at a temperature as near to 0° C. as possible. The measurements
are to be corrected to 0° C.
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For the purpose of the electrical measurements, end vessels carrying

connections for the current and potential terminals are to be fitted to

the tube. These end vessels are to be spherical in shape (of a diameter

of approximately four centimetres) and should have cylindrical pieces

attached to make connections with the tubfes. The outside edge of

each end of the tube is to be coincident with the inner surface of the

corresponding spherical end vessel. The leads which make contact

with the mercury are to be of thin platinum wire fused into glass. The
point of entry of the current lead and the end of the tube are to be at

opposite ends of a diameter of the bulb ; the potential lead is to be mid-

way between these two points. All the leads must be so thin that no

error in the resistance is introduced through conduction of heat to the

mercury. The filling of the tube with mercury for the purpose of the

resistance measurements must be carried out under the same conditions

as the filling for the determination of the mass.

The resistance which has to be added to the resistance of the tube to

allow for the effect of the end vessels is to be calculated by the formula

—

(1+1)
. 0-80 , . ...

where r^ and r^ are the radii in millimetres of the end sections of the

bore of the tube.

The mean of the calculated resistances of at least five tubes shall be

taken to determine the value of the unit of resistance.

For the purpose of the comparison of resistances with a mercury
tube the measurements shall be made with at least three separate

fillings of the tube.

Specification II.

^ Specification relating to the Deposition of Silver.

The electrolyte shall consist of a solution of from 15 to 20 parts by
weight of silver nitrate in 100 parts of distilled water. The solution

must only be used once, and only for so long that not more than 30 per

cent, of the silver in the solution is deposited.

The anode shall be of silver, and the kathode of platinum. The
current density at the anode shall not exceed 1/5 ampere per square

centimetre and at the kathode 1/50 ampere per square centimetre.

Not less than 100 cubic centimetres of electrolyte shall be used in a

voltameter.

Care must be taken that no particles which may become mechanically

detached from the anode shall reach the kathode.

Before weighing, any traces of solution adhering to the kathode must
be removed, and the kathode dried.
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THE WESTON NORMAL CELL.

The Conference agreed on the following Schedule (C) with respect to

the Weston normal cell, which describes the formation of the cell except

as regards the preparation of the mercurous sulphate used in the de-

polarizing paste of the cell.

The Weston normal cell may be conveniently employed as a standard

of electric pressure for the measurement both of e.m.f. and of current,

and, when set up in accordance with the following specification, may
be taken, provisionally, as having, at a temperature of 20° C, an e.m.f.

of 1-0184 volt.

The Weston normal cell is a voltaic cell which has a saturated aqueous
solution of cadmium sulphate (CdS04 . 8/3 H^O) as its electrol3rte.

The electrolyte must be neutral to congo red.

The positive electrode of the cell is mercury.

The negative electrode of the cell is cadmium amalgam, consisting

of 12-5 parts by weight of cadmium in 100 parts of amalgam.
The depolariser, which is placed in contact with the positive electrode,

is a paste made by mixing mercurous sulphate with powdered crystals of

cadmium sulphate and a saturated aqueous solution of cadmium sulphate.

The different methods of preparing the mercurous sulphate paste are

described in the notes. One of the methods there specified must be

carried out [a method used at the N.P.L. is here appended].

For setting up the cell, the H form is the most suitable. The leads

passing through the glass to the electrodes must be of platinum wire,

which must not be allowed to come into contact with the electrolyte.

The amalgam is placed in one limb, the mercury in the other.

The depolariser is placed above the mercury and a layer of cadmium
sulphate crystals is introduced into each limb. The entire cell is filled

with a saturated solution of cadmium sulphate and then hermetically

sealed.

The following formula is recommended for the e.m.f. of the cell in

terms of the temperature between the limits 0° C. and 40° C.

:

Et =E^^ 0-0000406 {t - 20°) - 0-00000095;(« - 20°) 2

+ 0-00000001 (^-20°)3.

[The value of J^^^^ is given above.]

815
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Preparation of the Weston Cadmium Standard Cell.

The cell has mercury for its positive electrode, and an amalgam
consisting of from 12 to 12-5 parts by weight of cadmium in 100 parts

of the amalgam for its negative electrode. The electrolyte consists of

a saturated solution of cadmium sulphate, and solid cadmium sulphate

is contained within the cell. A paste, consisting of solid mercurous

sulphate, mercury, and solid cadmium sulphate, rests on the positive

electrode.

For the positive electrode, pure distilled mercury should be used.

The amalgam may be made either by electro-deposition or by
mechanical mixing. It should be fused and freed from oxide by
washing with dilute sulphuric acid.

For the preparation of the cadmium sulphate crystals and solution,

commercially pure recrystallised cadmium sulphate should be dissolved

in pure distilled water so as to form a clear saturated solution. Evapora-

tion at about 35° C. is then allowed to proceed, when crystals separate

from the solution. The crystals are washed with successive small

quantities of distilled water, and part of them is dissolved in distilled

water to form a saturated solution. The solution should be neutral to

Congo red.

The mercurous sulphate should be quite pure, and its crystals should

not be so small as to have an abnormal solubility or so large as to be

inefficient as a depolariser. The following is an example of a method
for preparing the salt satisfactorily :

Add 15 cubic centimetres of pure strong nitric acid to 100 grammes
of pure mercury, and place on one side until the action is over or nearly

over. Transfer the mercurous nitrate thus formed, together with the

excess of mercury, to a beaker containing about 200 cubic centimetres

of dilute nitric acid (1 volume of acid in about 40 volumes of water)
;

a clear solution should result. Prepare about 1 litre of dilute sulphuric

acid (1 volume of acid to 3 of water), and while the mixture is hot add
the acid mercurous nitrate solution to it. The solution should be added
as a very fine stream from the narrow orifice of a pipette, and the

mixture violently agitated during the mixing. Mercurous sulphate is

precipitated. Decant the hot clear liquid and wash the precipitate

twice by decantation with dilute sulphuric acid (1 volume of acid to

6 of water). The precipitate should then be filtered and washed three

times with dilute sulphuric acid (1 to 6), and afterwards 6 or 7 times with

saturated cadmium sulphate solution to remove the acid. The mer-

curous sulphate should then be flooded with saturated cadmium sul-

phate solution and left for one hour, after which the solution is tested

with congo-red paper. In general no acid will be detected, and if so

the mercurous sulphate is ready for use.

To set up the cell the H form of vessel is the most convenient. The
platinum wires inside the vessel should be amalgamated by passing an
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electric current to each in turn through an acid solution of mercurous

nitrate. The vessel must afterwards be washed out twice with dilute

nitric acid and several times with distilled water ; it must ha free from

stains and scrupulously clean ; it is dried by the application of heat.

The amalgam is fused and it« surface flooded with very dilute sulphuric

acid ; sufficient of it to cover completely the amalgamated platinum

wire should then be introduced into one of the limbs of the H vessel.

To free from acid the amalgam may be remelted and waiihed with dis-

tilled water. Into the other limb of the vessel sufficient mercury is

introduced to cover completely the amalgamated platinum wire. Then
the paste, finely powdered crystals of cadmium sulphate, and saturated

cadmium sulphate solution are added in the order named and the cell

sealed.

Its electromotive force at 20° C. is 1-018 volt.

The electromotive force at any temperature {t) may be obtained from
the equation :

Et = 1 -0184 - 00000406 (< - 20) - 0-00000095 {t-20)^

+0-00000001 (<-20°)«,

the limits of temperature being—(these have not yet been fixed).

In cases in which it is not desired to set up the standard provided

in the Resolutions of Schedule B, the Conference recommends the

following as working methods for the realization of the international

ohm, the ampere, and the volt

:

1. For the International Ohtn.

The use of copies, constructed of suitable material and of suitable

form verified from time to time, of the international ohm, its multiples

and sub-multiples.

2. For the International Ampere.

(a) The measurement of current by the aid of a current balance

standardised by comparison with a silver voltameter ; or

{b) The use of a Weston.normal cell whose electromotive force has

been determined in terms of the international ohm and international

ampere, and of a resistance of known value in international ohms.

3. For the International Volt.

(a) A comparison with the difference of electrical potential between

the ends of a coil of resistance of known value in international ohms
when carrying a current of known value in international amperes ; or

{b) The use of a Weston normal cell whose electromotive force has

been determined in terms of the international ohm and the international

ampere.

G.A.M. 3 F
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Following on these recommendations of the Conference, an Order in

Council was made on January 10, 1910, which provided definitions of

standards as follows :

The International Ohm is the resistance offered to an unvarying

electric current by a column of mercury at the temperature of melting

ice 144521 grammes in mass of a constant cross-sectional area and of

a length of 106-300 centimetres.

The International Ampere is the unvarying electric current which,

when passed through a solution of nitrate of silver in water, deposits

silver at the rate of 0-00111800 of a gramme per second.

The International Volt is the electrical pressure [difference of poten-

tial] which, when steadily applied to a conductor whose resistance is

one International Ohm, will produce a current of one International

Ampere.

The limits of accuracy obtainable in these standards were stated as

follows :

For the ohm within one-hundredth part of one per cent.

For the ampere within one-tenth part of one per cent.

For the volt within one-tenth part of one per cent.

The following Schedule ^as appended to this Order :

I. Standard of Electrical Resistance.

A standard of electrical resistance denominated one ohm agreeing in

value within the limits of accuracy aforesaid with that of the Inter-

national Ohm and being the resistance between the copper terminals

of the instrument marked " Board of Trade Ohm Standard Verified,

1894 and 1909," to the passage of an unvarying electrical current when
the coil of insulated wire forming part of the aforesaid instrument and

connected to the aforesaid terminals is in all parts at a temperature

of 16-4 C.

II. Standard of Electrical Current.

A standard of electrical current denominated one ampere agreeing

in value within the limits of accuracy aforesaid with that of the Inter-

national Ampere and being the current which is passing in and through

the coils of wire forming part of the instrument marked " Board of

Trade Standard Verified, 1894 and 1909," when on reversing the current

in the fixed coils the change in the forces acting upon the suspended

coil in its sighted position is exactly balanced by the force exerted by
gravity in Westminster upon the iridio-platinum weight markedjA
and forming part of the said instrument.

III. Standard of Electrical Pressure.

A standard of electrical pressure denominated one volt agreeing in

value within the limits of accuracy aforesaid with that of the Inter-
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national Volt and being one-hundredth part of the pressure which when
applied between the terminals forming part of the instrument marked
** Board of Trade Volt Standard Verified, 1894 and 1909," causes that

rotation of the suspended portion of the instrument which is exactly

measured by the coincidence of the sighting wire with the image of

the fiducial mark A before and after application of the pressure and
with that of the fiducial mark B during the application of the pressure,

these images being produced by the suspended mirror and observed by
means of the eyepiece.

The coils and instruments referred to in this Schedule are deposited

at the Board of Trade Standardizing Laboratory, 8 Richmond Terrace,

Whitehall, London.
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in alternating current circuits, 292.

electrometer-method of determining,

322.
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by current-meter only, 314.
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Aeolotropic body, couples on a mag-
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induced magnetization of an, 79.
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255.
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circuit, 173.
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173.

experiments on the action of an
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theoretical results of, 164.
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experiments of, 769.

Ayrton and Sumpner, three-voltmeter
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method, 320.

Battery, resistance, measurement of,

377.

methods of Mance and Thomson
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BoLTZMANN, determinations of specific

inductive capacities, 749.
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BoLTZMANN» (letormiiiatiunii by the
force on a <liflectric sphere in a
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in different directions in a crystal,

752.

of gaHc»H, 707.
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Bridge, arrangement of, for greatest
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practical rule for, 33(5.
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of one, 551.

practical example of method, 555.
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further results of, 756.

experiments on glass plates, 757
on liquids, 758.

experiments on the benzene
series, 704.
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Capacity, si^ecific inductivej Kle-
men6ic's experiments on the,

of mica and of ice, 752.

measurements of, 744-773.

Negreano's experiments on hydro-
carbon series, 765.

of paraffin wax, 748.

Quincke's experiments, 760.

correction of, results for con-

nections, 762.

relation between, and index of re-

fraction, 744.

SiLOw's experiments, 758.

unit of, 33.

Werner Siemens' method of deter-

mining, 729.

Carey Foster, comparison of mutual
inductance and capacity, 588.

condition that method may be
" null," 590.

method of calibrating a slide-wire, 342.

modification of method of revolving

coil for absolute resistance, 650.

practical example of, 591.
" Centroids," question of, of magnetism,

85.

Change-ratios, 2.

Christie's or Wheatstonb's bridge,

334.

Circuit, alternating, power factor in a,

256.

arrangement of a battery, 130.

battery with induction coil in, and
cross-connection, 243.

compound periodic e.m.f. in, 299.

containing simple harmonic e.m.f.,

297.

current-carrying, magnetic field-in-

tensity due to an element of a,

186.

current in the secondary at break of

the primary, 238.

difference of phase of current and
e.m.f., 298.

electric, impedance in an, 249.

e.m.f. in, electrical efficiency in-

creased by increasing, 287.

effect of increased, in, 291.

equations for a circuit in a network
of conductors, 241.

force on element of, 159.

heterogeneous. Ohm's law in a, 130.

mean current and mean square of

current, 255.

mean electrical activity in, 299.

phase difference and time-lag, 257.

primary, with a condenser, 251.

rate of working in the, of an alter-

nator, 255.

reaction of the elements of a, on a
magnetic system, 178.

Circuit, secondary which contains no
electromotive force, 251.

theory of a single, with self-induc-

tance, 240.

theory of, of two long parallel con-

ductors, 475.

three-voltmeter method of measuring
power given out in any portion

of, 319.

total flow at " make" and " break,"

238.

two current-meters and voltmeter

method, 320.
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phase, 301.

with two e.m.f.s of the same period,

301.

Circuits, alternating current, electrical

activity in, 292.

differences of potential and cur-

rents in, 293.

derived, in a network, 138.

dynamical theory of mutually in-

fluencing, 234.

electric, the measurement of activity

in, 285-336.

electrokinetic energy of a system of,

232-257.

general theorem regarding mutually
influencing, 235.

magnetic action of, and coils, 210-231.

march of the currents in the, 237.

mutual action of two, 160.

mutually influencing, dynamical
theory of, 232.

primary and secondary, 279.
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system of, 280.

two, a primary and a secondary, 236.

Clark, standard cell, 469.

determination of e.m.f. of, potentio-

meter method, 470.

Coaxial main, flow of alternating cur-

rents in a, 259.

general case of, 265.
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tances," 528.

" Coercive force," 77.

CoHN and Arons, experiments of, on
liquids, 766.

Coil, graded, theory of a, 406.
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calculation of self-inductance of,

615.

Carey Foster's modification of

method of, 650.

correction of results and value of

B.A. unit deduced, 626.

criticisms of method, 612.
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Coil, revolviim,. lull H mndinga
of, s«^|f-iiuln 1.

effect of Bflf-iiio .
t»l3.

equation of motion of the needle

and deduction of resistance of

circuit, Oil.

experimental determination of in-

ductance, 016.

for alwolute measurement o! re-

HiHtance, Weber, 609.

theory of the, 609.

later experiments with the, metho«l,

014.

Ix)rd Rayleigh's and Mrs. Sidg-

wick'fl experiments, 628.

Lord Rayleiph'ft further experi-

ments with the, 620.

mode of carrying out observations,

625.

mode of driving, and regulating the

speed, 617.

specimen set of readings for, 620.

resistance, absolute measurement of,

method of Lorenz, 027.

shunt arrangement for balancing

e.m.f. of disk, 630.

Coils, calculation of mutual inductance

of, and disk, 631.

constants of, calculation of, 210-231.

constants of, force on movable coil in

terms of, 433.

experimental determination of, 435.

construction of tests of materials,

etc., 649.

contact brushes : measurement of

speed, 639.

correction for cross-sections of, 505.

correction of elliptic integral formula

for cross-section, 505.

discussion of two single-layer, 203.

electrodynamometer, couple on sus-

pended double coil of, 229.

with double coil arrangement, 230.

fixed, force on movable coil between

two, 432.

flat, inductances of, 521.

coaxial, mutual inductances of, 524.

coplanar, mutual inductances of,

524.

galvanometer, Helmholtz's arrange-

ment of, 217.

high resistance, differential galvano-

meter with, for low resistance

tests, 362.

hollow, non-overlapping, case of, 517.

insulation and particulars of, tests of,

434.

long, of several layers, 224.

long, of single layer wire, 222.

direct calculation for potential

and force at centre of a, 223.

CoUs, maf^netio action of. 180-208.

magnetio action of circuits and, 210-

231.
modification of method of I»renz,

647.

mutual induction of, and disk, 645.

mutual induction of two, coefficient

of, 208.

o! lengths v'3 times the radius, 503.

parallel, attraction between two,

431.
particular caae of axea of, at right

angles, 204.

formulae of calculation, 206.

method of integration, 204.

potential due to disk, and circular

magnetic shell, found by La-

place's equation, 211.

short, calculations of inductances of,

620.

solid, axial potential for semi-infinite,

509.

case of distance between ends of,

small, 512.

mutual inductance of two, 309.

singly finite, practical formulae for,

509.

with adjacent ends in contact,

513.

suspended, adjustment of, final re-

sult, 437.

time-constants of, 524.

with multiple layers, 504.

Condenser, capacity of a large, with

capacity of a small condenser,

comparison of. Sir W. Siemens'

method, 728.

capacity of a, Werner Siemens'

method of determining, 729.

direct deflection method of measur-

ing, 727.

with a resistance-leakage method
of comparing a, 729.

cylindrical, 716.

measurement of the capacity of,

720.

electric absorption in, 717.

guard-ring, 714.

primary circuit with a, 251.

standard, 713.

time constants in oscillatory discharge

of a, 247.

Condensers, capacities of, method of

comparing, 725.

guard-ring, comparison of the

capacities of two. Maxwell's

method, 721.

Faraday's method, 721.

Conductance [//r], 18.

effective, and effective resistance of

inner conductor, 263.
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Conductivity box, 332.

Conductor, action of a solenoid on a

finite, 176.

effective resistance and conductance
of inner, 263.

end-corrections of, 145.

equation of current in a single, 530.

lines of force round a, 151.

magnetic field of a long straight,

carrying a current, 151.

moment of a, in the field of a single

pole, 177.

relation of current to line integral of

magnetic force round, 155.

solid, in coaxial tube, 499.

solution for outer return as highly

conducting inner tube, 262.

Conductors, addition of, to network
without change of flow, 135.

an outward and a return, two parallel

wires, 272.

circular, mutual action of two, 227.

conjugate, in a network, 136.

enhanced resistance of, due to alter-

nation : distinguished from im-

pedance, 296.

in alternating currents, 270.

in parallel, containing resistance,

inductance and capacity, 252.

linear, network of, e.m.f. in a circuit

. in a, 133.

networks of, 132.

steady flow in, 129.

m\iltiple, 499.

mutual inductance between two co-

axial circular, 187.

network of, equations for the circuits

of a, 241.

general theory of, carrying cur-

rents, 529.

Maxwell, cycle method for a, 529.

theory of, 532.

method usual in practice, 532.

for comparison of in-

ductances, theory of, 534.

condition that, should be abso-

lutely null, 535.

experiments by, 540.

modification of, 535.

theory of the modified method,
535.

outside, general case of coaxial main,
265.

reciprocal relation of, in a network,

137.

resistance between electrodes buried

in a large mass of, 143.

ring conductor of circular section,

273.

two flat conducting strips with in-

sulating separator, 273.

Conductors, straight, forces between,
170.

two circular, mutual action of, 227.
Conference, Intern., recommendations

of, App. VI., 812.

Constraints, general dvnamical theory
of effects of, 277".

Continuity, principle of, 134.

for varying currents derived from
law of magnetic force, 531.

" Couches de glissement," density of

apparent electrification given by,

737.

Coulomb, unit of quantity, 28.

Council, Order in, with regard to

electric standards, App. VI., 812.

Couple on a magnet in a magnetic field,

40.

Current, action of a magnetic system on
a, 157.

alternating, bilateral and unilateral

deflection of a galvanometer
needle, 394.

differences of potential and currents

in, circuits, 293.

electrical activity in, circuits, 292.

and potential, mean squares of,

electrometer method measure-
ment of, 321.

balance of the Bureau of Standards,
437.

calculation of constants of, 449.

of forces, 441.

coils, particulars of, 440.

comparison of, 441.

theory of the, 441.

general description of the, 446.

of the National Physical Labora-
tory, 445.

value of g, accuracy of current
measurement, 443.

balances, standard, Lord Kelvin's,

451.

carrying circuit, magnetic field-inten-

sity due to an element of a, 186.

case in which the path and circuit

interlace any number of times,

150.

circular, couple or magnetic needle

produced by, 213.

electrokinetic energy of two, 228.

extension to two coils of finite

cross-section, 228.

potential, etc., of, 225.

deflection, observations of, 563.

electric [7], 18, 21.

equivalence of a, and a distribution

of magnetism stated, 147.

in the secondary at break of the

primary, total flow at " make "

and " break," 238.
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Current, linear, proof of general ihuurem
of equivalence of a, and a mag-
netic shell, 140.

magnet equivalent to a, 180.

magnetic (iold of a Kmg straight oon-
ductor carrying a, 151.

mean current and mean square of,

255.

measurement, accuracy of, by current

balance of Bureau of Standards,
437.

meter, measurement of activity by,

only, 314.

relation of, to line integral of mag-
netic force round conducttir, 155.

sheet, correction for deviation of flow

from that in a, 52G.

equivalence of a helical current and
a, 195.

mutual inductance of helix and
cylindrical, 191.

theorem of work done in carrying

unit i>ole round, second proof,

154.

unit, 180.

current strength and, definition

of, 148.

defmition of, 87.

weigher, theory of a, 190.

constant, calculation of, 502.

weighers for the absolute measure-
ment of current, 430.

work done in carrying a pole in a

closed path round a, 150.

Currents, alternating, a ring conductor
of circular section, 273.

case of ma greater than 5, 270.

coaxial main, general case of, 265.

determination of constants in the

general solution, 266.

distribution of, in parallel con-

ductors, 258-284.

effective " resistance," and " in-

ertia" (or "inductance") of

system, 278.

electrical problem.s, 279.

final result in the general case,

267,

fiow of, in a coaxial main, 259.

general dynamical theory of effects

of constraints, 277.

inner conductor a hollow tube, 270.

main consisting of two flat con-

ducting strips with insulating

separator, 273.

measurement of difference of phase
between, 309.

numerical example of use of tables,

281.

outside conductor of finite thick-

ness, 265.

Currents, particular caneii, high fre-

quency and low frequeooy, 276.

primary and aeooiidaiy circuits,

279.
*' skin effect " in pnctioal caaee,

2«9.

•Iiecial ca«e0, low frequency Mid
high frequency, 268.

notation for functions, 264.

system of primary, secondary',

tertiary, etc., circuits, 280.

the com|)lete solution and its

realization, 257.

two parallel wires, 272.

and magnets, actions between, 146-

160.

difference of phase of, and e.m.f., 298.

of |x>tential and, in alternate-

current circuits, 293.

distributed in space of three dimen-
sions, 183.

electrokinctic energy of, 181.

in derived circuits and in a network
of linear conductors, 129-145.

in parallel, condition that difference

of phase between, may Ix; in-

sensible, 307.

magnetic fields due to, 180-208.

march of the, in the circuits, 237.

in the primary and secondary, 237.

mean current and square root of mean
square [R.M.S.] of alternating

current, 294.

measurement of, 87, 380-474.

by electrolvsis of copi)er sulphate,

458.

on currents, action of, 160-179.

steady, comparison of resistances to,

323-379.

through a galvanometer in a bridge,

134.

Deflections, mode of measuring, 93.

Demagnetizing forces, 77.

Density, unit of, 9.

Dbwar and Fleming, experiments at

low temperatures on the specific

inductive capacity of various
substances, 770.

Dielectric sphere, force on a, in a known
field, Boltzmann's determina-
tions by the, 751.

Differential equation in flow of alter-

nating currents in a coaxial main,
integration of the, 259.

equations for forced oscillations, rule

for solution of, 247.

galvanometer with high resistance

coils for low resistance tests, 362.

method for comparison of stan-
dards, 363.
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Dimensional formulae, Chap. I. passim.

examples of, 27.

DorseY, comparison of units by Rosa
and, 674.

Dynamical analogies in electrical oscil-

lations, 245.

theory of effects of constraints,

general, 277.

of mutually influencing circuits,

232-257.
units, examples of kinematical, 15.

Dynamometer, Gray's, corrections,

calibration of windings, etc.,

401.

value of the couple in the, 400.

Dynamometers, 403.

Dynamos testing, Messrs. Hopkinson's
method, 315.

Swinburne's method, 316.

Earth's field, effects of variations of the,

107.

Electric absorption, 717.

current [7], 18.

displacement, 743.

force and intensity of electric field [/],

17.

potential [v], 17.

or electromotive force [F], 23.

resonance, 250.

surface density [<t], 17.

Electrical activity, unit of. Watt, 32.

efficiency of arrangement of generator

and motor, 286.

increased by increasing e.m.f. in

circuit, 287.

maximum, arrangement of, 291.

oscillations, dynamical analogies in,

245.

method of, used by Lodge " and
Glazebrook, 687.

theory, 244.

Electricity, flow of, in three dimensions,
141.

examples of, 143.

quantity of [q], 16.

[Q], quantity of, 23.

Electro-chemical equivalent of copper,

463.

of silver, 458.

determination of the, 455.

details of an experiment, 455.

results of a series of experiments,
457.

Electrodes, etc., 703.

resistance between, buried in a large

mass of conductor, 143.

Electro-dynamic action. Ampere's direc-

trix of, 173.

Elcctrodynamometer, absolute, the
Gray, 398.

Elcctrodynamometer, B.A. Committee's,
396.

methods of using the instrument,
397.

couple on suspended double coil of,

229.

with double coil arrangements, 230.

Electrodynamometers, 395.

construction of absolute galvano-
meters and, 207.

Electrokinetic energy of a current, 476.

geometric mean distances, 476.

energy of a system of circuits, 232.

of currents, 181.

of two circular currents, 228.

momentum, components of, 232.

Electrolysis, arrangement for strong or

weak currents, 466.

graduation of standard instruments
by, 464.

measurement of currents and gradu-

ation of instruments by, 455-467.

of copper sulphate, measurement of

currents by, 458.

preparation of plates, 460.

treatment of copper plates, 462.

Electromagnetic action, theory of, 146-

179.

force, 88.

equations of, 159.

system, B, 19-25.

units, relation between electrostatic

and, 25.

Electrometer, absolute. Lord Kelvin's,

693.

gauge for testing the electrification

of the jar in, 695.

method of using the, 698.

the replenisher in, 696.

attracted disk, method of use and
theory of an, 692.

gauge-, the subsidiary, 703.

idiostatic, measurement of difference

of potential of, 295.

insulation of quadrants, method of

testing, 706.

jar, method of charging the, 705.

method measurement of mean
squares of current and potential,

321.

of determining activity, 322.

quadrant, adjustments of, 704.

Dolezalek, 711.

energetics of the action of a, 708.

grades of sensitiveness of, 709.

heterostatic use of : theory, 706.

idiostatic use of, 710.

the needle and its suspension in,

701.

Thomson's, 699.

symmetrical, 699.
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Electronietorfl, 089.

attracted dink, 689.

symmetrical, 699.

Electromotive force, alternator with,

any periodic function of (, 254.

a secondary circuit which contains no,

and a primary with a condenser,
251.

Electromotive forces, harmonic, 247.

of cells and graduation of voltmoteni,

determination of, 467-474.

Electrostatic and electromagnetic units,

relation between, 25.

action, analogy between, and heat
conduction, 732.

capacity [C], 23.

energy, dissipation function and, 233.

measurement of a high resistance,

686.

measurements, 689-731.

cable testing : comparing capa-

cities. Do Sauty's method,
725.

comparison of a large with a
small capacity. Sir W. Thom-
son's method, 728.

determination of capacity, two
methods by Sir W. Thomson,
722, 723.

measuring a capacity, direct de-

flection method of, 727.

condenser, cylindrical, invented
by Sir W. Thomson, 716.

measurement of the capacity

of, 720.

guard-ring, 714.

condensers, standard, comparison
of capacities, 713.

guard-ring, comparison of the

capacity of two, Maxwell's
method, 721.

Faraday's method, 721.

electric absorption, 716.

electrometer, absolute, method of

using the, 698.

absolute, Lord Kelvin's, 693.

gauge for testing the electri-

fication of the jar in, 695.

the replenLsher, 696.

attracted disk, method of use

and theory of an, 692.

gauge-, the subsidiary, 703.

quadrant, adjustments of the,

704.

quadrant, the, 699.

the needle and its suspension,

701.

symmetrical, 699.

electrometer-jar, method of charg-

ing the, 705.

quadrant, Dolbzalek, 711.

Electrostatic electrometer, quadrant,
energetics of the action of a,

708.

grades of sensitiveness, 709.

heterostatio use of the, theory,

706.

idiostatic use of, 710.

attract*-** ''-^ ••«<».

leakage m> f eompanng
acapa .1 resistance,

729.

Werner Siemens' method of de-

termining capacities by, 729.

pUtymeter, use of with, 719.

Electrostatic voltmeter, graduati- n -f

an, 712.

system, 10.

Ellipsoid, aeolotropic, an, in a uniform
field, 83.

uniformly magnetized, case of a, 73.

Elliptic integral formula for cross-

section of coil, correction of, 505.

formulae, self-inductance derived

from, 522.

solution of mutual inductance of

two coaxial solenoids, 513.

E.m.f. in a circuit in a network, 133.

Energy {E), dimensions of, 14.

electrokinetic, of a system of circuit«,

232.

of two circular currents, 228.

electrostatic, dissipation function

and, 233.

mutual potential, of a magnet and a
magnetic field, 53.

of two magnetic distributions in

presence of one another, 64.

per unit volume equal to pull on unit

area of electrified suiiace, 732.

spent in charging storage battery,

measurement of, 291.

hysteresis, 313.

Equations, differential, of flow of elec-

tricity in three dimensions, 142.

Equipotential lines and surfaces, 42.

graphical construction of lines of

force and, 43.

Equivalence of a helical current and a
current sheet, 195.

theorem of, proof of general, of a linear

current and a magnetic shell, 149.

Faraday, method of comparison of

capacities, 721.

Field-intensity, earth's magnetic, deter-

mination of horizontal com-
ponent of, 87-129.

Fleming, Dewar and, experiments at

low temperatures on the specific

inductive capacity of various

substances, 770.
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Force and potential at centre of a long

coil, direct calculation for, 223.

{F), dimensions of, 12.

direct calculation for potential and,

at centre of a long coil, 223.

earth's horizontal magnetic, deter-

mination of, 89.

electromagnetic, 88.

equations of, 159.

electromotive, alternator with, any
periodic function of t, 254.

secondary circuit which contains

no, 251.

law of, deduction of, from equivalent

magnetic shell, 153.

expression for potential found
from, 154.

found experimentally, method of

Maxwell, 152.

lines of, circles round a conductor,

151.

refraction of, at common boundary
of dielectrics, 736.

magnetic, 57.

due to circular magnetic shell, 212.

relation of current to line integral

of, rovmd conductor, 155.

on a dielectric sphere in a known
field, Boltzmann's determina-
tions by the, 751.

on element of circuit, 159.

on imbedded sphere, 740.

on movable coil between two fixed

coils, 432.

in terms of ratio of coil constants,

433.

Forces between straight conductors,

170.

demagnetizing, 77.

harmonic electromotive, 247.

Formulae, dimensional, change-ratios,

2.

examples of, 27.

for derived units, 8.

of physics must be homogeneous in

dimensions, 9.

Galvanometer, aperiodic, Wiedemann's,
410.

ballistic, action, uncertainty of,

theory of its cause, 425.

approximate theory of the, 423.

damping of oscillations bv air-

friction, 423.

deflection, logarithmic decrement
of, 424.

elimination of constant, etc., for,

426.

method of recoil observations by
the, 427.

combination of results of, 428.

Galvanometer, condition that current

may be always zero, 544.

current through a, in a bridge, 134.

differential, comparison of mutual
inductance and capacity by a,

575.

theory of method by, 576.

comparison of two inductances by
differential, 548.

theory of method, 549.

with high resistance coils for low
resistance tests, 362.

method for comparison of

standards, 363.

Gaugain's, 216.

coils, Helmholtz's arrangement,
217.

with four coaxial coils, 220.

three coaxial coils, 221.

needle, bilateral and unilateral de-

flection of a, by alternating

current, 394.

sensibility of a, 392.

for different positions of the needle,

393.

torsion of suspension fibre, 393.

sensitiveness of a, 325.

sine, construction, 381.

principal constant, 386-7.

T. Gray's, 389.

siphon-recorder arrangement used

for, 411.

tangent, principal constant, 386.

single-layer, 384.

manner of building up a wooden
bobbin, 385.

theory of a, 390.

adjustment of the instrument,

391.

Galvanometers, absolute, 380-454.

construction of, and electro-

dynamometers, 207.

astatic, 415.

Gray's, 417.

vertical astatic needles, 418.

advantages of, 419.

with straight vertical needles, 421.

ballistic, 422.

mirror, 323.

moving coil, best shape of coils in, 413.

suspension of coils, 415.

with iron cores in the coils, 429.

non-absolute, best shape of section of

bobbin, 405.

choice of gauge of wire, 403.

effect of grading the gauge of wire

in bobbin, 405.

.

needle and needle chamber, 408.

theory of a graded coil, 406.

standard, and electrodynamometers,
380.
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Galvanonut<^re, tant?««nt, rdnMtriiotutn,

:jki.

nt'cdU* and «UMjM»n«*ion, «<':il.- :iii.|

{)«>intor, 3H3.

Qaugain'H f^alvanomet^r, 2ir>.

Gauss, method of determining //, tlTcct

in the inductive correction «if

varying thickness of matrnet.
107'.

effects of variation of the

earth's field, 107.

correction for distribution, 104.

corrections for alteration of

moment, and for induction,

105.

corrections in, 99.

deflection e.\|)eriment8, 101.

description of determinations by
T. Gray. 101.

Poisson's method of determina-
ti(m, 89, 92.

observation of oscillations, 102.

reduction of observations, 103.

theoretical results, 105.

Generator and motor, activity in cir-

cuit of, 285.

are similar machines, case when,
287.

efficiency of, measurement of work-
ing, 289.

electrical efficiency of arrangement
of, 286.

charging storage battery, 290.

Geometric mean distance (g.m.d.), 475.

calculation of, 479.

examples of the use of, 477.

for adjacent squares in different

relative positions, 480.

for lines, rectangles and squares, 483.

values of, in various cases, 480.

Glazebrook, accuracy of method for

resistance, 598.

experiments, 596.

Lt)DGK and, method of electrical

oscillations, 687.

Gordon, J. E. H., five place balance

method, 753.

Gray, absolute electrodynamometer,
398.

astatic galvanometer, 417.

dynamometer, value of the couple in

the, 400.

formula for coaxial coils, 501.

practical example of, 504.

formulae for inductances of coils,

500.

(J. G.), and Ross, improved magneto-
meter table and accessories, 120.

(T.), description of actual determina-

tions of earth's horizontal mag-
net force, Gauss's method, 101.

<iRAV (l), m<thM<| ..f ruhbrating a slide-

wire, 345.

sine galvanometer, 3H9.

Gkovkh, Kosa and, investijjation of

induotanoe. 507.

Helmholtz's arrangement of galvano-

meter colls, 217.

double coil, application of corrections

to. 219.

HoPKiNsoN, .1. and E., method of test-

ing dynamos, 315.

J., experiments on glass, 7M.
further results of. 756.

on gla.HH plates, 757.

cm liquids, 758. 762.

on the benzine series, 764.

Hysteresis in changes of magnetization,

77.

energy spent in, 313.

Idiostatic use of quadrant electrometer,

710.

Impedance in an electric circuit, 249.

Induced magnetization (Section IV.),

76-86.

in a uniform field, 76.

of an aeolotropic body, 79.

Inductance, comparison of a capacity

and an, 684.

comparisons of, problems, 533.

conductors in parallel containing re-

sistance, and capacity, 252.

determination of the product of a

capacity and an, 684.

in telephony, influence of, 250.

mutual [M], 25.

calculation of, of coils and disk

(Rayleigh), 631.

comparison of, and capacity by
Anderson's ballistic method,
574.

and capacity by a differential

galvanometer, 575.

and capacity : Carey Foster's

method, 588.

most sensitive arrangement for, 589.

theory of method, 576.

of a solenoid and a coaxial circle,

501.

of coaxialand coplanar flat coils, 524.

of coil and disk (by Mr. W. G.
Rhodes), 645.

of i^arallel conductors of square
section, 496.

of two close nearly equal coaxial

circles, 197.

of two coaxial circles, 490.

of two coils compared with self-

inductance. Maxwell's method,
549.
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Inductance, mutual^ of two parallel

wires of equal length, 495.

of two non-coaxial circles, table,

App. v., 806.

Brillouin's method of correcting for

unknown inductances in ' the

bridge, 552.

theory of the, 552.

modification of formula, for,

arrangement, 553.

practical example of method,
555.

modification of method, 551.

of two coils compared with self-

inductance of third, Niven's

method, 556.

theory of method, 556.

between two coaxial circular con-

ductors, 187.

computation of, 191.

of circle and helix, 188.

of helix and cylindrical current sheet,

190.

of two coaxial circles by g-series,

192.

of two magnetic shells, 184.

of two non-overlapping finite solid

coils, 510.

of two semi-infinite solid coils, 509.

tables for calculation of, 516.

(or " inertia ") of system of alter-

natinc; currents, 279.

self-, (L), 24.

Anderson's ballistic method, 573.

null method for comparison of,

and capacity, 577.

calculation of, 519.

calculations for short coils, 520.

coil of maximum, 492.

comparison of an, with a resistance.

Lord Rayleigh's method, 557.

comparison of mutual inductance of

two coils with, of one. Max-
well's method, 549.

of third, Niven's method, 556.

of two, 542.

comparison of, with capacity of a
condenser. Maxwell's method,
570.

theory of method, 570.

condition that the method may be
null, 578.

derived from elliptic integral for-

mulae, 522.

effect of, in a bridge network, 338.

formulae for, 525.

Joubert's method of measuring,
565.

conditions for accuracy of, 566.

theory of, 566.

meaning of, of part of a circuit, 493.

Inductance, self-, of a circuit, 477.

of a circular coil of large radius,

487.

of a non-inductive shunt and of

a thin tape, 498.

of a straight bar and any form of

section, 496.

of straight conductor of given
length, 493.

range of applicability of formulae,

520.

Rimington's modification of Max-
well's method, 571.

theory of, 571.

sensibility of the arrangement, 544.

theory of a single circuit with, 240.

of method, 542.

standard of, 208.

Inductances, calculation of, 475-627.

by g.m.d., 475.

comparison of two, by differential

galvanometer, 548.

theory of method, 549.

in various cases, 497.

magnetic field-intensities and, rela-

tions between, 194.

measurement of, 528-592.

of coils, Gray's formulae, 500.

of flat coils, 521.

of thick coils, formulae for, 507.

or coefficients of induction, 528.

ratio of, obtained as ratio of two
resistances, 533.

residual, and capacities in " non-

inductive " coils, 582.

estimation of error due to, and
capacity, 585.

Induction, calculation of, 210-231.

coefficients of, 234.

coil, battery with, and cross-con-

nection, 243.

theory of, App. I., 774.

magnetic, 57-67.

second specification of, through a

circuit, 186.

mutual of two coils, coefficient of, 208.

of two close coils of large radius,

489.

of two coaxial circles, App. III.j

800.

self-, calculation of, for revolving coil,

615.

of coil, 624.

total, is stream function of magnetic
potential in case of axial sym-
metry, 199,

Inductivity of the medium on electric

phenomena, 732-744.

"Inertia" (or "inductance") of

system of alternating currents,

279,
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Integrals, elHpiio, table of, App. IV.,
802.

Interpolation, 830.

Jones, J. V., absolute determination of

sp. resbtancc of mercury by
method of I^orenz, 636.

adjustment of apparatUB, 626.

Ayrton, W. E., and, determination
by method of Loronz, 644.

final result of, determination, 644.

JouBERT, method of measuring self-

inductance, 565.

conditions for accuracy of,

theory of, 566.

Joule, method of, measurement of'

absolute resistance, 660.

unit of work, electrical, 33.

Kelvin, Ixird, electrostatic voltmeter,

711.

method, to determine v, 662.

standard current balances, 451.

Kilowatt, 33.

Kinematical units, examples of dy-
namical and, 15.

Kirchhoff's method for absolute resist-

ance, 594.

theory of, 595.

Kohlrausch, experiments of Weber and,
to determine v, 655.

Kohlrausch's modification of method by
damping, 608.

Laplace, law of, 87.

Laplace's equation, potential due to

disk, and potential due to cir-

cular magnetic shell found by
solving, 211.

Length, unit of, 3.

Lodge and Glazebrook, method of

electrical oscillations, 687.

Lorenz's method, absolute determina-
tion of sp. resistance of mercury,
636.

Ayrton and Jones's determination by,

644.

modification of, 647.

Lyle's equivalent mean radius for dis-

tant coils, 507.

Magnet, couple on a, in a magnetic field,

40.

equilibrium of a, in a magnetic field,

39.

equivalent, a circuit and, in one
medium not necessarily so in

another, 157.

to*a current, 180.

expansions for couple on small, with
centre on axis, 226, 227,

ICagnat. UmelUr, a solenoid regarded
aM a. 224.

mutual potential energy of a, and a
magnetic field, 53.

potential energy of a, 40.

resultant field of a, obtained by super-

imposing a bar-magnet on a

uniform field, 50.

uniform, a solenoid compared with a,

176.

Magnets, 37-56.

bar-, distribution of magnetism in, 85,

deflecting, construction of, 94.

"end on" and "side on" posi-

tions, 96.

oscillation experiments, 97.

placing of, in position, 95.

lamellar, 69.

moments of large, comparison of,

112.

Magnetic action, of coils, 180-208.

of circuits and coils, 180-208, 210-

231.

distribution, elimination of effect of,

111.

distributions, energy of two, in

presence of one another, 64.

energy, 57-67.

field, 39.

and inductances, relations between,

194.

couple on a magnet in a, 40.

due to an element of a current-

carrying circuit, 186.

earth's, determination of horizontal

component of, 87-129.

equilibrium of a magnet in a, 39.

[H], intensity of, 22.

intensity, 39.

mutual potential energy of a mag-
net and a, 53.

of a long straight conductor carry-

ing a current, 151.

potential of a magnetized bar in a,

51.

resultant, of a magnet obtained by
superimposing a bar-magnet on
a uniform field, 50.

fields, due to currents, 180-208.

filament, potential of a, 47.

force, earth's horizontal, determina-
tion of, 89.

Gauss' method, 92.

lines of, 42.

and equipotential lines, graphical
construction of, 43.

equipotential. and surfaces, 42.

of a uniformlv magnetized bar,

48.

construction for, 49-

Poisson's method of, 89.
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Magnetic force, relation of current to

line integral of, round conductor,

155.

forces due to circular magnetic shell,

212.

induction, 57-67,

second specification of, through a

circuit, 186.

values of components of, in terms

of vector potential, 61.

moment [m], 21.

needle, couple on, produced by cir-

cular current, 213.

modification of formulae to allow

for dimensions of coil section,

215.

removal of second term in series of

F, 216.

permeability [CTl, 21.

pole, 19.

a singly finite solenoid equivalent

to a, 175.

potential, 37-58, 42.

total induction is stream function

of. in case of axial symmetry, 199.

shell, 67, 180.

circular, potential due to, found by
Laplace's equation, 211.

magnetic forces due to, 212.

deduction of law of force from
equivalent, 153.

mutual inductance of two, 184.

one, in the field of another, 71.

proof of general theorem of equi-

valence of a linear current and a,

149.

theory of, Ampere's expression

deduced from the, 167.

vector potential for a, 1 84.

survey, 112.

susceptibility [»c], 23.

susceptibility, 59.

system, action of a, on a current, 157.

reaction of the elements of a circuit

on a, 178.

Magnetism, 37.

distribution of, equivalence of a

current and a, stated, 147.

in bar-magnets, 85.

potential due to circular surface dis-

tribution of, 211.

question of centroids of, 85.

unit of, 37.

Magnetization, hysteresis in changes of,

77.

induced, in a uniform field, Weber's
theory, 76.

of an aeolotropic body, 79.

Section IV., 76-86.

\v], intensity of, 21.

uniform, 41.

Magnetized aeolotropic body, couples

on a, 80.

bar, lines of force of a uniformly, 48.

construction for, 49.

bodv, potential of a, in a magnetic
"^

field, 51.

potential of a uniformly, 73.

ellipsoid, case of a uniformly, 73.

uniformly, 67-76.

Magneto, rails and sliding-bar, 235.

Magnetometer, the, 92, 114.

adjustment of the instrument, 124.

arrangement of compensating coils,

120.

errors in usual, arrangements, 117.

improved, table and accessories. Gray
and Ross, 120.

mode of measuring deflections, 93.

order of magnitude of errors, 117.

results obtained with trial instrument,

117.

Stroud's, for complete determination

of H, 113.

use and theory of, 115.

table and accessories, improved,
120.

testing of specimens at different tem-
peratures by Dr. G. E. Allan's

electric furnace, 126.

Mance, methods of, and Thomson for

battery resistance, 378.

Mascart, experiments of, de Nerville,

and Benoit, 605.

Mass, unit of, 5.

standards of, relation between British

and French, 6.

Matthiessen's and Hockin's method for

low resistances, 355.

Maxwell, cycle-method of a network
of conductors, 529.

condition that, should be abso-

lutely " null," 535.

experiments by, 540.

method usual in practice, 532.

modification of, 535.

Niven's modification of, 456.

theory of, 532.

method of, law of force found experi-

mentally, 152.

Maxwell's bridge form of method III.,

669.

conception of the sj^stem of stress in

a dielectric, 743.

method, theory of, 670.

for comparison of two guard-ring
condensers, 721.

to determine v, 663.

theory of, result, 665.

Medium, dielectric, analogy between
electrostatic action and heat con-

duction, 733.
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Medium, dielectric, apparent clcctrifica-

tion on thr Hurfjvc<! of a, 7Ijr».

eonditionK wlii(*h hold at mirfiwon

of separation l)«'tw«'cn, 1\\\.

conHidiM'ation <»f particular cjimoh of

diffcHMit. in contact, 741.
" cx»uc.hcs dc Klism'ment," dennity

of apparent electrification given
i)y, 7:n.

field containing <lifTerent, T{4.

Maxwell's conception »)f the system
of stress in a, eh'ctric displat^e-

ment, 743.

H'fraction of lines of foroo at com-
mon Ixiundary of, TM\.

spherical portion of a, imlN><lded in

another medium—unilisturlwd

extrrnal lield unif«)rm, TM.
stress in the, 7112.

Moment, of a con<liutor in the fiehl of

a sint/;le pole, 177.

maojnetic |m|, 21.

Moments of large magneto, compari8<m
of, 112.

Momentum, dimensions of, 12.

electn)kiiu>tic, components of, 2!V2.

time-rate of chaiiirc of, 12.

Motor, alternatinji, theory of, 303.

explanation of self-synchronizing;

action, 3()4.

maximum activity of, 304.

generator and, activity in circuit of,

28r>.

are similar machines, case when,
287.

charging storage battery, 290.

etliciency of, measurement of work-
ing, 289.

electrical cfticiency of arrangement
of, 286.

National Physical laboratory, current
balance of the, 445.

Negreano's exi)eri mentis on hydrocarbon
series, 7(35.

Niven's modification of Maxwell's
method, 546.

theory of, 546.

Oersted's experiment, 146.

Ohm, absolute determination of, by
Lorenz's method, 636.

adjustment of J. V. J(jnes's appara-
tus, 636.

adjustment of the disk in position :

observations, 642.

reduction of results, ()42.

Ayrton and Jones's determination
by method of Lorenz, ()44.

apparatus of National Physical
Laboratory, 646.

o.A.M, 3g

Ohm, Ayrton and Joiim'b, etc., arrange^

ment of brushes : result id>tuined,

final result of Jones's detcrmina-
tion. 644.

final n^KultH of experimentM, 636.

calculation of M and final result. (H9.

copies of the staiulanl, 368.

Ix'gal and Int4>rnational, 32H.

HMilization of a standard, 367.

HiM'cifieation of, 29.

unit of renistance, 28.

Ohm's law, 129.

in a h(>ti>rogencoiifl circuit, 130.

Oscillations, forced, nde for solution of

difT<*rential equiiti«>n.s for, 247.

Oscillat^iry discharge of a e4m<len.ser,

time constants in, 247.

Paramagnetism and diamagnetism. 84.

Perry, Pn>fess<ir, third m«*thod of deter-

mining r, 6()7.

and Ayrton, determinations of the

si)ecific inductive capacitj' of

gjwes, 767.

exi>eriments of, 769.

Perry's, Ayrton and, seeohmmeter, .537.

Physical quantity, measure of, 1.

IMatymeter, Sir VV. Thomson's, 719.

Poi.MSon's method, of determination of

the earth's horizontal magnetic
force, 89.

Potential and currents in alternate-

current circuits, diflferencea of,

293.

axial, due to semi-infinite solid coil,

509.

coefficients of, 234.

difference of, between terminals of

primary, 314.

direct calculation for, and force at

centre of long coil, 223.

due to circular current, 210.

to circular magnetic shell, 211.

to circular surface distribution of

magnetism, 211.

to disk, 211.

energy, of a magnet, 40.

the mutual, of a magnet and a

magnetic field, 53.

etc., of circular current, 225.

exi)ression for, found from law of

force, 154.

magnetic, 37-56, 42.

measuring instruments or voltmeters,

467.

of a magnetic filament, 47.

of a magnetized Ixxly in a magnetic
field, 51.

of a imiformly magnetized body, 72
vector, 57-67.
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Potentiometer method of determining
e.m.f. of Clark cell, 470.

Quincke's correction of, results for. con-
nections, electric stress and
strain, 762.

discussion by, of results for liquids,

766.

experiments, 760.

Rayleigh, Lord, correction for cross

-

section of coils, 506,

experiments, 561.

further experiments with the re-

volving coil method, 622.

method of comparing low resist-

ances, 356.

observations of steady current de-

flection, 563.

reduction of results of, 563.

and Mrs. Sidgwick's experiments,
62R.

Refraction, index of, relation between
specific inductive capacity and,

744.

of lines of force at common boundary
of dielectrics, 736.

Remington, modification of Maxwell's
method of comparing self-in-

ductance with capacity of a

condenser, 571.

theory of, 571.

Resistance [r], 18.

[R], 23.

absolute, comparison of, with B.A.
unit, 633.

measurement of, 593-651.

method of Joule, 650.

battery, measurement of, 377.

methods of Mance and Thomson
for, 378.

between electrodes buried in a large

mass of conductor, 143.

box, testing a, 333.

boxes, 326.

different forms of, 329.

coils and resistance boxes, 326.

construction of, 328.

conductors in parallel, containing

inductance and capacity, 252.

effective, and effective conductance
of inner conductor, 263.

of system of alternating currents,

278.

from leakage, calculation of, 374.
*

Glazebrook's experiments, 596.

a'^curacy of method, 598.

high, electrostatic measurement of a,

686.

Kirchhoff's method, 594.
theory of, 595.

Resistance, leakage method of com-
paring the capacity of a con-
denser with a, 729.

low, differential galvanometer with
high resistance coils for, tests, 362.

of a bridge network, 134.

of B.A. unit, value of, 621.

realized standards of, importance of,

593.

Rowland's experiments, .599.

slides, 331.

specific, absolute determination, of

mercury, Lorenz's method, 636.

adjustment of J. V. Jones's appara-
tus, 636-644.

Ayrton and Jones's determination
by method of Lorenz, 644.

final result of Jones's determina-
tion, 644.

method of .Joule, 650.

temperature variation of, 333.

Resistances, high, leakage method for,

372.

observations, details of, 373.

measurement of, 370.

low, fall of potential method for, 359.

Matthiessen and Hockin's method
for, 355.

potentiometer method for, 357.

Rajdeigh's method of comparing,
356.

two-step method for, 358.

ratio of two, ratio of inductances

obtained as, 533.

specific, measurement of, 356.

commercial tests of, of copper
mains, 366.

the comparison of, 323.

to steady currents, comparison of,

323-379.

Resonance, electric, 250.

Rheostats, 334.

Rosa and Grover's determination of

inductance by Anderson's null

method, 580.
'

determination continued, 568.

investigation, correction for wave
form, 567.

results of, experiments, 569.

Rosa, comparison of methods, 675.

determinations of, and Dorsey, 674.

experiments of, 671.

Rosa, Professor E. B., third method of

determining v, 667.

Ross, J. G. Gray and, improved mag-
netometer table and accessories,

120.

Rowland, experiments of, 599.

details and use of tangent galvano-

meter in, 600.

to determine v, 655.
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Searle and ThomHon, oxperimenUi to

dotermine v, rt7K.

Secohm meter, Ayrton and Perry's, 537.
thfoiy of metnotl, 5o9.
us<» of, 555,

SenHibility, further dMciimion of, XW.
of a ^alvanoinfter, 392.

for different iMMitions of the needle,

393.

torsion of HUHiienHJon fibre, 393.

practical rule for, 33<l.

.SiDowicK, MrH. (and Ixrd Hayleigh),

exiH'riments, 028.

SlKMENs\ Sir W., nu'thod of comparing
capacity of a large condenner
with that of a relatively small
condouHer, 728.

method of determining capacities,

729.

Silow'a exiHTimentH. 7tiO.

Solenoid, a, compared with a uniform
magnet, 17t).

a, regarded as a lamellar magnet, 224.

a singly infinite, equivalent to a mag-
netic pole, 175.

action of a, on a finite conductor, 17().

application of Ampdre's result to a,

174.

thin, Ami>ere'8 formula applied to

find the action of a, 171.

Specific inductive capacity [K], 18.

Boltzmann's determinations of, 749.

by the force on a dielectric sphere
in a known field, 751.

in different directions in a crystal,

752.

determinations of, 745.

discussion by Quincke of results for
liquids, 7t>(i.

effect of pressure on, of gases, Boltz-

mann, 7G8.

experiments at low tem|)eratures on,

by Dewar and Fleming, 770.

of Ayrton and Perry on, of two
condensei-s, 7(58.

on hydrocarbon series byNegreano,
765.

on liquids by Cohn and Arons, 760.

on the, of gases by Boltzmann,
and by Ayrton and Peiry, 767.

with electric waves, 771.

Gordon's, J. E. H., experiments by
five plate balance method, 753.

Hopkinson's experiments on glass,

754.

experiments on glass plates, 757.

on liquids, 758, 762.

on the benzene series, 764.

further results of, 756.

Klemen6i6's experiments on the, of

mica and of ice, 752.

SpociHo inductive capacity [K], mea-
Hurementx of, 744-773.

of |»araffin wax, 74H.

Quineki^'s i'X|MTimenti», 7*K).

correction of, result* for connec-
tiom«, 7«2.

relation bctwwn, and index of re-

fraction, 744.

Silow'H expenment«, 758.

Sphere, cane of conducting, situiii< «| m
impressed unif<»rm field, 739.

dielectri'^, energy of a, in a uniform

field, 740.

forct^ on a, in a known field, Boltz-

mann's determinations by tbe,75I

.

field within. 73H.

imlM'dde<l, f<»rce on, 740.

Spherical harmf>nicH,zonal, App. II.,788.

Standard, cell, Clark's, 469.

Weston, App. VII.. 815.

cells, gra^luation of voltmeter by, 471.

centi -ampere balance, 452.

condenser and galvanometer, 657.

method of ex|)erimenting, 659.

reduction of results, 660.

current balances, Kelvin's, 451.

Daniel! cell, 472.

electrodynamomcters, 380.

galvanometers, 380.

instruments, graduation of, by elec-

trolysis, 464.

Standards, Bureau of, current balance

of the, 437.

comparison of, differential galvano-

meter method for, 363.

constancy of, 369.

of mass, British and French, relation

between, 6.

Stress in the dielectric medium, 732.

system of, in a dielectric, Maxwell's

conception of the, electric dis-

placement, 743.

Stroud, magnetometer for complete
determination of H, 113.

Sumpner and Ayrton's three-voltmeter

method, 319.

two current-meters and voltmeter

method, 320.

Sumpner's method of testing trans-

formers, 317.
'

' Suppressed dimensions " of fi and k,

systems reconciled by, 25.

Swinburne's method of testing d>Tiamos
316.

Table, general, of values of v, 688.

of collected results, derived from
report on " Absolute Resistance

of Mercury " by R. T. Glaze-

brook {Brit. Assn. Beport, 1891),

651.
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Tables, coils near together (speed of

disk about eight revolutions per
second), 635.

for calculation of mutual inductances
516.

numerical example of use of, 281.

of dimensions, 25.

of functions used in calculating re-

sistances and inductances of con-

ductors carrying rapidly alter-

nating currents, 283.

value of the argument m for copper
wires of conductivity 5*811 x 10"*

c.g.s. imits, 284.

of functions X^{x), V-^(x), S{x), T{x),

282.

results of measurements of four in-

ductance coils of 100 millihenrys

each, coils measured singly and
in series in groups of two, 587.

Telephony, influence of inductance in,

250.

Thomson, methods of Mance and, for

battery resistance, 378.

J. J., and Searle's experiments,
678.

Professor J, J., third method of deter-

mining V, 667.

Thomson's cylindrical condenser, 716.

double bridge, 349.

apparatus for testing rods by, 353.

methods of comparing the capacities

of condensers in cable work,
722-3.

])latymeter, 719.

quadrant electrometer, 699.

Time constants in oscillatory discharge

of a condenser, 247.

constants of coils, 524.

unit of, 7.

Transformer, 310.

constant permeability involves zero

dissipation in iron core of, 312.

Transformers, case of two equal, 318.

Sumpner's method of testing, 317.

Unit current, 180.

definition of, 87.

of magnetism, 36.

Units,

,1. Fundamental, 3-8, 26,

for seientitic work, 5.

of length, 2, 3.

mass, 5.

time, 7.

prototype metre, 4.

II. Derived, 8-10.

of area, 9.

of density, 9.

Units,

III. Dynamical, 10-15.

dimensions of acceleration, 11.

energy {E), 14.

force (F), 12.

dimensions of momentum, time-rate
change of momentum, 12.

velocitv and speed, 10.

work (W), 13.

kinematical and dvnamical, examples
of, 15.

IV. Derived electrical, 16-28.

A. Electrostatic system,

capacity of a conductor [cj, 18.

conductance [l/r], 18.

electric current [7], 18.

electric surface density \(t\, 17.

force and intensity of electric field

[/], 17.

potential [y], 17.

electricity [</] quantity of, 16.

resistance [r], 18.

si)ecific inductive capacity [/CI, 18.

B. Electromagnetic system, 19-28.

electric current [7], 21.

potential or electromotive force

[F], 23.

electrostatic and electromagnetic,

relation between, 25.

electrostatic capacity [C], 23.

intensity of magnetic field [//], 22.

of magnetization \v], 21.

magnetic induction \B], 23.

permeability [CT], 21.

susceptibility \k\, 23.

magnetic pole, 19.

moment [m], 21.

moment of a doublet or of an
elementary current circuit [7 .41,

21.

mutual inductance [il/j], 25.

quantity of electricity [<?], 23.

resistance [72], 23.

self-inductance [Lj], 24.

vector potential [A], 25.

V. Adopted in jjractice, 28-33.

absolute, of electrical energy, 32.

B.T.U., 32.

international ohm, volt, ampere,
specification of, 29.

of current, practical, ampere, 28.

of e.m.f., practical, volt, 28.

of e.m.f., realization of, 30.

disk magneto for, 32.

of quantity, Coulomb, 28.

of resistance, Ohm, 28.

watt, 32.
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Unite,

VI. Practical, a« an aljw>lutc nysteni,

34-30.

|)nu:tu!al an an indejicndcui HyuU'ta,

34.

ratiu of, 31.

Units, a moving rlcciriiic<i Hurfuci*

n'<^jinit'<i UH u current, 053.

uoiiiimrlHon of, 052-088.

of a capacity and an iniluctance,

084.

description of coininutHton), ((82.

dcti^rniination of the product of

a capacity and an inductance,
<>84.

ilctcniiiiiations of Kosa and
l)orm»y, 074.

cIcctrostHtic measurement of a

hitrh rcHistance, 080.

e\|KTiinent« of Ho8a, t)71.

(if Weher and KohlrauHch : Uow-
land's exju^rimentw, to deter-

mine ratio of, 055.

jieneral table of results, 087.

I^)rd Kelvin's method, 002.

Maxwell's bridge form of method
III., 009.

method, theory of, 070.

Maxwell's method, 00:J.

theory of, result, 005.

method of electrical oscillations,

087.

method VI., 080.

methods IV. and'V., 084.

methods of determining r, 054.

mode of exiKuimenting, 083.

of (juantity, ratio of the, con-
sidered as a sjjced, 053.

ratio of, (552.

i-ehition to speed of })n>pagation of

electromagnetic action, 052.

third method of determining r, 007.

Thomt<«>n and Searle's experiments,
078.

VVrK.i jM.t4 iiti.ii, ilrlinltinn, 60.

for a magnetic Mhell, 1H4.

meth«Nl of, 181.

M|icciftcati(>n of, 03, 183.

valuett of com|M)ni'nt4f of magnetic
induction in UrrtiM of, 01.

Velocity and Hjiecd, dimciutioiui of,

10.

Volt, or practical unit of e.m.f., 28.

N|N!citication of, 20.

Voltmet<>r, elcciro«tatic, graduation of

an, 712.

graduation of a, 4iiS.

graduati<m of, by standard celb,

471.

VoltmctiTH, electrostatic, 711.

potential measuring instrumentij or,

407.

Watt, unit <»f chH-trical activity, 32.

Weber, cxiK-rimcntH of, and Kohl-
rauHch, to dctemnne r, 05.5.

WcIkt and Zollner's exiK'riments, 003.

method by dam))ing, 007.

Weber's earth inductor method, 001.

exi)erimenti», on electromagnetic

action, 108.

nunle of cxiwrimenting, (i02.

theory, 70.

Weston, standard cell, directions for

setting up, App. VII., 815,

Wiedemann's ai)eriodic galvanometer,
410.

exiK>riment«, (>03.

Work (W), dimensions of, 13.

theorem of, done in carrying unit

jM)le round current, second proof,

154.

Zollner's, Weber and, cxi)eriments, 0i>3.

Zonal harmonic series, calculati«jn of,

200.

for two circles with intAjrsectiug uxcb,
integration of, 201.
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